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1 Introduction

Accurately classifying products is essential in international trade. Virtually all countries

use the Harmonized System (HS) nomenclature to categorize products into tariff lines for

both statistical and duty collection purposes. Misclassification, both intentional and unin-

tentional, can be very costly. It can result in imprecise measurement of trade flows, inap-

propriate determination of origin, foregone duty collection, and significant delays in border

monitoring and processing. Furthermore, it can lead to the design and implementation of

misguided trade policies, especially those related to trade remedies such as countervailing

duties, antidumping, and safeguards.

Traditionally, the bulk of product categorization tasks has been carried out manually, fre-

quently based on experts’ judgments, and has accordingly been extremely time-consuming.1

As a consequence, classification is challenging for governments, firms, and researchers, espe-

cially on a large scale. This has been magnified by the rise of cross-border e-commerce, which

requires customs agencies to process several million small shipments per year. In many de-

veloping countries, this has generally resulted in a large share of shipments being classified

based on their value or size instead of the specific goods they consist of, thus limiting their

ability to conduct risk assessments properly and that of their countries to accurately measure

the composition of a growing portion of their trade. Firms, in turn, particularly those that

are small or have no previous experience exporting or importing, typically find it difficult to

assign their products to HS codes and need to rely on costly specialized services to do so.2

Last but certainly not least, many databases contain product-level information in the form of

unstructured product names or text descriptions. This makes it hard for researchers to com-

bine them, leading to time-intensive and imperfect merges with standard trade databases

based on the HS nomenclature.

1As highlighted by public customs’ agencies resolutions, classification is often the object of firms’ ex-ante con-
sultations and is subject to ex-post adjustments.

2Furthermore, in an effort to reduce the wrong attribution of tariff lines, custom agencies often impose heavy
misreporting fines, which can be burdensome for exporters.
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The advent of machine learning (ML) is likely to reduce the cost of these classification

efforts and increase their accuracy (see WCO, 2022a).3 While there is an incipient literature

that aims to assess the precision of ML for product classification, most existing efforts rely

on tests on the same dataset used to train them. As a consequence, there is very limited

evidence on how these models perform on real external datasets and, hence, on their general

applicability. Further, such an evidence is missing altogether in the case of large language

models (LLMs), which are yet to be tested at scale for this purpose.

In this paper, we examine the performance of a variety of ML models along with LLMs

-GPT 3.5, GPT 4, Claude 3 Sonnet and Claude 3.5 Sonnet-, at classifying products into the

HS nomenclature.4 We assess its performance at different aggregation levels, including the

2-digit HS Chapter level (HS2), the 4-digit HS Heading level (HS4) and the 6-digit HS Prod-

uct Subheading level (HS6). For instance, the HS6 code 080510 refers to "Oranges", which

belongs to the HS4 Heading 0805 "Citrus fruit" and which in turn is part of the HS2 Chapter

08 "Edible fruits and nuts".

When classifying product descriptions into HS codes we will go beyond the train-and-

test dataset and thus explicitly assess the external validity of the models. For this, we will use

three different datasets: (i) a dataset containing product descriptions from the Chilean cus-

toms agency to train and test ML algorithms, thus following earlier literature; (ii) a dataset

containing product descriptions from the customs agency of a different country, Paraguay;

and (iii) a database of product descriptions from the United States Department of Agricul-

ture (USDA).5 This third data source describes products for which firms obtain an organic

certification. In all cases, our analysis will be limited to animal, vegetable, and food products

since these are the product categories for which firms can obtain organic certification (Marra

3The BACUDA project run by the World Customs Organization (WCO) is an example of ongoing work using
these techniques for customs applications.

4We acknowledge that there are several other possible approaches to automatic product classification, includ-
ing convoluted neural networks (CNN), recurrent neural networks (RNN), and other transformer-based ML
models. In this paper, we restrict ourselves to some of the most widely used and practitioner-friendly ML and
LLMs.

5We use Paraguayan customs data because, like Chilean data, they are publicly available.

2

https://www.wcoomd.org/en/media/newsroom/2022/april/how-ai-can-help-customs-in-automating-hs-classification.aspx


de Artiñano et al., 2024).6

Our results reveal that, while standard ML algorithms performed very well within the

train-and-test set, their accuracy dropped dramatically when these models were applied to

datasets on which they were not explicitly trained. In contrast, LLMs performed very evenly

across all datasets.

Their accuracy was very high: the two top performing models (Claude Sonnet 3.5 and

GPT 4) achived accuracy rates of 73-88% at the HS 6-digit level, 81-93% at the HS 4-digit

level, and 89-95% at the HS 2-digit level across the 3 datasets. Overall, we find that the

models with larger parameter size and training sets perform better, that is, GPT 4 on average

performs better than GPT 3.5 and Claude Sonnet 3.5 performs better than Claude Sonnet 3.7

There are several important applications for this sort of scalable automatic product clas-

sification that uses product descriptions as inputs. First, it could help customs agencies iden-

tify mistmatches between reported product descriptions and HS codes and thus detect pat-

terns of intentional or fraudulent product categorization.8 Second, it would make it easier

for both policymakers and researchers to categorize product descriptions from unstructured

data sources (such as those obtained from e-commerce transactions, bank statements, elec-

tronic billing machines or from historical sources) into established product nomenclatures.

Finally, it could be used to develop chatbots that give HS code suggestions from simple text

descriptions, which would greatly facilitate tariff line attribution for firms engaged in inter-

national trade and even consumers participating in cross-border e-commerce.9

We make two main contributions to the existing literature. First, we show that the accu-

racy and overall performance of ML algorithms for automatic product classificaiton is high

6This project was originally conceived with the objective to match product descriptions of organic certified firms
with their corresponding HS Codes. In a future study, we will extend the analysis to all HS products.

7The parameters in LLMs are the number of variables that a model adjusts during training, typically the weights
within neural network layers. A larger parameter space thus implies a higher capacity to adjust to a variety of
linguistic patterns and subtleties and, hence, to react to different prompts.

8Some firms may try to avoid paying higher duties by misrepresenting a product as another relatively similar
product with a lower tariff. LLMs could thus be used to flag mismatches between reported product descriptions
and reported HS codes, potentially triggering a customs inspection.

9The US Census has already developed a similar chatbot; see https://uscensus.prod.3ceonline.com/.
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within the test-train dataset, but declines sharply when such algorithms are applied to ex-

ternal datasets. Second, this study is, to the best of our knowledge, the first to apply large

language model LLMs at scale to the WCO’s HS product classification and, more generally, to

a large-scale multiclass classification problem assigning standardized categories to sectoral

or product text descriptions.10

A number of previous studies have proposed alternative approaches to automatically

classify products into HS codes across many tariff lines. Spichakova and Haav (2020) use

ML methods to provide 6-digit HS code predictions and recommendations using a model

trained with product descriptions from the US Bill of Lading 2017 database.They show that

the algorithm achieves an accuracy of 80% on the test dataset. Ruder (2020) uses a variety of

ML and deep learning models to classify product descriptions from the US Bill of Lading and

reaches accuracy levels of approximately 60%. Chen et al. (2021) apply unsupervised ML

and an off-the-shelf embedding encoder to automatically assess whether reported HS codes

in cross-border import declarations are correct. They achieve an overall success rate of 71%

on an HS 6-digit dataset provided by Dutch customs. Turhan et al. (2015) adopt a different

strategy whereby they use visual properties along with product labels and descriptions. The

accuracy level they achieve is above 80% with 4-digit HS codes from a database of 4,494

binding tariffs published by the European Union in 2014.

These papers use a single dataset, which is split into training and testing samples. Un-

fortunately, the use of a single dataset prevents these authors from testing the accuracy of

the models in external datasets. This limitation is crucial because tariff databases often have

significantly different product descriptions and text formats. One exception in this regard is

He et al. (2021), who use data gathered directly from firms to train their models, along with

a second dataset of product descriptions from a third firm that was not in the test dataset.

However, they focus on very few HS products (12 6-digit potential product classifications)

10Kocon et al. (2023) carry out a simpler classification exercise focused on only a few categories. We also tested
the performance of GPT 3.5 in mapping sector descriptions onto the North American Industry Classification
System (NAICS). To do so, we used sectors reported by firms when registering with the online business plat-
form ConnectAmericas.
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and their exercise is accordingly much simpler than product categorization across the uni-

verse of potential tariff lines.

We contribute to this literature on automatic product classification by assessing the ac-

curacy of different ML algorithms on both the test-train-split dataset and two additional

datasets for a large set of products. Our results indicate a very large decrease in the accuracy

of standard ML algorithms outside the dataset on which the models are trained.

There is also recent literature that aims to apply GPT and other LLM models to text-based

data in the social sciences. Some recent papers that use GPT include Hansen et al. (2023),

Lopez-Lira and Tang (2023), Hansen and Kazinnik (2023), Yang and Menczer (2023), and Ko

and Lee (2023).11 Hansen et al. (2023) compare the performance of a predecessor of GPT-3 to

their own model, WHAM, and find that WHAM outperforms GPT-3 in terms of the error rate

at the task of classifying whether a job posting allowed the possibility of remote work at least

one day per week. The authors also discuss the potential gains of adopting modern natural

language processing (NLP) methods for text classification in economic environments. They

suggest that other prediction problems using text in economics might similarly benefit from

a large training sample combined with sequence embedding models, such as GPT-3.

Lopez-Lira and Tang (2023) examine the potential of OpenAI’s GPT 3.5 in predicting

stock market returns by using analysis and the classification of news with potential impact

for firms. Their analysis suggests that, even though GPT 3.5 is not specifically trained for this

task, it produces superior results in terms of predicting stock market returns than other tradi-

tional sentiment analysis methods commonly used in finance due to the comprehensiveness

of the model. In a similar vein, Ko and Lee (2023) show that GPT 3.5 effectively helps im-

prove portfolio management by selecting asset classes that statistically outperform random

choices in diversification and returns. Hansen and Kazinnik (2023) use GPT 3.5 and GPT

4 to decipher Fedspeak, the language used by the Federal Reserve to communicate mone-

tary policy decisions. Their results suggest that these models obtain the lowest numerical

11An exhaustive analysis of the recent literature using GPT (and its adjacent models) is beyond the scope of this
paper. Nevertheless, it is worth mentioning papers such as Noy and Zhang (2023) on the effects on productiv-
ity, Biswas (2023) on its potential role in health, and Kasneci et al. (2023) on its potential impact on education.
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errors, the highest accuracy rates, and the highest measure of agreement relative to human

classification when compared to other pretrained linguistic models and dictionary-based ap-

proaches. Finally, Yang and Menczer (2023) use GPT 3.5 to study the credibility of news and

conclude that they are able to correctly evaluate news sources by rating them.

We add to these papers by showing the usefulness of LLMs for product classification in

international trade. We find that while the top-performing LLMs (Claude Sonnet 3.5 and

GPT 4) perform slightly worse than traditional ML algorithms on the test-train-split dataset,

they significantly outperform these models on external databases. The reason is that LLMs

are able to go beyond the specific context of the training dataset and thus have much higher

external validity. Unlike traditional ML algorithms, they also require no additional data-

cleaning or preprocessing, making them much simpler to use.

The rest of this paper is structured as follows: Section 2 describes the different data

sources used in our analysis. Section 3 explains the methodological approach. Section 4

discusses the main automatic classification results and explores a series of extensions and

robustness checks. Finally, Section 5 concludes with a brief discussion of our results.

2 Data

In this paper, we used three different freely available datasets: a database of product descrip-

tions from Chilean customs (National Customs Service of Chile, 2023), a database of product

descriptions from Paraguayan customs (National Customs Agency of Paraguay, 2023), and a

database of organic product descriptions from the USDA (USDA Integrity Dataset, 2023).12

Customs transaction records include both the product description (as provided and recorded

by the exporter/importer) and HS-codes (self-reported by the exporter/importer).13 A prod-

uct description typically contains detailed information about the goods in a shipment, which

may include the nature of the goods, their composition, and/or their intended use. The level

12Table A1 in the Online Appendix provides the URLs where these data can be obtained.
13Importantly, firms can receive hefty fines for incorrectly describing the product and/or attributing the wrong

HS codes, regardless of whether such misattribution is intentional or not.
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of detail and specific information included can vary across different product descriptions.14

The first database (Chilean customs) was used to train and test the ML algorithms. The

second database (Paraguayan customs) was employed to test the external validity of our

models. Finally, the third database (USDA) was used to further test the models outside the

context of customs product descriptions.

