ECON 671 — Metrics
Expanded Notes

Week 5

Motivation: Why Asymptotic Statistics?

In many problems we do not know the exact finite-sample distribution of the statistic we want

to use. A classical example is the one-sample t-statistic
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which is exactly t,_1 only under Gaussian sampling. When the data are merely i.i.d. with mean
p and variance 02 < oo, exact distributions are unavailable, yet large-sample approximations

make valid inference possible.

Recall. Central Limit Theorem (CLT). If X, ..., X}, arei.i.d. with mean y and variance 02 < oo,
then
Vi (X, —u) = N(0,0%).

Slutsky’s theorem. If Y;, = Y and Z, L #0,thenY,,/Z, = Y/c.

Applying CLT and Slutsky, we obtain
T, = N(0,1),

because S, L Hence the usual t-test and confidence intervals for u remain approximately

valid without Gaussianity when 7 is large:
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More broadly, asymptotic statistics provides a toolkit (LLN/CLT, Continuous Mapping, Slut-
sky, Delta method, and likelihood-based approximations) to:

¢ justify procedures when exact finite-sample laws are intractable;

¢ obtain large-sample distributions of estimators and test statistics;



¢ derive standard errors and confidence sets under weak regularity (e.g., non-Gaussian data).

Convergence concepts (vectors in R)

We model a random vector X = (Xj, ..., X)) as a measurable map from a probability space to

(R, B). In simpler words, it is a vector of real random variables. Its (joint) distribution function

1S
Fx<x> = ]P(X1 <xi,..., X < Xk), X = (xl,...,xk) € ]Rk.

Definition (Three modes of convergence). Let X, X be R*-valued random vectors.

(i) Convergence in distribution (weak convergence). We write X,, ~ X or X, 4 X if any

(hence all) of the following hold:

(a) (Portmanteau; v.d.V. Thm. 2.1) Ef(X,) — Ef(X) for every bounded continuous f : R¥ —
R.
(b) For all continuity sets A of the law of X, P(X, € A) — P(X € A). Alternatively, the

sequence of random vectors X,, converges in distribution to a random vector X if:
P(X, <x) = P(X <x)
for every x at which the limit distribution function x — P(X < x) is continuous.
(c) If k =1, then Fx, (x) — Fx(x) for every continuity point x of Fx.
If X has distribution L, we also write X,, ~ L.

(ii) Convergence in probability. We write X, P X if

Ve>0: P(|X,—X]|>¢) — 0.

(iii) Almost sure convergence. We write X, 2 Xif

IP(lim X, :X) —1.

n—oo

Proposition (Hierarchy). Almost sure convergence implies convergence in probability, and conver-

gence in probability implies convergence in distribution:
X 25X = X, B X = X, = X

If X is a constant ¢ € RK, then X, = c is equivalent to X, LN

Remark (Why we care). Weak convergence is the language of large-sample approximations:
CLTs give X, = X for suitable X (typically Gaussian), and the Portmanteau/continuous-
mapping tools propagate limits through statistics. Almost sure and in-probability convergence

control consistency of estimators.



Convergence in distribution

Example (Convergence in distribution). Let X,, ~ U(0,1 + %) Its cdf is

0, x <0, 0, x<0,
X
- —= <x<1+1% =
Ey(x) T i/ 0<x<1+,, F(x) x, 0<x<1,
1, x>1+1 1, x>1,

so F,(x) — F(x) for every continuity point of F, hence X,, ~» U(0, 1).

| — F(x)
--- Fy(x)withn=5 -
--- Fy(x) withn =10

0 1 1+1/n
X

Figure 1: Convergence of F, (dashed) to F (solid) for X,, ~ U(0,1+ 1).



Maxima of uniforms: weak convergence and exponential limit

Example (Convergence in distribution with maxima of uniforms and exponential limit). Why is this example

useful?
Let Uy,..., U, i U(0,1) and define the sample maximum

M, := max{Uy, ..., Uy, }.