Our goal is to classify products into the Harmonized System, by far the most widely clas-

sification used by customs agencies worldwide.15 The entire Harmonized System has 5,612

codes at the HS-6 level, 1,222 at the HS-4 level, and 97 codes at the HS-2 level. More specif-

ically, we aim to map descriptions to HS codes related to agricultural and food products,

which correspond to HS-2 Chapters 1 to 22. Thus, for the purpose of this paper the number

of potential classes is 866 HS-6 codes, 185 HS-4 codes and 22 HS-2 codes.

2.1 Train-Test-Split Dataset: Trade Transactions from the Chilean Customs

To generate and train the ML models predicting the HS nomenclature for target products, we

used Chilean export and import transactions from 2009 to 2021 as our train-and-test dataset.

This comprehensive dataset encompasses over 104 million observations with granular infor-

mation on trade transactions, including detailed HS codes and product descriptions.

We focused on HS Chapters 1–22, covering agricultural, animal, and food products. To

manage computational load, we randomly selected 1 million product descriptions from these

HS Chapters.16 Note that our sample of 1 million product descriptions corresponds to unique

descriptions; that is, we delete duplicated descriptions before our randomization.17 Follow-

ing standard practice in the ML literature, we used 70% of this sample for training purposes

14Thus, a specific HS code has many different correct descriptions according to the description provided by the
exporter/importer.

15Most countries around the world -including Chile and Paraguay — share the Harmonized System product
nomenclature up to 6 digits. More granular classification systems (8-digits HS, 10-digits HS) tend to be country-
specific.

16We randomize over the universe of product descriptions in Chapters 1-22 in Chilean customs. Importantly, this
implies that our data is not balanced across HS-2 Chapters. In Online Appendix A10, we balance the data by
HS 2- Chapters, finding similar results to those in our baseline unbalanced models. See Section 4.4 and Online
Appendix A10 for more information.

17Online Appendix A4 show the code for this randomization process.
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and the remaining 30% for testing.

2.2 External Dataset 1: Trade Transactions from the Paraguayan Customs

To test our algorithms against a dataset outside the training set, we used a random sample

of product descriptions from trade transactions recorded by Paraguayan customs. As be-

fore, we restricted the sample to agricultural, animal, and food products (HS Chapters 1–22).

Importantly, this dataset includes not only the product descriptions but also the HS codes

assigned by firms, thus enabling us to directly test the accuracy of the HS codes provided by

the different ML algorithms, by GPT models and by Claude models. 18

2.3 External Dataset 2: USDA Organic Product Descriptions

Finally, we used information on products for which the USDA has issued organic certifi-

cations to Latin American firms (see Marra de Artiñano et al., 2024). The original dataset

comprises more than 26,000 product descriptions. These texts vary substantially in terms of

how specific and clean they are; that is, whether they use clear, easy-to-understand word-

ing that is narrow enough to accurately categorize the product. Thus, these descriptions

may be significantly shorter than those usually found in customs databases (e.g., “maize” or

“mangoes”), and may be highly specific or scant (e.g., “concentrate soursop pulp” or “ungu-

rahui”). Online Appendix A1 shows a random set of 10 product descriptions for illustrative

purposes. In this case, the original database does not include the HS6 codes. We thus man-

ually classify by hand the HS6 codes in order to be able to test the accuracy of the different

models in this dataset.

18In a robustness check, we use these trade transactions from Paraguay as the train-test-split dataset and the
Chilean transactions as the first external dataset. We find very similar results; see Section 4.4. and Online
Appendix A11.
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3 Methodology

Classification algorithms play a vital role in a wide range of ML applications (Sarker, 2021).19

Multiclass classification, one of the most common applications of classification algorithms,

presents a particular challenge. The goal is to categorize data into three or more distinct and

mutually exclusive categories (Aly, 2005). This process involves training one or more models

to accurately assign uncategorized data to the correct categories. Formally, given a training

dataset of the form (xi, yi) where xi is the ith input and yi is the ith class label that belongs

to the set {3, . . . , N} we want to find a model H such that H(xi) = yi for new, uncategorized

data.

The process of automatic product classification using ML models consists of several steps.

First, the train-and-test data -in our case, the product descriptions in trade transactions ob-

tained from Chilean customs- needs to be preprocessed, including tasks such as preliminary

cleaning, tokenization and feature extraction. Second, the data must be divided into the

training and testing sets. Third, a series of different ML algorithms are applied to the train-

ing set. After performing these steps, we also tested the estimated models on two alternative

external databases (product descriptions in trade transactions from Paraguayan customs and

the USDA organic product database).

Our analysis was entirely conducted using Jupyter notebooks and Python open-source

libraries such as NLTK, scikit-learn, spaCy, AST, and other commonly used libraries. In

addition, we use the OpenAI (GPT) and Anthropic (Claude) APIs to classify the different

products through direct prompts and benchmark its performance against that of the ML

models.

19They have been used extensively in areas such as NLP (Otter et al., 2020), image recognition (Fujiyoshi et al.,
2019; Lai, 2019), and sentiment analysis (Mitra, 2020), among others domains. In recent years, breakthroughs
in NLP and text mining have propelled the adoption of these algorithms in applications as diverse as fraud
detection, asset classification in finance, and early detection of health problems (Kowsari et al., 2019).
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3.1 Data Processing

As mentioned above, the Chilean customs dataset covers 2009–2021 and contains more than

104 million observations. We processed this dataset by first restricting the product descrip-

tions to those in chapters 1–22 of the HS schedule, which correspond to animal, vegetable,

and food manufacturing products. This first filter reduced the total number of observations

to approximately 12 million and the number of unique 6-digit HS codes to 866. 20 We then

proceeded to randomly select 1 million product descriptions in an effort to reduce the com-

putational burden of the exercise.

To clean and preprocess the product descriptions, we performed a series of tasks, which

are summarized in Table 1:

20In addition, we filter out 469,435 observations that do not correspond to any known product according to the
standard HS nomenclature (e.g., 160000).
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Table 1: Preprocessing of Product Descriptions

Step Description Main Packages

Text preparation We imported the Natural Language Toolkit (NLTK) library
and applied the “word tokenize” function to break the text
into individual words (tokens). This was crucial, as it made
post-processing of text and feature extraction easier.

ast, literaleval

Lowercase We converted all words to lowercase using a lowercase func-
tion. This helped to ensure that words are treated consis-
tently in subsequent steps and to reduce data complexity.

lower

Normalization of
non-ASCII characters

We applied a function to normalize non-ASCII characters,
except for words that have the letter "ñ"21. This allows us
to standardize and simplify the text, thus facilitating subse-
quent analysis.

unicodedata,
normalize

Converting numbers
written in words to
digits

We used a function from the NLTK package to convert num-
bers written in words to digits. This helped reduce the com-
plexity of the text and made it easier to extract relevant fea-
tures.

w2n, word_to_num

Stop-word removal We used a function to remove stop-words that do not pro-
vide relevant information for analysis, such as prepositions
and conjunctions. This helped reduce the complexity of the
text and allowed us to work on the most significant words.

stopwords

Lemmatization The lemmatize functions were used to transform words into
their base or lemma form. This helped reduce the complexity
of the text by grouping similar words together and made it
easier to identify patterns in the data.22

nltk, spacy

Removing words that
are not in English or
Spanish

We applied a function to remove words that are not in En-
glish or Spanish. This helped focus the analysis on the rele-
vant languages and reduced noise in the data.

langdetect, nltk

English and Spanish
noise removal

We applied some functions to remove irrelevant words
in English and Spanish. This helped reduce noise in the
data and allowed the most relevant words to be used for
analysis.23

Source: Authors’ own elaboration.

21In those cases, we leave the word completely.
22For example, if we have different sentences that use the words “roasted,” “roasting,” and “roast,” the lemma-

tization process will unify these words to their lemma, “roast”. It is important to note that lemmatization does
more than just remove inflectional endings. It performs a morphological analysis of each word.

23For English descriptions, we remove common logistical terms (e.g., ’invoice’, ’cargo’, ’shipment’), conjuctions
and articles (e.g., ’and’, ’of’, ’the’), color names (e.g., ’red’, ’blue’, ’white’), and other frequently occurring
non-informative terms (e.g., ’code’, ’certify’, ’order’, ’number’). Similarly, for Spanish descriptions, we elim-
inate terms related to logistics (e.g., ’factura’, ’carga’, ’envío’), conjunctions and articles (e.g., ’y’, ’de’, ’el’),
color names (e.g., ’rojo’, ’verde’, ’blanco’), and other non-informative terms (e.g., ’código’, ’certificar’, ’orden’,
’número’).
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By cleaning and preprocessing the text in the product descriptions as described in these

steps, we thus prepare the data for the ML modes, ensuring that they are as accurate and

efficient as possible at estimating HS codes. Table A3 in the Online Appendix illustrates an

example of this procedure. This example provides a clear idea of the complexity of dealing

with certain descriptions and demonstrates the importance of the text-cleaning routine in

traditional ML algorithms.

3.2 Traditional ML Algorithms

We used several different ML models for our multiclass classification problem. While offer-

ing an extensive explanation of such models is beyond the scope of this paper, this section

contains a brief review of some of their characteristics, based primarily on Kowsari et al.

(2019) and Aggarwal and Zhai (2012):

1. Support Vector Machine (SVM): SVM is a supervised learning algorithm that identi-

fies the optimal hyperplane that separates data points into their respective classes and

maximizes the margin between the classes. The key in this classifier is to “determine

the optimal boundaries between the different classes and use them for the purposes of

classification” (Aggarwal and Zhai, 2012).

2. Rocchio: This algorithm operates by representing documents as vectors in a high-

dimensional space. It calculates a centroid (average vector) for each category based

on the training data. When classifying a new product description, the algorithm com-

putes its vector representation and measures its similarity to each category centroid,

assigning the description to the category with the closest centroid.

3. Logistic Regression: It is a linear model for binary classification, which can be ex-

tended to multiclass classification problems. Using a logistic function, the model esti-

mates the probability of a product description belonging to a specific class. The class

with the highest probability is then assigned to the product description.
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4. k-Nearest Neighbors (k-NN): It searches for the k most similar or closest items to the

new object we want to classify, and then decides which category it belongs to, based

on the most common category among its nearest neighbors.

5. Random Forest: It is an ensemble learning method that constructs multiple decision

trees during training and combines their predictions to improve classification accuracy.

6. Naive Bayes: It is a probabilistic classifier based on Bayes’ theorem, which assumes

independence between features. Although this assumption is often not valid in real-

world applications, Naive Bayes classifiers still perform well in many cases.

7. Decision Tree: It is a flowchart-like structure that can be used for classification tasks.

The tree is built by recursively splitting the dataset based on the feature that provides

the best separation into classes.

3.3 LLMs: GPT and Claude Sonnet

GPT 3.5, GPT 4, Claude Sonnet 3 and Claude Sonnet 3.5 are advanced large-scale language

deep learning models. GPT 3.5 and GPT 4 were developed by OpenAI, while Claude was

developed by Anthropic. In our analysis, we use the following OpenAI models: (1) GPT

3.5, which OpenAI refers to as "gpt-3.5-turbo" in their API documentation and which pow-

ered ChatGPT until May 2024, (2) GPT 4, which OpenAI designates as "gpt-4" in their API,

and which has an estimated parameter size 10 times that of GPT 3.5. In addition, we use

the following Anthropic models: (3) Claude 3 Sonnet and (4) Claude 3.5 Sonnet. Claude 3.5

Sonnet is -as of August 2024- the latest Anthropic model and Claude 3 Sonnet is its prede-

cessor. They use transformer architecture to understand and generate human-like text. With

billions of parameters and the ability to learn from vast amounts of text data, they have been

fine-tuned to excel in a wide range of NLP tasks.

Some of the notable properties of these LLMs include their autoregressive nature, which

allows them to generate contextually relevant and coherent text by predicting the next word

in a sequence given the previous words. The models are trained using unsupervised learning
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with vast datasets that include websites, books, and articles. The respective knowledge cut-

offs for the LLM models used in this paper are September 2021 for GPT 3.5, December 2023

for GPT 4, August 2023 for Claude Sonnet 3 and April 2024 for Claude Sonnet 3.5. 24

These models have been extensively benchmarked in recent literature. For instance,

Zheng et al. (2023) evaluated GPT 4, GPT 3.5, and Claude V1 alongside other models using

MT-bench (Multi-Turn Bench), a dataset consisting of 80 multi-turn questions designed to

assess models’ performance in extended dialogues and complex instruction following. They

found that GPT-4’s judgments closely aligned with human experts, achieving an 85% agree-

ment rate, which was even higher than the agreement among humans (81%). Additionally,

these models have been used as judges to evaluate other LLMs, with GPT-4 showing partic-

ularly strong performance in this role.

Recent literature has documented the rapid advancements in these LLM models. Ko-

rinek (2024) reports that as of May 2024, GPT-4o, an updated version of GPT-4, was widely

regarded as the most capable publicly available LLM. The same study notes that Claude 3,

introduced in March 2024, demonstrated exceptional proficiency in writing tasks. Korinek

(2024) also highlights that these models have been subjected to a variety of benchmarks, in-

cluding MMLU (Massive Multitask Language Understanding), a test that evaluates models’

knowledge and reasoning across multiple disciplines; TruthfulQA, which measures models’

ability to provide truthful information; and the aforementioned MT-bench. These evalua-

tions have showcased the models’ adaptability and high performance across a diverse range

of tasks, further solidifying their position at the forefront of NLP technology (Korinek, 2024).

We applied the LLMs through the OpenAI and Anthropic APIs. For all models, we give

a system command to act as a wizard that assigns 6-digit HS codes and then ask them to

execute such function for a given product description. In this regard, it is worth mentioning

that we ask the models not only to assign each product an HS code but also to provide its

best estimate if the product description is not clear enough, thereby “forcing” it to make a

24Note that this is the knowledge cut-off as of the August 2024, when the last exercises in this paper were car-
ried out. The models may be updated in the future. See https://platform.openai.com/docs/models/ and
https://docs.anthropic.com/en/docs/about-claude/models for the latest knowledge cut-offs.
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guess.

Cleaning the product descriptions before prompting the LLMs (that is, carrying out the

data processing tasks described in section 3.1) is not necessary. When working with LLMs,

which are trained on a diverse range of text typologies, preprocessing data may not be

needed and may even be disadvantageous as it might obscure valuable contextual infor-

mation. We therefore merely input orders one at a time, thus allowing all LLMs to categorize

products individually. The specific prompts used, and the completion requests associated

with them are presented in the Online Appendix (section A5).

4 Results

In this section, we present the main results of our analysis on automatic product classification

using traditional ML algorithms and LLMs. Our evaluation is structured in three parts, cor-

responding to the three datasets used: results on the train-test split dataset (Chilean customs

trade transactions), results on the first external dataset (Paraguayan customs trade transac-

tions), and results on the second external dataset (USDA organic product descriptions). For

each part, we analyse the accuracy of the models and other performance metrics, comparing

traditional ML algorithms with LLMs. Our results reveal a clear pattern: while traditional

ML algorithms perform well on the training dataset, their performance drops significantly

when applied to external datasets. In contrast, LLMs show consistently strong performance

across all datasets, with Claude 3.5 Sonnet and GPT-4 achieving the highest accuracy rates

in all tests conducted.

4.1 Results on the Train-Test-Split Dataset: Trade Transactions from Chilean Customs

Model Accuracy. We firstly focus on the accuracy of the models, which refers to the share of

correctly predicted HS product codes. Figure 1 shows the accuracy of the different models

on the Chilean customs data. It is important to stress that this is the dataset on which the ML

algorithms were trained. Note that GPT 3.5, GPT 4, and Claude are not “trained” using any
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of the datasets since the outcomes are obtained from direct prompts to the models through

their respective APIs.

The trained ML algorithms have very high accuracy levels on this train-test dataset. The

best performing algorithms are Decision Tree, Logistic Regression, and SVM (see Figure 1a).

As expected, their accuracy increases when trying to classify products into less granular

categories (see Figures 1b and 1c).

The top performing LLM is Claude 3.5 Sonnet, which achieves an accuracy rate of 81%

at the HS 6 digits, 92% at 4 digits and 95% at 2 digits. It matches or outperforms some of the

algorithms (including Naives Bayes, Random Forest and Rocchio). It is slightly below some

others including Decision Tree and Logistic Regression. The second best performing model

is GPT 4 (achieving 75% accuracy at HS 6), followed by Claude 3 Sonnet (68%) and GPT 3.5

(61%).

Figure 1: Algorithm’s Accuracy in the Test-Train-Split Dataset: Chilean Customs.

(a) HS-6 digit level
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(b) HS-4 digit level

(c) HS-2 digit level

Source: Authors’ calculations based on Chilean customs data.

Other Performance Metrics. Next, we explore the performance of the various algorithms

using other metrics. In multiclass classification problems, we can define a series of alter-

native measures by class: precision, recall and F1-score. Precision in a given class refers to
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the number of instances correctly attributed to such class over the total number of instances

where such class was attributed. In other words, low precision indicates a high number of

false positives in a given class. Recall refers to the number of instances a given class was

correctly attributed divided by the number of times a specific class should have been at-

tributed. Low recall thus indicates a high number of false negatives. Finally, the F1 score is

the harmonic mean of precision and recall. It is thus used to provide a measure of the bal-

ance between false positives and false negatives. To evaluate the overall performance of the

multiclass classification algorithms we need to average the performance across classes. We

report both the simple average (macro average) and the average weighted by the number of

actual instances of a given class (weighted average). 25

Table 2 presents a comprehensive analysis of the performance of various classification

algorithms on the Chilean test dataset, covering three levels of HS granularity: HS6, HS4 and

HS2. At the HS6 level, the Decision Tree and SVM models show the best overall performance,

with weighted-average precision, recall and F1-Score all above 0.95.

LLMs such as GPT 4 and Claude 3.5 Sonnet demonstrate remarkable performance, with

accuracies of 0.75 and 0.81, respectively. However, their F1-Scores are lower (0.73 and 0.79),

indicating a certain imbalance between precision and recall. Despite these strong results, it’s

worth noting that these performance metrics are slightly lower than those achieved by the

best traditional ML algorithms on this train-test dataset. Interestingly, LLMs tend to exhibit

significantly better performance in weighted-average metrics than in macro-average metrics,

thus indicating that they perform better in relatively common classes.

In more aggregate product categories (at HS4 and HS2), a general improvement in the

performance of all models is observed. At the HS4 level, GPT 4 and Claude 3.5 Sonnet im-

prove significantly, reaching accuracies of 0.88 and 0.92 respectively, with corresponding F1-

Scores of 0.88 and 0.92. This further suggests an improvement in the precision-recall trade-off

for these models. At the HS2 level, GPT 4 and Claude 3.5 Sonnet achieve an accuracy of 0.95,

matching or exceeding most traditional algorithms. Their F1-Scores also improve to 0.95,

25See Online Appendix A6 for a more detailed explanation of the performance metrics.
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indicating a very balanced performance. It is notable that LLMs show substantial improve-

ments in all metrics as granularity decreases. For example, GPT 4 increases its accuracy from

0.75 in HS6 to 0.95 in HS2, and its F1-Score from 0.73 to 0.95.

Table 2: Classification Report for the Chilean Test-Set at Different HS Levels

HS Level Metric
Dec.
Tree

Log.
Reg.

Naive
Bayes

Rand.
Forest Rocchio SVM KNN

GPT
3.5

GPT
4

Claude
3

Claude
3.5

HS6

Accuracy 0.97 0.95 0.79 0.67 0.81 0.95 0.92 0.61 0.75 0.68 0.81
Macro Avg

Precision 0.92 0.91 0.96 0.97 0.69 0.93 0.83 0.54 0.61 0.58 0.64
Recall 0.88 0.82 0.17 0.09 0.76 0.83 0.65 0.40 0.51 0.47 0.60
F1-Score 0.88 0.83 0.20 0.10 0.68 0.84 0.66 0.13 0.29 0.20 0.38

Weighted Avg
Precision 0.97 0.95 0.85 0.78 0.86 0.95 0.92 0.79 0.83 0.84 0.86
Recall 0.97 0.95 0.79 0.67 0.81 0.95 0.92 0.61 0.75 0.67 0.81
F1-Score 0.97 0.95 0.75 0.59 0.82 0.95 0.92 0.59 0.73 0.66 0.79

HS4

Accuracy 0.99 0.98 0.86 0.74 0.90 0.99 0.96 0.77 0.88 0.85 0.92
Macro Avg

Precision 0.96 0.96 0.96 0.96 0.81 0.97 0.91 0.54 0.67 0.59 0.73
Recall 0.96 0.94 0.36 0.21 0.87 0.95 0.85 0.70 0.80 0.73 0.83
F1-Score 0.96 0.95 0.41 0.24 0.83 0.96 0.86 0.42 0.60 0.47 0.66

Weighted Avg
Precision 0.99 0.98 0.91 0.81 0.92 0.99 0.96 0.87 0.91 0.89 0.93
Recall 0.99 0.98 0.86 0.74 0.90 0.99 0.96 0.77 0.88 0.85 0.92
F1-Score 0.99 0.98 0.85 0.69 0.91 0.99 0.96 0.77 0.88 0.85 0.92

HS2

Accuracy 0.99 0.99 0.92 0.82 0.94 0.99 0.98 0.86 0.95 0.94 0.95
Macro Avg

Precision 0.98 0.97 0.92 0.90 0.87 0.98 0.94 0.43 0.57 0.51 0.57
Recall 0.98 0.97 0.71 0.49 0.90 0.98 0.95 0.90 0.91 0.90 0.91
F1-Score 0.98 0.97 0.77 0.57 0.88 0.98 0.95 0.41 0.55 0.49 0.55

Weighted Avg
Precision 0.99 0.99 0.94 0.85 0.94 0.99 0.98 0.92 0.96 0.95 0.96
Recall 0.99 0.99 0.92 0.82 0.94 0.99 0.98 0.86 0.95 0.94 0.95
F1-Score 0.99 0.99 0.91 0.80 0.94 0.99 0.98 0.87 0.95 0.94 0.95

Source: Authors’ calculations based on Chilean customs data.

Overall, we find that the LLMs, particularly GPT 4 and Claude 3.5 Sonnet, are very accu-

rate in predicting broad product categories, often outperforming traditional ML algorithms

(such as Random Forest and Naives Bayes), even within the test-train-split dataset.

4.2 Results on the External Dataset 1: Trade Transactions from the Paraguayan Customs

In this subsection we test the ML algorithms and the LLMs outside the dataset on which

the ML algorithms were trained. This is key, since the usefulness of such algorithms in real-

world applications depends on their external validity. Real data imposes a clear challenge in

this regard. It features a variety of product descriptions, including different formats. Hence,

a model performing well on the training dataset may not be indicative of how well it will

accomplish its classification task in other settings. To explore this, we benchmark the product

19



classification models using data that was not part of the training dataset. Specifically, we

selected a random sample of 10,000 product descriptions from Paraguayan customs records.

This allows for a fairer comparison of ML models and LLMs since it confronts all models

with text data formats on which none was explicitly trained.

Model Accuracy. Figure 2 shows the accuracy rate attained by the models at different

aggregation levels. At the HS6 level, there is a notable contrast between traditional ML

models and LLMs. Traditional models such as Decision Tree, Logistic Regression and SVM

perform poorly, with accuracy rates ranging between 0.15 and 0.28. In contrast, LLMs exhibit

a substantially stronger performance. Claude 3.5 Sonnet stands out with an accuracy of 0.88,

followed by GPT 4 and Claude 3 Sonnet, both with 0.74.

As the granularity decreases to HS4, there is a general improvement in the performance

of all models, but the gap between LLMs and traditional models remains unaffected. Claude

3.5 Sonnet achieves an accuracy of 0.93, closely followed by GPT 4 with 0.90. The traditional

models improve, but still lag far behind, with SVM achieving the best accuracy among them

at 0.38. At the HS2 level, the difference in performance narrows, but LLMs still significantly

outperform the traditional models. Claude 3.5 Sonnet maintains its lead with an accuracy of

0.94, while Claude 3 Sonnet and GPT 4 achieve 0.93 and 0.92 respectively. It is interesting

to note that the Decision Tree shows a significant improvement at this level, reaching an

accuracy of 0.73.
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Figure 2: Algorithm’s Accuracy in the First External Dataset: Paraguayan Customs.

(a) HS-6 digit level

(b) HS-4 digit level
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(c) HS-2 digit level

Source: Authors’ calculations based on Paraguayan customs data.

Other Performance Metrics. Table 3 presents a comprehensive analysis of the perfor-

mance of various classification algorithms on the Paraguayan test data set, covering the three

levels of granularity of the Harmonised System (HS): HS6, HS4 and HS2.