Proposition (Distribution of M, and degeneracy). For 0 < x <1,

Fy, (x) =P(M, <x)=P(U; <x,...,Uy <x) :H]P(Ui <x)=ax".

Hence fp, (x) = nx”_ll(oll) (x) (i.e., My ~ Beta(n, 1)), and M, == 1; without rescaling the limit is degenerate at 1.

Definition (Rescaled gap). To obtain a non-degenerate limit, zoom in at the upper endpoint by the natural 1/n
scale:
Y, :=n(1—-M,) € [0,n].

Theorem 1 (Y}, converges to an exponential law). For every y > 0,
_ _ N4 AN T AY _ e
Fyn(y)_]P(Yngy)_]P(Mn21 n) =1 ]P(Mngl n) =1 (1 n) — 1—eV.
Therefore Yy, = Exp(1).

Proof. The display above shows pointwise convergence of the cdf toy — 1 — e ¥ on [0,00) and 0 on (—c0,0).
This is the cdf of Exp(1), so Y, = Exp(1) by the cdf characterization of weak convergence. O

Remark (Two complementary intuitions).

1. Rare-events/Poisson heuristic. For a fixed threshold 1 —y/n, P(U; > 1 —y/n) = y/n. The number of ex-
ceedances among n trials is Bin(n, y/n) = Poisson(y). The event { M, < 1 —y/n} means “no exceedance”,

whose probability tends to e~Y; by complement, Fy, (y) — 1 —e¢Y.

2. Density transformation. Withx =1 —y/n,

fr,(v) = fm,(L—y/n)- % = n( - z)H % = € V1 (g00)(¥)-

n
Moreover E[Y,,] = n (1 — %) = 47 — 1, consistent with Exp(1).

Remark (What this example teaches).
e For distributions with a finite upper endpoint, maxima stick to the boundary at rate 1/n.

o After the correct rescaling, the gap to the endpoint has a non-degenerate limit; here it is exponential with

mean 1 (a Weibull-type extreme-value limit).

* Re-scaling is the core idea of asymptotic approximations: without it, limits are often trivial.
\

Convergence in probability (vectors in IR)

Definition (Metric formulation). Let d be any metric on R* that induces the usual topology

(e.g., the Euclidean norm). A sequence of random vectors X,, converges in probability to X if

Ve >0: P(d(Xy, X) >€) — 0.



We write X,, = X, or equivalently d(X,, X) Zo.

Remark (Independence of the metric and componentwise equivalence). On R¥, the choice of

norm is immaterial. In particular,
X, B X = |X-X[20 = X5 Xforallj=1,...,k

where the last equivalence follows by the union bound.

Remark (Stability properties). If X, P, X and g : Rk — R™ is continuous, then g(X,) = g(X)
(continuous mapping). If X, 2 X and Y, LA # 0, then X,,/Y, x /¢ (Slutsky). If X is a

constant ¢, then X, P cis equivalent to X,, = c.

Theorem 2 (Weak Law of Large Numbers (WLLN)). Let X3, X, ... be i.id. with EX; = u and
Var(X;) = 0% < oo, and set X,, = 1 Y!' | X;. Then, for every e > 0,

P(|X, —u| >¢) — 0, ie, X,5pu

Proof. TBD.

Example (Sample proportion). If X; ~ Bernoulli(p) i.i.d., then p, = X,, and the WLLN yields
A P
Pn = p-

Example (Consistency of the sample variance via Chebyshev). Let Xj, X, ... be ii.d. with

E(X;) = u and Var(X;) = 0% < oo, and define the sample variance

1
n—1

i(xi — X,)>

i=1

S2 =

By Chebyshev’s inequality, for any ¢ > 0,

E SZ_ 2\2 2
P(5}— o> g) < BTN _ VarlS)

Hence, a sufficient condition for 52 2> 2 is that Var(52) — 0 as n — oo,

Remark. (Verification, optional.) Under additional moment conditions (e.g., a finite fourth
moment), one can check that Var(S2) = O(1/n) — 0.