Overall, traditional ML models perform poorly in terms of recall and F1-scores. The F1-

scores range from 0.11 to 0.28 at the HS 6 digits nomenclature, 0.13-0.37 at HS 4 digits, and

0.41-0.72 at HS 2 digits. Some algorithms achieve relatively high precision but at the cost

of very low recall (e.g., Random forest). Macro-averaged performance scores are generally

lower than weighted averages, indicating that the models struggle with classes that are rela-

tively infrequent in the dataset.

LLMs show a much better performance. In terms of weighted F1-Score at the HS6 level,

Claude 3.5 Sonnet achieves the highest value of 0.87, followed by GPT 4 with 0.76 and Claude

3 Sonnet with 0.73. This indicates that these models are not only accurate but also maintain a

good balance between precision and recall. As with ML algorithms, weighted average scores

are significantly higher than macro-averaged scores.
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Table 3: Classification Report for the Paraguayan Test-Set at Different HS Levels

HS Level Metric
Dec.
Tree

Log.
Reg.

Naive
Bayes

Rand.
Forest Rocchio SVM KNN

GPT
3.5

GPT
4

Claude
3

Claude
3.5

HS6

Accuracy 0.18 0.18 0.20 0.18 0.24 0.28 0.15 0.60 0.74 0.74 0.88
Macro Avg

Precision 0.40 0.35 0.75 0.91 0.45 0.39 0.37 0.42 0.50 0.46 0.56
Recall 0.56 0.57 0.25 0.11 0.55 0.57 0.54 0.62 0.68 0.69 0.75
F1-Score 0.10 0.10 0.06 0.04 0.14 0.11 0.08 0.14 0.28 0.23 0.38

Weighted Avg
Precision 0.68 0.64 0.60 0.89 0.72 0.72 0.71 0.83 0.92 0.90 0.95
Recall 0.18 0.18 0.20 0.18 0.24 0.28 0.15 0.60 0.74 0.74 0.88
F1-Score 0.20 0.22 0.12 0.11 0.28 0.26 0.18 0.59 0.76 0.73 0.87

HS4

Accuracy 0.29 0.26 0.23 0.19 0.31 0.38 0.26 0.78 0.90 0.83 0.93
Macro Avg

Precision 0.40 0.35 0.73 0.87 0.44 0.39 0.40 0.51 0.60 0.52 0.64
Recall 0.55 0.58 0.27 0.15 0.55 0.60 0.52 0.79 0.84 0.80 0.87
F1-Score 0.19 0.20 0.11 0.05 0.22 0.21 0.17 0.39 0.52 0.43 0.56

Weighted Avg
Precision 0.66 0.58 0.57 0.89 0.60 0.72 0.67 0.85 0.94 0.94 0.97
Recall 0.29 0.26 0.23 0.19 0.31 0.38 0.26 0.78 0.90 0.84 0.93
F1-Score 0.33 0.28 0.17 0.13 0.33 0.37 0.28 0.77 0.89 0.84 0.93

HS2

Accuracy 0.73 0.37 0.60 0.46 0.38 0.62 0.43 0.91 0.92 0.93 0.94
Macro Avg

Precision 0.46 0.32 0.56 0.70 0.52 0.38 0.33 0.46 0.55 0.49 0.57
Recall 0.50 0.43 0.27 0.16 0.48 0.53 0.45 0.91 0.90 0.92 0.93
F1-Score 0.40 0.30 0.25 0.15 0.39 0.39 0.31 0.45 0.52 0.47 0.54

Weighted Avg
Precision 0.81 0.66 0.81 0.89 0.80 0.78 0.68 0.94 0.95 0.95 0.97
Recall 0.73 0.37 0.60 0.46 0.38 0.62 0.43 0.91 0.92 0.93 0.94
F1-Score 0.72 0.41 0.59 0.52 0.44 0.67 0.47 0.90 0.91 0.93 0.94

Source: Authors’ calculations based on Paraguayan customs data.

4.3 Results on the External Dataset 2: USDA Organic Product Descriptions

Finally, we assessed the ability of conventional ML algorithms and LLMs to accurately pre-

dict HS codes with text formats that differ from the long and highly specific descriptions

traditionally used in customs. To do this, we use a set of descriptions of products for which

Latin American firms are certified as organic producers according to the United States De-

partment of Agriculture (USDA). These unstructured product descriptions are provided by

diverse firms and certification agencies, have a large diversity of formats, and vary signif-

icantly in terms of depth and specificity (see Online Appendix A1 for a sample of random

descriptions of the three datasets used). This makes them potentially harder to categorize

than the average customs product description. Furthermore, this data source does not spec-

ify the underlying HS code. Consequently, we do not have a large pool of categorized data

that can be used to train tailored ML algorithms. Similar cases can be found in many other

data sources, such as cross-border e-commerce shipments, bank transactions, historical trade
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data and survey-based descriptions. For the purpose of this exercise we have drawn a ran-

dom sample of 1,000 descriptions of USDA certified organic products and classified these by

hand into 6-digit HS tariff lines.

Model Accuracy. Figure 3 shows the accuracy rates at the different HS aggregation lev-

els. At HS-6 Claude 3.5 Sonnet achieved the highest accuracy rate -73%-, closely followed

by GPT 4 at 72%. GPT 3.5 and Claude 3 Sonnet both achieved 54% accuracy. In contrast,

traditional ML models achieved a maximum accuracy rate of 15% (Rocchio model). The

differences persist when attempting to classify products at the more aggregate HS 4-digits

product nomenclature. In this case GPT 4 led with 82% accuracy, followed by Claude 3.5

Sonnet at 81%, Claude 3 Sonnet at 73%, and GPT 3.5 at 69%. Among the traditional ML algo-

rithms, the maximum accuracy rate was still very low at 26%. At the broadest HS2 level, the

performance of traditional methods improved only by 3 to 8 percentage points, with the De-

cision Tree algorithm reaching 23% accuracy. LLMs maintained their superior performance:

GPT 4 achieved the highest accuracy of 92%, followed by Claude 3.5 Sonnet at 89%, Claude

3 Sonnet at 86%, and GPT 3.5 at 81%. Overall, we find that the accuracy differences be-

tween ML algorithms and LLMs are even starker in the context of these highly unstructured

product descriptions.
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Figure 3: Algorithm’s Accuracy in the Second External Dataset: USDA Organic Classifica-
tion.

(a) HS-6 level

(b) HS-4 level
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(c) HS-2 level

Source: Authors’ calculations based on USDA data.

Other Performance Metrics. Table 4 presents the full set of performance metrics for the

classification problem of the USDA Organic text descriptions at HS6, HS4, and HS2 levels.

Overall, traditional ML algorithms perform significantly worse than LLMs. While their pre-

cision is relatively high, the recall and accuracy rates are extremely low (weighted averages

range between 0.01 and 0.10); thereby indicating a very high share of false negatives. As a

result, their F1-scores are very low (0.01-0.09), indicating overall poor performance. Even in

the most aggregate categories (HS-2 Chapters), the performance remains weak: the highest

performing algorithm (Decision Tree) only attains an F1 score of 0.23.

Claude 3.5 Sonnet has weighted-average precision of 0.84, recall of 0.73 and an F1-score

of 0.72. GPT 4 achieved a very similar performance. At the most aggregate category, the

performance increases even further, with GPT 4 achieving an F1-score of 0.92. These results

underscore the potential of LLMs in classifying product text descriptions across all HS lev-

els, particularly excelling in more detailed classifications where traditional ML algorithms

struggle. The ability of LLMs to handle the complexity and variability of the product de-
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scriptions from the USDA dataset demonstrates their potential for applications in various

domains with highly unstructured or non-standard text data.

Table 4: Classification Report for the USDA Organic Dataset at Different HS Levels

HS Level Metric
Dec.
Tree

Log.
Reg.

Naive
Bayes

Rand.
Forest Rocchio SVM KNN

GPT
3.5

GPT
4

Claude
3

Claude
3.5

HS6

Accuracy 0.09 0.10 0.05 0.02 0.07 0.09 0.08 0.54 0.72 0.54 0.73
Macro Avg

Precision 0.66 0.57 0.84 0.98 0.79 0.65 0.62 0.64 0.69 0.59 0.73
Recall 0.22 0.31 0.10 0.01 0.12 0.25 0.27 0.58 0.66 0.63 0.73
F1-Score 0.04 0.03 0.02 0.00 0.02 0.03 0.03 0.33 0.45 0.33 0.55

Weighted Avg
Precision 0.70 0.68 0.83 0.92 0.76 0.70 0.70 0.80 0.84 0.77 0.84
Recall 0.09 0.10 0.05 0.02 0.07 0.09 0.08 0.54 0.72 0.54 0.73
F1-Score 0.08 0.09 0.03 0.01 0.07 0.08 0.07 0.53 0.71 0.54 0.72

HS4

Accuracy 0.15 0.15 0.08 0.01 0.11 0.14 0.11 0.69 0.82 0.73 0.81
Macro Avg

Precision 0.60 0.56 0.81 0.95 0.75 0.64 0.61 0.76 0.79 0.69 0.79
Recall 0.22 0.26 0.10 0.02 0.10 0.20 0.22 0.70 0.79 0.73 0.79
F1-Score 0.08 0.07 0.04 0.00 0.05 0.07 0.06 0.59 0.69 0.56 0.69

Weighted Avg
Precision 0.72 0.69 0.86 0.96 0.77 0.70 0.67 0.82 0.86 0.79 0.87
Recall 0.15 0.15 0.08 0.01 0.11 0.14 0.11 0.69 0.82 0.73 0.81
F1-Score 0.15 0.14 0.07 0.00 0.13 0.13 0.10 0.70 0.81 0.73 0.81

HS2

Accuracy 0.23 0.21 0.11 0.02 0.14 0.21 0.16 0.81 0.92 0.86 0.89
Macro Avg

Precision 0.64 0.62 0.62 0.82 0.70 0.62 0.60 0.79 0.82 0.77 0.81
Recall 0.20 0.19 0.14 0.07 0.13 0.19 0.16 0.82 0.88 0.82 0.87
F1-Score 0.15 0.12 0.07 0.02 0.10 0.13 0.10 0.73 0.80 0.72 0.77

Weighted Avg
Precision 0.72 0.66 0.64 0.85 0.72 0.68 0.62 0.87 0.93 0.87 0.91
Recall 0.23 0.21 0.11 0.02 0.14 0.21 0.16 0.81 0.92 0.86 0.89
F1-Score 0.23 0.19 0.10 0.00 0.16 0.19 0.14 0.82 0.92 0.87 0.89

Source: Authors’ calculations based on USDA Organic dataset.

4.4 Extensions and Robustness Checks

In this section we carry out a series of extensions and robustness checks of our baseline

multiclass classification models.

Hallucination of HS Codes in LLMs. In the context of language models, ’hallucination’

refers to the phenomenon where the model generates information that is fictitious or not

supported by the training data. In our specific case, hallucination occurs when the model

generates HS codes that do not exist in the official nomenclature. In this section, we thus

analyse how frequently LLMs attribute non-existent HS codes. For this purpose, we identify

whether the HS6 codes generated by the LLMs for the classification of the Chilean data co-

incide with existing HS codes according to the official nomenclature. We report two metrics:

(i) the number of unique hallucinated codes and (ii) the share of instances where the LLM
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predicts a non-existent code (hallucination rate).

Table 5: Hallucination in Product Classification in LLMs — HS6 codes, Chilean data

Model Unique Hallucinated HS-6 Codes Hallucination Rate
GPT 3.5 51 1.93%
GPT 4 14 1.70%
Claude-3 Sonnet 33 3.25%
Claude-3.5 Sonnet 14 0.31%

Source: Authors’ calculations based on Chilean customs data.

Our results, presented in Table 5, indicate notable differences across LLMs. GPT 4 and

Claude 3.5 Sonnet both produce 14 unique hallucinated codes, while Claude Sonnet 3 pro-

duces 33 and GPT 3.5 a total of 49. Claude 3.5 has the lowest hallucination rate (0.31%),

followed by GPT 4 (1.70%), GPT 3.5 (1.93%) and, finally, Claude 3 (3.25%). Newer versions

of the models thus seem to have significantly reduced the hallucination rates. The case of

Claude is particularly remarkable, with a large improvement between the 3 and the 3.5 ver-

sions.

Consistent with the accuracy rates shown before, hallucination rates at HS4 shows much

smaller numbers. GPT 3.5 has the highest hallucination rate (0.11%), but with only 8 codes,

followed by Claude 3 Sonnet with only one hallucinated code and 0.01% of hallucination

rate. Both advanced models (GPT 4 and Claude 3.5) show 0.00% hallucination rate, which is

a big improvement in their performance.

Table 6: Hallucination in Product Classification in LLMs — HS4 codes, Chilean data

Model Unique Hallucinated HS-4 Codes Hallucination Rate
GPT 3.5 8 0.11%
GPT 4 0 0.00%
Claude-3 Sonnet 1 0.01%
Claude-3.5 Sonnet 0 0.00%

Source: Authors’ calculations based on Chilean customs data.

Performance Metrics by Class. Next, we explore the performance of the LLMs across

different product categories. Online Appendix A7 presents the differences in terms of accu-

28



racy across HS-2 Chapters. The performance is highly correlated across LLMs: for instance

most models struggle with HS Chapters 5 ("Other products of animal origin, not elsewhere

specified") and 14 ("Vegetable plaiting, vegetable products not included elsewhere"). These

two chapters include categories with products "not classified elsewhere", which may com-

plicate automatic classification due to the lack of clear boundaries and the ambiguity of such

category. On the other hand, most models perform very well in HS Chapters 2 ("Meat prod-

ucts"), 3 ("Fish and crustaceans"), 10 ("Cereals") and 22 ("Beverages and spirits"), which are

much more distinct and clearly delimited. Online Appendix A8 shows other performance

metrics by HS-2 Chapter including recall, precision and F1-scores.

Finally, Online Appendix A9 shows the accuracy distribution in more granular cate-

gories. Due to the large number of categories, we represent the distribution through accuracy

percentiles (e.g. P50 represents the median accuracy rate across classes). Overall, we see that

high-performing models such as Claude 3.5 Sonnet and GPT 4 tend to especially outperform

other models in low percentiles of the distribution. Whereas in most models, the P90 tends

to have accuracy rates above 95%, the largest differences happen in the low-accuracy classes:

the 10th percentile of the distribution (P10) in Claude 3.5 corresponds to an accuracy rate of

50%, whereas for Claude 3.0 it corresponds to just 5%. Thus, new LLMs seem to improve

their overall performance by increasing accuracy rates in classes where prior versions were

under-performing. In addition to this, a high level of accuracy continues to be observed

within the training data for the ML models, especially for Decision Tree and SVM.

Training Sample Balanced by HS2 Chapter. In the exercises in Sections 4.1-4.3 we trained

ML models using a random sample of 1M Chilean observations across all observations in

Chapters 1-22. This approach, while representative of the actual distribution of Chilean

trade, leads to a highly unbalanced sample: HS Chapters 08 ("Edible fruits and nuts") and

22 ("Beverages and spirits"), which are products frequently exported by Chile, jointly cover

more than 55% of the observations in our sample (see Table A10a). In Online Appendix A10

we show the results from estimating the ML models with in a sample where we try to balance
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as much as possible across HS 2-digits Chapters. To construct a balanced sample of 1 million

observations, we randomly draw ∼45,000 observations per Chapter.26 In some cases, the

original data has less than 45,000 observations, and thus we draw all available observations.

Overall, balancing across HS Chapters does not significantly improve the performance

of the ML algorithm in the train-test-split sample (Chilean customs). For the first external

dataset (Paraguayan customs) there is a relatively small improvement in macro-averaged

recall (of approximately 5 percentage points), but the overall accuracy rate is slightly lower.

For the second external dataset (USDA organic) there is a marginal increase in accuracy (of

approximately 3 percentage points). Thus, balancing across Chapters leads to, if anything,

very small gains in performance. LLM models continue to outperform by a very large margin

traditional ML algorithms outside the test-train database.

Swapping the Train-Test-Split Database: Training with Paraguayan Data. Next, we

explore the robustness of our results by switching the train-test-split dataset, and training

the ML models with the Paraguayan customs data. We follow the same data preparation

procedure as in Section 3.1 and estimate the models described in Section 3.2; thus mirroring

the procedure used in our baseline that uses Chilean data to train the ML algorithms. The

results can be found in Online Appendix A11.

Our findings are very similar to those in the baseline model. The traditional ML algo-

rithms perform very well in the alternative test-train-split dataset (Paraguayan customs),

with accuracy rates around 95% in Decision Tree, Logistic Regression and SVM. The per-

formance, however, drops dramatically when we use the models trained on Paraguayan

data on our Chilean customs product descriptions. In this setting the best performing ML

model (SVM with 49% accuracy rates and a weighted-average F1-Score of 0.47) lags signif-

icantly behind LLM models. For instance, Claude 3.5 Sonnet achieves 81% accuracy and

0.79 weighted-average F1-Score. In the USDA organic dataset -which, as explained above,

has highly unstructured text data with relatively coarse product descriptions-, the difference

26Note that 1 million observations divided by 22 chapters leads to 45,454 observations per Chapter
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widens even further. Our results thus seem to be robust to the specific choice of train-test-

split database.

Nested Prompts. Our baseline LLM prompt asks the models to directly provide an es-

timate of the HS-6 digits product code. Alternatively, we explore a "nested" version of the

prompt. In this case, we first prompt the LLM to assign a 2-digit HS code based on the

product description. Subsequently, we ask it to provide a 4-digit HS code among those that

belong to the aggregate 2-digit HS code category that it previously identified. Finally, we

requested the model to provide a 6-digit HS code belonging to the prior 4-digit HS code that

it had identified.

The specific details for this LLM nested prompt can be found in Online Appendix A12,

along with the results for this alternative prompting strategy. Interestingly, we find that

nested prompting decreases the accuracy of the classification. One potential explanation is

that this nested structure constrains the models, thus leading to more frequent hallucina-

tions of non-existent HS codes. The same exercise conducted for Table 5 showed that the

Nested prompts have a higher number of hallucinated HS-6 codes (77) and slightly higher

hallucination rates (2.10%).

Other LLMs and LLM Sub-Sample Accuracy. Finally, we benchmark the performance

of other LLMs. For this purpose we use Poe, an open platform to explore LLMs. We use a

smaller random sample of 100 product descriptions, which we obtain from Chilean customs.

We test the accuracy rates of five additional LLMs: Bard, Claude-Instant, LLaMa 2, Solar and

PaLM 2. Claude Sonnet 3.5 and GPT 4 significantly outperform these alternative LLMs, the

highest performing of which is Bard (see Online Appendix A13). 27

27Relatedly, in Online Appendix A14 we explore how stable are the estimated accuracy rates for LLMs when we
increase the sample size by one order of magnitude. For this purpose, we first obtain a random sample of 1000
product descriptions and randomly divide it into 10 groups of 100 descriptions. We find very similar estimated
accuracy rates across the 10 groups, with a very low standard deviation among them.
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5 Discussion and Conclusions

LLMs demonstrate high accuracy rates when classifying products according to the HS nomen-

clature. While traditional ML algorithms performed well on their training dataset (even

some of them outperformed LLMs), their performance sharply declined when tested on

external data. In such external validity tests, LLMs significantly outperformed these al-

gorithms. Claude 3.5 Sonnet consistently achieved the highest accuracy across different

datasets and HS levels, closely followed by GPT 4. The superior performance of LLMs was

evident despite the fact that our ML models were trained with 1 million observations of high-

quality customs product descriptions and then tested on high-quality descriptions from an-

other customs agency from a country. This highlights the robustness and generalizability of

LLMs in product classification tasks.

Another major advantage of LLMs is their ability to work with product descriptions in

different languages. Throughout our analysis, we used data in English and Spanish, but

LLMs are likely to perform very well across many other languages in which large amounts

of data are publicly available (e.g., Chinese, French, German, etc.). Importantly, they are also

able to handle regional variants of the same language successfully. One interesting example

from our study was Physalis peruviana, a fruit typically known as “goldenberry” in English.

Our Chilean training data refers to them as “uchuva,” but the fruit goes by other names in

different countries: "camambu" in Paraguay, “uvilla” in Ecuador, “aguaymanto” in Peru, and

“fisalis” in Spain. ML algorithms trained on the Chilean data failed to identify these regional

variations and thus misclassified the product, whereas GPT and Claude models, trained on a

much wider set of texts, recognized the fruit and classified it properly. This is an example of

how the wide training dataset of LLMs allows them to outperform standard ML algorithms.

LLMs can thus be very useful in comprehensive unilateral, regional, and multilateral trade

policy initiatives involving product classifications over time and across countries.

LLMs are also significantly simpler to use and implement since they do not require data-

cleaning and preprocessing routines. Performing these tasks with traditional ML algorithms
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can be rather time-consuming and resource-intensive, especially those related to feature ex-

traction.28 While an API is necessary to work at scale with LLMs, the standard interface

enables the classification functionality to be integrated easily into existing systems or appli-

cations. In our analysis, we worked with the base models, without making further adjust-

ments, but LLMs could also be adapted for use with specific data. Fine-tuning LLMs with

trade data may help them be more effective at product classification at scale.

In terms of cost, the models we used (GPT 3.5, GPT 4, and Claude models) are rela-

tively inexpensive, except for very large tasks.29 Importantly, open-source LLMs are also

becoming increasingly competitive and can be expected to perform very well in large-scale

product classification tasks in the short term. Benchmarking automatic product classification

at a larger scale across a wide range of LLMs, including both commercial and open-source

models, and exploring various fine-tuning methods, therefore, remains an important avenue

for future research. This could help identify the most cost-effective and accurate solutions

for different scales and types of classification tasks.

28We also assessed the model against a manual classification carried out by a research assistant (RA) using a
sample of 100 observations. The results indicate that, while the RA’s accuracy was slightly above that of GPT
3.5 at the HS 6-digit level, the difference fades when more aggregate classification levels are considered. At
the 2-digit HS level, GPT 3.5 performed slightly better than the RA. It is worth stressing that while the RA
needed four hours to accomplish the task, GPT 3.5 completed it in just one minute. This suggests that there
is potentially a tradeoff between accuracy and time for highly disaggregated classifications in small samples.
The terms of this tradeoff are highly likely to change as the number of observations increases, with GPT 3.5
clearly emerging as the better approach for large samples, especially given that human working time increases
at a nonlinear rate due to marginal decreasing returns.

29In our work, we used OpenAI’s GPT 3.5 (“gpt-3.5-turbo”) and GPT 4 ("gpt-4") and Anthropic’s Claude 3 Sonnet
and Claude 3.5 Sonnet. Without going into the billing system works in detail, our estimate is that the total cost
of classifying a dataset of 10,000 standard customs product descriptions is approximately $2.5 for GPT 3.5
and $40 for GPT 4 while for the Anthropic’s models it is $4 each. (see the OpenAI’s pricing and Anthropic’s
pricing).
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Online Appendix

A1 Information Sources

Table A1: Summary of Databases Used and Description of the Fields

Databases Used Availability of Data URL of the Dataset Fields Used Textual Description
Chile Custom Transactions

from Chile:
2009–2021

https://www.aduana
.cl/base-de-datos
-operaciones-de
-ingreso/aduana/
2018-12-28/
102736.html

NOMBRE
ATRIBUTO1
ATRIBUTO2
ATRIBUTO3
ATRIBUTO4
ATRIBUTO5
ATRIBUTO6
CODIGOARANCEL

Product Description 1
Product Description 2
Product Description 3
Product Description 4
Product Description 5
Product Description 6
Product Description 7
HS-SA

Paraguay Custom Transactions
from Paraguay:
2009–2021

https://
www.aduana.gov.py/
?page_id=14523

MERCADERIA
POSICION

Product Description
HS-SA

USDA United Stated
Department of
Agriculture Integrity

https://organic.ams
.usda.gov/
integrity/Default

Certified Products
Under CROPS Scope

Product Description

37

https://www.aduana.cl/base-de-datos-operaciones-de-ingreso/aduana/2018-12-28/102736.html
https://www.aduana.cl/base-de-datos-operaciones-de-ingreso/aduana/2018-12-28/102736.html
https://www.aduana.cl/base-de-datos-operaciones-de-ingreso/aduana/2018-12-28/102736.html
https://www.aduana.cl/base-de-datos-operaciones-de-ingreso/aduana/2018-12-28/102736.html
https://www.aduana.cl/base-de-datos-operaciones-de-ingreso/aduana/2018-12-28/102736.html
https://www.aduana.cl/base-de-datos-operaciones-de-ingreso/aduana/2018-12-28/102736.html
https://www.aduana.gov.py/?page_id=14523
https://www.aduana.gov.py/?page_id=14523
https://www.aduana.gov.py/?page_id=14523
https://organic.ams.usda.gov/integrity/Default
https://organic.ams.usda.gov/integrity/Default
https://organic.ams.usda.gov/integrity/Default


A2 Product Description Examples

Table A2a: Sample of 10 Randomly Chosen Organic Product Descriptions

Original Product

Ungurahui (Oenocarpus Bataua)
soy beans
Plátanos/Bananos - 1 Traboar_Finca Genoveva (F)
Banana puree acidulated deep frozen
Organic aseptic concentrate soursop pulp
Organic white corn powder
Banana puree without seeds
Organic coco
Safflawer
Maca flour - pre cooked

Source: Authors’ elaboration based on USDA.