Remark (What to remember). Convergence in probability is the mode used to formalize con-
sistency. It is robust under continuous transformations (continuous mapping) and algebraic
combinations with deterministic limits (Slutsky). The WLLN gives a first, central example; the
variance example shows how Chebyshev and a variance calculation often suffice to establish

consistency.



Almost sure convergence
Definition (Almost sure convergence). We say that the sequence X,, converges almost surely
to X if d(X,, X) — 0 with probability one; that is,

]P(lim d(X,, X) = 0) =1

n—o0

We denote this by X,, =% X.

Remark. Both almost sure convergence and convergence in probability require X, and X to be

defined on the same probability space. This is not required for convergence in distribution.

Example (A basic a.s. limit). Let U ~ U(0, 1) and define X,, = U".
e IfU < 1, thend(X,,0) =d(U",0) — 0.
e If U =1, then X,, = 1. Moreover, P(U =1) = 0.

Hence,
P(}%d(xmo) = 0) =1,

because the only event where the limit can fail is {U = 1}, which has probability zero. There-

fore X,, 225 0.

Intuition: how to tell them apart

Almost sure (pathwise): for almost every outcome w, the tail of the sequence X, (w) sticks
to X(w).

In probability (masswise): for any fixed ¢ > 0, the mass outside the e-ball around X
vanishes; occasional large deviations may still occur along many n.

In distribution (lawwise): only the laws matter; CDFs converge, regardless of the joint
construction of (X, X).

Hierarchy: X, 2% X = X, & X = X, & X.

g J

Example (In probability but not almost surely). Let U, ~ U(0,1) i.i.d. and X,, = 1{U,, < 1/n}.
Then P(|X, — 0| > ¢) = 1/n — 0, so X,, - 0. However, ¥, P(X, = 1) = o and (X,, = 1)
occurs infinitely often with probability one (Borel-Cantelli), hence X,, /4 0 a.s.

Example (In distribution but not in probability). Expand. Let X,, ~ N(0,1) for all n, indepen-
dent of X ~ N(0,1). Then X, LSS (the laws are identical), but P(|X, — X| > ¢) = P(|Z| >
e/v/2) > 0for Z ~ N(0,2), 50 X, > X.

Portmanteau Lemma

Lemma. For any random vectors X,, and X, the following statements are equivalent:

(i) P(X, < x) = P(X < x) for all continuity points x of Fx(x) := P(X < x).




Intuition. Weak convergence is CDF convergence at the points where the limit CDF is

continuous (jumps are the only obstruction).

(ii) E[f(Xn)] — E[f(X)] for all bounded, continuous functions f.
Intuition. Expectations of bounded continuous “test functions” probe the law; if all such

probes agree in the limit, the distributions converge.

(iii) E[f(Xu)] — E[f(X)] for all bounded, Lipschitz functions f.
Intuition. It suffices to test with a smaller class controlling oscillations (Lipschitz). This

class is convergence-determining.

(iv) liminf, .o E[f(X,)] > E[f(X)] for all nonnegative, continuous f.
Intuition. A Fatou-type lower semicontinuity: mass cannot “disappear” under limits when

tested with nonnegative continuous functions.

(v) iminf, , P(X, € G) > P(X € G) for every open set G.
Intuition. Probabilities of open sets are lower semicontinuous: the limit cannot undercount

the mass that stays inside opens.

(vi) limsup, ., P(X, € F) < IP(X € F) for every closed set F.
Intuition. Dually, probabilities of closed sets are upper semicontinuous: extra mass cannot

suddenly appear in closed sets.

(vii) P(X,, € B) — P(X € B) for all Borel sets B with P(X € 6B) = 0, where 6B = B — B is
the boundary of B.
Intuition. Convergence holds on all “continuity sets” of the limit law—sets whose boundary

carries no mass.

Remark. Any one of (i)—(vii) may be taken as the definition of weak convergence X,, = X.
- J

Remark (Why Portmanteau matters). Weak convergence means convergence in distribution:

X, = X (aka. X, i> X). The lemma provides equivalent, easier-to-check criteria:

* Function view ((ii)—(iii)): convergence of E[f(X})] for bounded continuous (even bounded
Lipschitz) f.