Table A2b: Sample of 10 Randomly Chosen Chilean Product Descriptions

Original Product

Rainbow trout hg caleta bay mar spa-f size 2-9 lbs oncorhynchus mykiss frozen iqf gutted premium
Red wines with denomination of origin vina casa silva cabernet sauvignon alcohol content 14.70% volatile
acidity 0.50% harvest 2008 720 bottles of 0.75 liters
Fresh traditional blueberries santa olga-f blue kordia size spd-pd
Agrosuper-f pork fat small frozen
Live worms tebex-f tebo for fishing bait
Fresh salmon fillet cookeaqua-f salmo salar size 3-4lbs premium quality, with skin, boneless, with scales, trim d,
raw, chilled-refrigerated, box of
Agromarin-f lamb chop 8 ct (iw), bone-in frozen
San clemente-f raspberry concentrate juice 600 gallons (93)
Belgioioso burrata 6/8 oz (2-4 oz cup) is buffalo milk cream cheese.
Fresh cherries lo garces-f regina size j-sj-xl-sjd-jd-xld-p, 5.0 kn carton, in 762 boxes

Source: Authors’ elaboration based on Chilean customs data.
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Table A2c: Sample of 10 Randomly Chosen Paraguayan Product Descriptions

Original Product

Kilos of dried orange leaves, in 31 bales of approximately 25 kg each
Others in 2,100 wooden boxes with 24 kilos net and 26 kilos gross each containing fresh bananas in their natural
state for consumption
1) pallets containing 42) boxes with 644) kilo mozzarella cheese trebol
Others; it is: 1,014,000 kilograms of rice in 50 kg bags each, 2016/2017 harvest
1,200 boxes of frozen beef
150 one hundred and fifty metric tons of Paraguayan soybean in bulk
100,000 kilos of cane sugar
Offal
15 boxes of pepper seasonings
330 mt. (three hundred and thirty metric tons) Paraguayan corn in bulk, destination: Montevideo - Uruguay

Source: Authors’ elaboration based on Paraguayan customs data.

39



A3 Preparation Steps of Descriptions

Table A3: Preparation Steps of a Random Selected Description
Step Result

Initial description FROZEN DOUGHS EUROPASTRY-F CODE-81299 BERLIDOTS BOMBOM FOOD
PREPARATION BASED ON WHEAT FLOUR AND WATER IN BOXES OF 36 UNITS FOR
HUMAN CONSUMPTION

Text preparation [’FROZEN’, ’DOUGHS’, ’EUROPASTRY-F’, ’CODE-81299’, ’BERLIDOTS’, ’BOMBOM’,
’FOOD’, ’PREPARATION’, ’BASED’, ’ON’, ’WHEAT’, ’FLOUR’, ’AND’, ’WATER’, ’IN’,
’BOXES’, ’OF’, ’36’, ’UNITS’, ’FOR’, ’HUMAN’, ’CONSUMPTION’]

Lowercase [’frozen’, ’doughs’, ’europastery-f’, ’code-81299’, ’berlidots’, ’bombom’, ’food’, ’preparation’,
’based’, ’on’, ’wheat’, ’flour’, ’and’, ’water’, ’in’, ’boxes’, ’of’, ’36’, ’units’, ’for’, ’human’,
’consumption’]

Removal of non-ASCII
characters

[’frozen’, ’doughs’, ’europastery-f’, ’code-81299’, ’berlidots’, ’bombom’, ’food’, ’preparation’,
’based’, ’on’, ’wheat’, ’flour’, ’and’, ’water’, ’in’, ’boxes’, ’of’, ’36’, ’units’, ’for’, ’human’,
’consumption’]

Converting numbers
written in words to
digits

[’frozen’, ’doughs’, ’europastery-f’, ’code-81299’, ’berlidots’, ’bombom’, ’food’, ’preparation’,
’based’, ’on’, ’wheat’, ’flour’, ’and’, ’water’, ’in’, ’boxes’, ’of’, ’36’, ’units’, ’for’, ’human’,
’consumption’]

Stop-word removal [’frozen’, ’doughs’, ’europastery-f’, ’code-81299’, ’berlidots’, ’bombom’, ’food’, ’preparation’,
’based’, ’wheat’, ’flour’, ’water’, ’boxes’, ’36’, ’units’, ’human’, ’consumption’]

Lemmatization [’frozen’, ’dough’, ’europastery-f’, ’code-81299’, ’berlidot’, ’bombom’, ’food’, ’preparation’,
’base’, ’wheat’, ’flour’, ’water’, ’box’, ’36’, ’unit’, ’human’, ’consumption’]

Removing words that
are not in English or
Spanish

[’frozen’, ’dough’, ’code’, ’berlidot’, ’bombom’, ’food’, ’preparation’, ’base’, ’wheat’, ’flour’,
’water’, ’box’, ’36’, ’unit’, ’human’, ’consumption’]

English and Spanish
noise removal

[’frozen’, ’dough’, ’berlidot’, ’bombom’, ’food’, ’preparation’, ’base’, ’wheat’, ’flour’, ’water’,
’box’, ’36’, ’unit’, ’human’, ’consumption’]

Source: Authors’ calculations based on Chilean customs data.
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A4 Randomization and Pre-Randomization Process

In this Appendix, we describe the randomization process used to train the models. As ex-

plained in the main text, after cleaning the Chilean customs database, one million observa-

tions are randomly selected to train the models.

1 # Read the file
2 df = pd.read_csv(cleaned_data.csv)
3
4 # There are still some NA in some rows. We delete them
5 df = df.dropna()
6
7 # We delete the rows where HS-SA is 0.0 (no code assigned)
8 df = df.where(df[HS-SA] != 0.0).dropna()
9
10 # We delete NA from the information column
11 df = df.dropna(subset=[information])
12
13 df = df.drop_duplicates(subset=[operation, information, HS-SA])

After a few additional steps, which refer to the elimination of special codes (such as

160000 ), we select those with codes between HS 1 and HS 22, inclusive, and generate the

simple randomization to obtain the final number of observations through the Python ran-

dom sample function sample.

1
2 df['HS-SA'] = df['HS-SA'].astype(int)
3 df = df.loc[df['HS-SA'] < 23000000]
4
5 # Remove rows where HS-SA is equal to ‘160000’ as erroneous
6 df = df.loc[df[HS-SA] != 160000, :]
7
8 # Sample of million observations
9 df = df.sample(1000000)
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A5 LLMs Prompts

A5.1 GPT Prompt

1 def assign_code_forced(row, column):
2 text = row[column]
3 modelo = "gpt-3.5-turbo"
4 response = openai.ChatCompletion.create(model=modelo,
5 messages=[
6 {"role": "system", "content": "You are a helpful assistant that assigns

product codes in the HS6 product nomenclature categorization."},
7 {"role": "user", "content": f'Please assign the harmonized system code

number in the HS6 for the following description:"{texto}". Return "
Code: number here". If you are unsure of the classification, provide
your best possible option'}],

8 temperature=0.1)
9 assigned_code = response['choices'][0]['message']['content']
10 return assigned_code

A5.2 Claude Prompt

1 def claude_3_5_code_assigner(fila, columna_descripcion):
2 texto = fila[columna_descripcion]
3 modelo = "claude-3-5-sonnet-20240620"
4 response = client.messages.create(
5 model=modelo,
6 max_tokens=1000,
7 temperature=0,
8 system="You are a helpful assistant that assign codes in the Harmonized

System of UN Comtrade and answer only the 'Code: HS6' part.",
9 messages=[
10 {
11 "role": "user",
12 "content": [
13 {
14 "type": "text",
15 "text": f'Please assign the harmonized system code number

in the HS6 for the following description:"{texto}".
Return "Code: number here" only. If you are unsure of
the classification, provide your best possible option'

16 }
17 ]
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18 }
19 ]
20 )
21 codigo_asignado = response.content[0].text
22 return codigo_asignado
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A6 Multiclass Classification Metrics

In this Appendix, we provide a brief explanation of the performance metrics used to evaluate

ML and LLM algorithms in multiclass classification problems.

Below we have a confusion matrix, which defines the categories that will be used to

formulate the metrics.

Predicted Class
Positive Negative

Actual Class
Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

For example, suppose that we have a product description that belong to the class "HS2

Code 12", describing "Oil seeds and oleaginous plants; miscellaneous grains, seeds and fruit;

industrial or medicinal plants; straw and fodder". In this context, we can have the following

cases:

• A True Positive (TP): The model predicts that a product is an oilseed (HS2 12) and it

actually is.

• A False Negative (FN): The model predicts that a product is not an oilseed (HS2 12),

but it actually is.

• A False Positive (FP): The model predicts that a product is an oilseed (HS2 12), but in

fact it is not.

• A True Negative (TN): The model predicts that a product is not an oilseed (HS2 12) and

it really is not.

Multi-class accuracy is defined as the proportion of correctly predicted instances to the

total number of instances, which can be understood as the average of correct predictions.

The formula for multi-class accuracy is given by:
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accuracy =
1
N

|G|

∑
k=1

∑
x:g(x)=k

I(g(x) = ĝ(x)) (1)

Where N denotes the total number of observations, G represents the set of all classes, and

I is the indicator function that returns one when the predicted class matches the true class

and zero otherwise. This is our preferred metric, as it provides a direct measure of model

performance by indicating how many instances are correctly classified.

Precision is a metric specifically focused on positive predictions. It quantifies the pro-

portion of positive predictions that are actually correct. In our example, it quantifies the

proportion of predictions for Chapter 12 that are actually correct. In other words, precision

measures the exactness or quality of the positive predictions made by the model. Mathemat-

ically, precision is defined as:

P =
TP

TP + FP
(2)

where TP denotes the number of correctly predicted positive instances, and FP repre-

sents the number of negative instances that were incorrectly classified as positive. A high

precision indicates that the model has a low false positive rate, which is crucial in applica-

tions where the cost of false positives is high.

Recall is defined as the proportion of actual positive instances that are correctly identified

by the model. In our example, it quantifies the proportion of Chapter 12 that is correctly

predicted as Chapter 12. Formally recall is thus given by:

R =
TP

TP + FN
(3)

where TP is the number of correctly predicted positive instances, and FN represents

the number of positive instances that were incorrectly classified as negative. A high recall

indicates that the model has a low false negative rate, which is critical in applications where

missing a positive instance has significant consequences.
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The F1-score provides a balance between precision and recall by considering both met-

rics simultaneously. The F1-score is particularly useful in situations where there is an uneven

class distribution, or where false positives and false negatives carry different implications.

It is defined as the harmonic mean of precision and recall, and is given by the following

formula:

F = 2 × P × R
P + R

(4)

where P represents precision and R represents recall. The harmonic mean ensures that

the F1-score is high only when both precision and recall are high, providing a more balanced

measure of a model’s performance than either metric alone.

As presented above, precision, recall and the F1-score refer to the performance of the

model in a specific class. To assess the performance of the model as a whole, we need to

average across classes. One option is to carry out a simple average, often called macro-

average. The macro average treats all classes equally, regardless of their size. It calculates

the average performance for each class and then averages these values. The macro averaged

precision, recall, and F1-score are defined as follows:

Pmacro =
1
|G|

|G|

∑
i=1

TPi

TPi + FPi
(5)

Rmacro =
1
|G|

|G|

∑
i=1

TPi

TPi + FNi
(6)

Fmacro = 2 × Pmacro × Rmacro

Pmacro + Rmacro
(7)

where |G| is the total number of classes, TPi is the number of true positives for class i, FPi

is the number of false positives for class i, and FNi is the number of false negatives for class

i. The macro average is particularly useful when the goal is to achieve good performance

across all classes rather than being dominated by the performance of the majority class.
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Alternatively, and especially in situations where class distributions are highly imbal-

anced, a weighted average can be used. This metric assigns a weight wk to each class k

such that wk = 1
|G| for all k ∈ {1, . . . , G}. This approach ensures that each class contributes

equally to the overall accuracy, irrespective of its proportion in the dataset. The formula for

weighted accuracy is given by:

weighted average =
1
N

|G|

∑
k=1

wi ∑
x:g(x)=k

I(g(x) = ĝ(x)) (8)

In this context, wi represents the weight assigned to each class i, N is the total number of

observations, G is the set of all classes, and I is the indicator function that returns one when

the predicted class matches the true class, and zero otherwise.
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A7 Accuracy in HS-2 Chapters

In this section, we show the accuracy of the LLM algorithms at the HS-6 digits for each HS

Chapter 1–22.