¢ Set view ((v)—(vii)): lower/upper semicontinuity for open/closed sets, and convergence on

continuity sets.

* Practical goal: prove X,, = X using whichever side is tractable (functions or sets), especially

in RF where CDFs are unwieldy.

Proof. TBW. O



Continuous Mapping Theorem

A first useful result we can prove using the Portmanteau Lemma is the Continuous Map-

ping Theorem.

Theorem 3. Let X,,, X be random vectors and let ¢ : R* — IR™ be continuous at every point of a
set C such that P(X € C) = 1. Then:

(i) If X, = X, then g(X,) = g(X).

(ii) If X, Ly X, then 9(Xy) LN (X).

(i) If Xp > X, then g(Xn) = g(X).

. J

Proof. TBW. O

Example (Consistency of S via CMT). In the Example Consistency of the sample variance via
Chebyshev (p. 5) we established conditions under which S2 2 02 By the Continuous Map-
ping Theorem, picking g(x) = /x (continuous on [0, %)),

Su = g(Sp) & g(0?) = o

Theorem 4 (Some relationships between modes of convergence). Let X,,, X and Y,, be random

vectors, and let ¢ be a constant. Then:
(i) If Xy 255 X, then X, 5 X.
(i) If X, L X, then X,, = X.
(iii) Xy L ciff X, = c.
(iv) If X, = X and d(X,, Y,) 2> 0, then Y, = X.
(v) If Xy = Xand Yy LN ¢, then (X,,Y,) = (X, 0).
(vi) If X, L Xand Y, LY, then (X, Yn) LN (X,Y).
Proof. TBW. O

Lemma (Slutsky’s Lemma). Let X, X and Y,, be random vectors or variables. If X, = XandY,, = ¢

for a constant c, then:
(i) Xp+Y, = X+c
(i) Y, X, = cX.

(iii) Y, 1X, = ¢ 71X (provided c # 0).

Remark. The constant ¢ may also be a constant vector or matrix, assuming the operations

above are well-defined and of correct size.



Proof. TBW. O

Some applications

Example (t-statistic). Let Y7, Y>,... be i.i.d. with E(Y;) = 0 and ]E(le) < 0. The t-statistic,
defined as t, = /nY,/S,, is asymptotically standard normal using the results above. In

particular, we have already shown that
s2 202 and by the continuous mapping theorem Sy s 0
Next, by the central limit theorem (proved later),
VnY, = N(0,0%).
Applying Slutsky’s lemma,

t, = \/?Y" = N(0,1).

Example (Normalized statistic and asymptotic CI). Suppose T, estimates 6, and S, estimates

. Assume
Vi (T, —0) = N (0,0, S215 o2

Define the normalized statistic
n - .
Su
By Slutsky’s lemma, Z,, = N(0,1). Let z, be the upper a-quantile of the standard normal, i.e.,

P(Z > z,) = a for Z ~ N(0,1). Then
P(—2z4 <Z,<zy) — 1-—2a.
Equivalently, an asymptotic (1 — 2«a) confidence interval for 6 is
[Tn — %za, T, + %za].

Notation: 0p and Op

Definition (Stochastic 0 and O). Let (X}, ) be random variables (or vectors) and (R,,) a sequence

of positive scalars (“rates”).

X
* X, = 0p(R,) means R—n o
n

X
* X, = Op(Ry,) means that R—n is bounded in probability, i.e., for every € > 0 there exists

n
M < oo such that
Xn

limsup IP ( R

n—00

>M)<e.



Equivalently, {% }n is tight.

Remark (Deterministic analogy). For deterministic sequences (a,) and (b,), a, = 0(b,) means
ay/by — 0, and a, = O(b,) means (a,/b,) is bounded. The symbols 0,(1) and O, (1) are the

stochastic counterparts of o(1) and O(1).