Figure A7a: Algorithm’s Accuracy in Different HS Chapters, Chilean Customs Dataset

(a) GPT 3.5 (b) GPT 4

(c) Claude 3 Sonnet (d) Claude 3.5 Sonnet

Source: Authors’ calculations based on Chilean customs data.
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Figure A7b: Algorithm’s Accuracy in Different HS Chapters, Paraguayan Customs Dataset

(a) GPT 3.5 (b) GPT 4

(c) Claude 3 Sonnet (d) Claude 3.5 Sonnet

Source: Authors’ calculations based on Paraguayan customs data.
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Figure A7c: Algorithm’s Accuracy in Different HS Chapters, Organic Dataset

(a) GPT 3.5 (b) GPT 4

(c) Claude 3 Sonnet (d) Claude 3.5 Sonnet

Source: Authors’ calculations based on USDA data.
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A8 Other Performance Metrics in HS-2 Chapters

In this section, we show the precision, recall, and F1-score of the LLM algorithms at the HS-6

digits for each HS Chapter.

Figure A8a: Algorithm’s Precision in Different HS Chapters, Chilean Customs Dataset

(a) GPT 3.5 (b) GPT 4

(c) Claude 3 Sonnet (d) Claude 3.5 Sonnet

Source: Authors’ calculations based on Chilean customs data.
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Figure A8b: Algorithm’s Precision in Different HS Chapters, Paraguayan Customs Dataset

(a) GPT 3.5 (b) GPT 4

(c) Claude 3 Sonnet (d) Claude 3.5 Sonnet

Source: Authors’ calculations based on Paraguayan customs data.
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Figure A8c: Algorithm’s Precision in Different HS Chapters, Organic Dataset

(a) GPT 3.5 (b) GPT 4

(c) Claude 3 Sonnet (d) Claude 3.5 Sonnet

Source: Authors’ calculations based on USDA data.
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Figure A8d: Algorithm’s Recall in Different HS Chapters, Chilean Customs Dataset

(a) GPT 3.5 (b) GPT 4

(c) Claude 3 Sonnet (d) Claude 3.5 Sonnet

Source: Authors’ calculations based on Chilean customs data.
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Figure A8e: Algorithm’s Recall in Different HS Chapters, Paraguayan Customs Dataset

(a) GPT 3.5 (b) GPT 4

(c) Claude 3 Sonnet (d) Claude 3.5 Sonnet

Source: Authors’ calculations based on Paraguayan customs data.
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Figure A8f: Algorithm’s Recall in Different HS Chapters, Organic Dataset

(a) GPT 3.5 (b) GPT 4

(c) Claude 3 Sonnet (d) Claude 3.5 Sonnet

Source: Authors’ calculations based on USDA data.
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Figure A8g: Algorithm’s F1-Score in Different HS Chapters, Chilean Customs Dataset

(a) GPT 3.5 (b) GPT 4

(c) Claude 3 Sonnet (d) Claude 3.5 Sonnet

Source: Authors’ calculations based on Chilean customs data.
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Figure A8h: Algorithm’s F1-Score in Different HS Chapters, Paraguayan Customs Dataset

(a) GPT 3.5 (b) GPT 4

(c) Claude 3 Sonnet (d) Claude 3.5 Sonnet

Source: Authors’ calculations based on Paraguayan customs data.
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Figure A8i: Algorithm’s F1-Score in Different HS Chapters, Organic Dataset

(a) GPT 3.5 (b) GPT 4

(c) Claude 3 Sonnet (d) Claude 3.5 Sonnet

Source: Authors’ calculations based on USDA data.
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A9 Accuracy Distributions for HS4 and HS6 Classification

This section shows the accuracy distributions for more granular classes (HS4 digits and HS6

digits) for each ML and LLM algorithm. Since these classification levels have a large number

of classes, the graphs show the different percentiles of the distribution (P10, P25, P50, P75,

P90). For instance, P90 corresponds to the accuracy level of the class in the 90th percentile of

the distribution.
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Figure A9a: Distribution of Accuracy for HS6 Classification by Model in the Chilean Dataset

(a) Decision Tree (b) Logistic Regression (c) Naive Bayes

(d) Random Forest (e) Rocchio (f) SVM

(g) KNN (h) GPT 3.5 (i) GPT 4

(j) Claude 3 Sonnet (k) Claude 3.5 Sonnet

Source: Authors’ calculations based on Chilean customs data.
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Figure A9b: Distribution of Accuracy for HS4 Classification by Model in the Chilean Dataset

(a) Decision Tree (b) Logistic Regression (c) Naive Bayes

(d) Random Forest (e) Rocchio (f) SVM

(g) KNN (h) GPT 3.5 (i) GPT 4

(j) Claude 3 Sonnet (k) Claude 3.5 Sonnet

Source: Authors’ calculations based on Chilean customs data.

A10 Training Sample Balanced by HS2 Chapter

In this Appendix, we describe the process followed to balance our training sample for the

ML algorithms across HS-2 Chapters. Subsequently, we show the results of the algorithms
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in this alternative balanced sample.

We carry out this robustness check to assess the algorithms in a sample where each aggre-

gate product category (HS2 Chapter) is equally represented in the training dataset. Firstly,

we set the number of observations per HS2 Chapter. Approximately 45,000 observations per

HS2 are required. This figure is obtained from dividing 1 million observations by the 22

HS2 Chapter. Secondly, we randomize within each HS2 Chapter. For example, out of all the

codes available in the database for the first chapter of the HS, 45,271 observations were ran-

domly selected. In this regard, it is very important to consider a characteristic of the original

data, which is that not all chapters from 1 to 22 of the HS have more than 45,000 different

observations available for selection. Thus, for some chapters, it was necessary to select all

the available observations. The final number of observations obtained by HS2 is shown in

Table A10a.

Table A10a: Counting Observations by HS2 in the Balanced and Unbalanced Datasets

HS2 Unbalanced Count Balanced Count

01 1635 7630
02 63352 45271
03 111537 45148
04 9569 27066
05 4460 13136
06 9486 30482
07 14714 45292
08 255136 45318
09 9480 25383
10 6057 25933
11 5964 15773
12 18879 45336
13 5347 11793
14 1161 3129
15 14002 35559
16 19527 45347
17 11694 26822
18 14783 35157
19 32397 45336
20 34690 45344
21 37849 45401
22 317375 45389

Total 999094 711045
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Figure A10: Observations per HS6 in the unbalanced and balanced models

(a) Unbalanced

(b) Balanced

Source: Authors’ calculations based on Chilean customs data.

Table A10b presents the performance of various ML models on the Chilean dataset clas-

sified at HS6 level, Table A10c for the Paraguayan dataset and Table A10d for the USDA

organic products descriptions.
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Table A10b: Classification Report for the Chilean Test-set at HS6 Level

Metric
Decision

Tree
Logistic

Reg.
Naive
Bayes

Random
Forest Rocchio SVM KNN

GPT
3.5

GPT
Nested

GPT
4

Accuracy 0.94 0.92 0.66 0.54 0.73 0.93 0.86 0.61 0.55 0.75
Macro Avg

Precision 0.89 0.88 0.94 0.95 0.62 0.91 0.79 0.54 0.43 0.61
Recall 0.85 0.79 0.17 0.12 0.72 0.80 0.62 0.40 0.46 0.51
F1-Score 0.85 0.80 0.19 0.12 0.62 0.82 0.64 0.13 0.09 0.29

Weighted Avg
Precision 0.94 0.92 0.79 0.76 0.78 0.93 0.86 0.79 0.74 0.83
Recall 0.94 0.92 0.66 0.54 0.73 0.93 0.86 0.61 0.55 0.75
F1-Score 0.94 0.92 0.62 0.48 0.74 0.92 0.86 0.59 0.55 0.73

Source: Authors’ calculations based on Chilean customs data.

Table A10c: Classification Report for the Paraguay Dataset at HS6 Level

Metric
Decision

Tree
Logistic

Reg.
Naive
Bayes

Random
Forest Rocchio SVM KNN

GPT
3.5

GPT
Nested

GPT
4

Accuracy 0.15 0.17 0.08 0.06 0.19 0.20 0.18 0.60 0.46 0.74
Macro Avg

Precision 0.38 0.38 0.73 0.77 0.43 0.40 0.38 0.42 0.27 0.50
Recall 0.63 0.62 0.29 0.25 0.61 0.61 0.63 0.62 0.73 0.68
F1-Score 0.08 0.09 0.05 0.05 0.12 0.10 0.10 0.14 0.11 0.28

Weighted Avg
Precision 0.93 0.95 0.96 0.97 0.95 0.95 0.92 0.83 0.76 0.92
Recall 0.15 0.17 0.08 0.06 0.19 0.20 0.18 0.60 0.46 0.74
F1-Score 0.16 0.17 0.07 0.05 0.21 0.19 0.19 0.59 0.49 0.76

Source: Authors’ calculations based on Paraguayan customs data.

Table A10d: Classification Report for the Organic Products Dataset at HS6

Metric
Decision

Tree
Logistic

Reg.
Naive
Bayes

Random
Forest Rocchio SVM KNN

GPT
3.5

GPT
Nested

GPT
4

Accuracy 0.11 0.10 0.08 0.09 0.10 0.11 0.10 0.73 0.30 0.66
Macro Avg

Precision 0.59 0.46 0.80 0.89 0.55 0.48 0.47 0.71 0.40 0.66
Recall 0.30 0.39 0.15 0.10 0.36 0.38 0.39 0.72 0.57 0.77
F1-Score 0.08 0.06 0.04 0.03 0.07 0.06 0.06 0.49 0.13 0.51

Weighted Avg
Precision 0.64 0.56 0.80 0.90 0.63 0.58 0.56 0.88 0.68 0.84
Recall 0.11 0.10 0.08 0.09 0.10 0.11 0.10 0.73 0.30 0.66
F1-Score 0.09 0.09 0.07 0.06 0.11 0.11 0.10 0.73 0.32 0.66

Source: Authors’ calculations based on USDA.

A11 Alternative Train-Test Dataset: Training with Paraguayan Data

In this Appendix, we switch the test-train dataset and thus train the ML models with Paraguayan

data, testing the newly trained models on the Chilean and USDA organic databases. This ex-
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ercise was carried out as a robustness test to assess the generalizability of our conclusions

regarding (i) the dramatic drop in performance of ML algorithms when assessed outside

the train-test-split dataset and (ii) the high relative performance of LLMs in these external

datasets.

As before, the results are presented at three Harmonized System (HS) classification levels:

HS-6, HS-4, and HS-2. Figure A11a illustrates the algorithms’ accuracy in the Paraguayan

dataset (the test-train database for this exercise). Figure A11b depicts the algorithms’ ac-

curacy when applied to the Chilean dataset (first external dataset on this exercise). As an-

ticipated, there is a general decrease in accuracy compared to the Paraguayan results. This

reduction is more pronounced at the HS-6 level, suggesting that maintaining a high accuracy

across datasets is more challenging at more granular classification levels. Figure A11c shows

similar results for the Organic dataset, with a further decrease in accuracy.
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Figure A11a: Algorithm’s Accuracy in the Test-Train-Split Dataset: Paraguayan Customs.

(a) HS-6 digit level (b) HS-4 digit level

(c) HS-2 digit level

Source: Authors’ calculations based on Paraguayan customs data.
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Figure A11b: Algorithm’s Accuracy in the Chilean Dataset.

(a) HS-6 digit level (b) HS-4 digit level

(c) HS-2 digit level

Source: Authors’ calculations based on Chilean customs data.
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Figure A11c: Algorithm’s Accuracy in the Organic Dataset.

(a) HS-6 digit level (b) HS-4 digit level

(c) HS-2 digit level

Source: Authors’ calculations based on USDA.

Tables A11a, A11b, and A11c provide more detailed multiclass classification performance

metrics for the three datasets at the HS-6 level.

Table A11a: Classification Report for the Paraguayan Test-Set at HS6 Level

Metric
Dec.
Tree

Log.
Reg.

Naive
Bayes

Rand.
Forest

Ro-
cchio SVM KNN

GPT
3.5

GPT
Nested

GPT
4

Claude
3 S

Claude
3.5 S

Accuracy 0.94 0.94 0.89 0.81 0.80 0.96 0.91 0.60 0.46 0.74 0.74 0.88
Macro Avg

Precision 0.83 0.83 0.87 0.88 0.60 0.87 0.80 0.42 0.27 0.50 0.46 0.56
Recall 0.88 0.85 0.41 0.30 0.76 0.86 0.82 0.62 0.73 0.68 0.69 0.75
F1-Score 0.75 0.73 0.35 0.24 0.49 0.78 0.69 0.14 0.11 0.28 0.23 0.38

Weighted Avg
Precision 0.97 0.97 0.92 0.88 0.95 0.97 0.94 0.83 0.76 0.92 0.90 0.95
Recall 0.94 0.94 0.89 0.81 0.80 0.96 0.91 0.60 0.46 0.74 0.74 0.88
F1-Score 0.95 0.95 0.87 0.78 0.86 0.96 0.92 0.59 0.49 0.76 0.73 0.87

Source: Authors’ calculations based on Paraguayan customs data.
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Table A11b: Classification Report for the Chilean Dataset at HS6 Level

Metric
Dec.
Tree

Log.
Reg.

Naive
Bayes

Rand.
Forest

Ro-
cchio SVM KNN

GPT
3.5

GPT
Nested

GPT
4

Claude
3 S

Claude
3.5 S

Accuracy 0.42 0.40 0.34 0.30 0.33 0.49 0.42 0.61 0.55 0.75 0.67 0.81
Macro Avg

Precision 0.55 0.52 0.89 0.93 0.54 0.56 0.54 0.54 0.43 0.61 0.58 0.64
Recall 0.22 0.23 0.08 0.06 0.24 0.27 0.25 0.40 0.46 0.51 0.47 0.60
F1-Score 0.15 0.15 0.06 0.05 0.17 0.18 0.16 0.13 0.09 0.29 0.20 0.38

Weighted Avg
Precision 0.58 0.55 0.73 0.80 0.58 0.61 0.57 0.79 0.74 0.83 0.84 0.86
Recall 0.42 0.40 0.34 0.30 0.33 0.49 0.42 0.61 0.55 0.75 0.67 0.81
F1-Score 0.41 0.39 0.28 0.25 0.34 0.47 0.41 0.59 0.55 0.73 0.66 0.79

Source: Authors’ calculations based on Chilean customs data.

Table A11c: Classification Report for the Organic Dataset at HS6 Level

Metric
Dec.
Tree

Log.
Reg.

Naive
Bayes

Rand.
Forest

Ro-
cchio SVM KNN

GPT
3.5

GPT
Nested

GPT
4

Claude
3 S

Claude
3.5 S

Accuracy 0.11 0.12 0.08 0.06 0.10 0.12 0.11 0.54 0.28 0.72 0.54 0.73
Macro Avg

Precision 0.60 0.49 0.75 0.92 0.63 0.53 0.53 0.64 0.43 0.69 0.59 0.73
Recall 0.28 0.34 0.15 0.07 0.27 0.32 0.31 0.58 0.54 0.66 0.63 0.73
F1-Score 0.07 0.06 0.04 0.03 0.07 0.06 0.06 0.33 0.13 0.45 0.33 0.55

Weighted Avg
Precision 0.65 0.64 0.77 0.88 0.71 0.67 0.60 0.80 0.68 0.84 0.77 0.84
Recall 0.11 0.12 0.08 0.06 0.10 0.12 0.11 0.54 0.28 0.72 0.54 0.73
F1-Score 0.11 0.13 0.07 0.04 0.10 0.13 0.12 0.53 0.31 0.71 0.54 0.72

Source: Authors’ calculations based on USDA.
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A12 LLM Nested Prompt

In this Appendix, we describe LLM Nested Prompting and summarize the results from this

alternative prompting strategy. The process consists of assigning codes in a progressive man-

ner, starting with HS2, then HS4 within that HS2, and finally HS6 within that HS4. In this

process, the code assigned in the previous stage is indicated so that the model has this infor-

mation when assigning a new code. In other words, we seek that within the codes assigned

at a higher level, the model looks for the next code that most closely resembles the descrip-

tion provided.

1 @backoff.on_exception(backoff.expo, (openai.error.RateLimitError, requests.
exceptions.ReadTimeout), max_time=60)

2 def asignar_codigo_HS2(fila, columna_descripcion):
3 texto = fila[columna_descripcion]
4 modelo = "gpt-3.5-turbo"
5 response = openai.ChatCompletion.create(
6 model=modelo,
7 messages=[
8 {"role": "system", "content": "You are a helpful assistant that

assign codes in the Harmonized System of UN Comtrade."},
9 {"role": "user", "content": f'Please assign the harmonized

system code number in the HS2 for the following description
:"{texto}". Return "Code: number here". If you are unsure
of the classification, provide your best possible option'}

10 ],
11 temperature = 0.1
12 )
13 codigo_asignado = response['choices'][0]['message']['content']
14 return codigo_asignado

1 @backoff.on_exception(backoff.expo, (openai.error.RateLimitError, requests.
exceptions.ReadTimeout), max_time=60)

2 def asignar_codigo_HS4(fila, columna_descripcion, columna_codigo_anterior):
3 texto = fila[columna_descripcion]
4 codigo_anterior = fila[columna_codigo_anterior]
5 modelo = "gpt-3.5-turbo"
6 response = openai.ChatCompletion.create(
7 model=modelo,
8 messages=[
9 {"role": "system", "content": "You are a helpful assistant that

assign codes in the Harmonized System of UN Comtrade."},
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10 {"role": "user", "content": f'Please assign the harmonized
system code number in the HS4 for the following description
:"{texto}". Bear in mind that you gave me the next HS2 Code
: {codigo_anterior} and that the HS4 Code has to be inside
the HS2. Return "Code: number here". If you are unsure of
the classification, provide your best possible option'}

11 ],
12 temperature = 0.1
13 )
14 codigo_asignado = response['choices'][0]['message']['content']
15 return codigo_asignado

1 @backoff.on_exception(backoff.expo, (openai.error.RateLimitError, requests.
exceptions.ReadTimeout), max_time=60)

2 def asignar_codigo_HS6(fila, columna_descripcion, columna_codigo_anterior):
3 texto = fila[columna_descripcion]
4 codigo_anterior = fila[columna_codigo_anterior]
5 modelo = "gpt-3.5-turbo"
6 response = openai.ChatCompletion.create(
7 model=modelo,
8 messages=[
9 {"role": "system", "content": "You are a helpful assistant that

assign codes in the Harmonized System of UN Comtrade."},
10 {"role": "user", "content": f'Please assign the harmonized

system code number in the HS6 for the following description
:"{texto}". Bear in mind that you gave me the next HS4 Code
: {codigo_anterior} and that the HS6 Code has to be inside
the HS4. Return "Code: number here". If you are unsure of
the classification, provide your best possible option'}

11 ],
12 temperature = 0.1
13 )
14 codigo_asignado = response['choices'][0]['message']['content']
15 return codigo_asignado
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Table A12a: GPT Nested Classification Results

HS Level Metric Chile Paraguay Organic

HS6

Accuracy 0.55 0.46 0.28
Macro Avg

Precision 0.43 0.27 0.43
Recall 0.46 0.73 0.54
F1-Score 0.09 0.11 0.13

Weighted Avg
Precision 0.74 0.76 0.68
Recall 0.55 0.46 0.28
F1-Score 0.55 0.49 0.31

HS4

Accuracy 0.78 0.71 0.53
Macro Avg

Precision 0.41 0.32 0.51
Recall 0.73 0.83 0.64
F1-Score 0.31 0.25 0.38

Weighted Avg
Precision 0.85 0.77 0.70
Recall 0.78 0.71 0.53
F1-Score 0.78 0.69 0.57

HS2

Accuracy 0.90 0.86 0.69
Macro Avg

Precision 0.20 0.20 0.49
Recall 0.94 0.95 0.78
F1-Score 0.18 0.19 0.42

Weighted Avg
Precision 0.92 0.91 0.82
Recall 0.90 0.86 0.69
F1-Score 0.90 0.84 0.74

Source: Authors’ calculations.
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A13 Exploring Other LLMs

In this section, we present a benchmark of other LLMs tasked with classifying products from

text descriptions. For this task, we selected 100 random observations from our test dataset

with data from the Chilean customs (see Section 2.1 for more details). This exercise is carried

out through Poe, an open platform to explore LLMs. As of November 2023, this service is not

accessible at scale through an API, preventing us from carrying out a more extensive analysis

of these alternative LLMs. However, note that, while a random sample of 100 observations

is relatively small, in Appendix A14, we show that our point estimates for GPT 3.5 and GPT

4 are very stable when moving from 100 to 1000 observations.

Figures A13a illustrates the accuracy rates of five distinct LLMs at HS 6-digit classifica-

tions: Bard30, Claude-Instant31, LLaMa 232, Solar33, PaLM 2, GPT 3.5, and GPT 4. Each bar

represents the algorithm’s product classification efficacy. Both Bard, PaLM 2 and Solar ex-

hibit relatively high accuracy rates, with Bard edging ahead slightly (60%). PaLM 2 demon-

strates a robust performance (53%), aligning closely with Solar’s (50%). GPT 4 emerges as

the leading algorithm, with a score substantially higher than the others.

When we move to lower levels of disaggregation in Figures A13b (HS 4-digits) and A13c

(HS 2-digits), the differences relative to GPT 4 become smaller. While GPT 4 remains the

leading algorithm, Palm 2 (86%) is only 1 percentage point behind at the HS 4-digit level and

show equal precision at HS 2-digit level (92%). All algorithms perform well at the HS 2-digit

level, indicating a remarkable increase in accuracy in more aggregate categorizations. LlaMa

2, for example, assigns the correct HS 6 digit-code only in 15% of the cases, but its accuracy

surges to 69% at HS 4-digit level and to 83% at the HS 2- digit level.

30Bard AI is a conversational AI chatbot developed by Google AI. It is powered by PaLM 2, a 540-billion param-
eter model, created by Google Research and trained with the Pathways system.

31Claude is an LLM developed by Anthropic with roughly 175 billion parameters.
32LlaMa 2 is a family of almost open-source LLMs (excluding commercial use). Here we used the 70-billion

parameter version.
33Solar-0-70b-16bit is a fine-tuned version of LlaMa 2 and a top-ranked model on the HuggingFace Open LLM

leaderboard.
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Figure A13: Comparative Performance of Other LLMs in HS Product Classification

(a) HS-6 level (b) HS-4 level

(c) HS-2 level

Source: Authors’ calculations based on Chilean customs data.
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A14 LLM Subsample Accuracy

In this section, we report results of robustness checks of our findings to a reduction in

the sample size by one order of magnitude. In particular, we randomly divide a 1000-

observations sample into 10 subsamples of 100 observations and test the accuracy of GPT

3.5 and GPT 4 in each subsample for each dataset.

Figure A14a and A14b shows the point estimates after dividing the sample of observa-

tions from Chile into 10 groups. In this case, the point estimates across the 10 subsamples

have a very small standard deviation of 0.0048 for GPT 3.5 and 0.0043 for GPT 4. Figure A14c

and A14d does the same for the Paraguayan dataset. The standard deviation in this case is

very similar (0.0049 and 0.0044 for GPT 3.5 and GPT 4, respectively). Finally, Figure A14e

and A14f does the same for the 1,000 classified observations from the USDA organic product

database, for which the standard deviation is slightly larger, at 0.0136 for GPT 3.5 and 0.0149

for GPT 4. Overall, this exercise shows that the point coefficients are relatively stable when

moving from a 1000-observations sample to 100-observations random subsamples.

Figure A14a: Algorithm’s Accuracy in Chilean Subsets for GPT 3.5

Source: Authors’ calculations based on data from Chilean Customs.
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Figure A14b: Algorithm’s Accuracy in Chilean Subsets for GPT 4

Source: Authors’ calculations based on data from Chilean Customs.

Figure A14c: Algorithm’s Accuracy in Paraguayan Subsets for GPT 3.5

Source: Authors’ calculations based on data from Paraguayan Customs.
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Figure A14d: Algorithm’s Accuracy in Paraguayan Subsets for GPT 4

Source: Authors’ calculations based on data from Paraguayan Customs.

Figure A14e: Algorithm’s Accuracy in the USDA Organic Subsets for GPT 3.5

Source: Authors’ calculations based on data from USDA.
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Figure A14f: Algorithm’s Accuracy in the USDA Organic Subsets for GPT 4

Source: Authors’ calculations based on data from USDA.
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