Calculus rules for 0, and O,

The following implications are standard and will be used without comment:

0p(1) +0p(1) = 0p(1), 0p(1) +0,(1) = 0,(1), Op(1)0,(1) = 0,(1),
(1+0p(1)) 7 = 0p(1),
0p(Rn) = Ryo0p(1), Op(Ry) = Ry Op(1), 0p(0p(1)) = 0,(1).

Reading rule. Each display abbreviates a statement about explicitly named sequences, e.g.

0p(1) +0p(1) = 0p(1) means: if X, 2 0and Y, % 0, then X, 4+ Y, % 0 (an instance of the

continuous mapping theorem).
- J

Lemma (Rates under smooth transformations). Let R : R — R satisfy R(0) = 0, and let X,, 20

in R. For every p > 0:
(i) IfR(h) = o(||h||?) as h — O, then R(X;) = 0, (]| Xul| 7).

(ii) If R(h) = O(||h||?) as h — O, then R(Xy) = Op(||Xul| ).

Characteristic functions

From the Portmanteau lemma, to show X, = X it sulffices to verify E[f(X,)] — E[f(X)]
for all bounded, continuous f. A particularly convenient choice of such test functions is the

characteristic function
ex(t) = ]E(eitTX), t € RF,

Theorem 5 (Lévy’s continuity theorem). Let X,, and X be random vectors in R¥.
(i) If X, = X, then IE(e”TX") — 1E<e”TX> for every t € RE.
(ii) If E (eitTX") converges pointwise to a function ¢(t) that is continuous at 0, then ¢ is the char-
acteristic function of some random vector X and X,, = X.

Remark. Part (i) is immediate from Portmanteau since x — e’ * is bounded and continuous.

Part (ii) states the converse direction; we record it without proof.

Example (Binomial(n,1/n) converges to Poisson(1)). Let X, be a sequence of random vari-
ables such that X,, ~ Binomial(n,1/n). Its characteristic function is
n

ox, (1) = (1+572)

10



Asn — oo,
x,(t) — exp(e —1),

using lim,_,(1+ 2)" = €®. Since exp(e’* — 1) is the characteristic function of Poisson(1),
Lévy’s theorem yields

X,, = Poisson(1).

Central Limit Theorem

Theorem 6 (Central Limit Theorem). Let Y3, ..., Y, be i.id. rv.’s with E(Y;) = 0 and ]E(Yl.z) =1.
Then
VnY, = N(0,1).

Proof. Let py(t) = E[¢/'1] denote the characteristic function of Y;. A second-order Taylor
expansion of ¢y at t = 0 yields
t2

py(t) =1+itE(Y;) — tzzlE(Y%) +o(ff)=1- 5+ o(t?),

since E(Y;) = 0 and E(Y?) = 1. Consider now the characteristic function of v/ Y,,. Because
the Y; areii.d.,

Py, (t) = (901/ <ﬁ> > :
Using the expansion above with t/+/n in place of t,

() =1 gy o)

Hence
t2

n
—$2/2
pin(®) = (1= 3o +o(d)) — e
because (1+ 2 +0(1))" — ¢*. The limit e~/2 is the characteristic function of A'(0,1). By

Lévy’s Continuity Theorem,

VnY, = N(0,1).

Delta Method

We estimate a primitive parameter 6 with T}, yet the target is a smooth function ¢(6). By the
Continuous Mapping Theorem, if T, ?; 6 and ¢ is continuous at 6, then ¢(T},) LN $(0). For
inference we still need the rate and a limit law for r,{¢(T,,) — ¢(0) } to obtain standard errors,
confidence intervals, and tests. When ¢ is differentiable at 6 and r,,(T,, — 0) = T withr, — oo,

a first-order Taylor expansion gives

$(Tu) = (6) + dp(Tu —0) +0,(r,") = ru{d(Tu) —p(6)} = ¢5(T).

11



In the classical CLT case r, = y/n and /n(T, — 6) = N (0, %), it follows that
Vi{¢(To) = ¢(0)} = N(0, Vo(6) 'ZV(6)),

informally summarized as \/n(¢(T,) — ¢(0)) ~ ¢'(6) /n (T, — 0).

In words, the quantity /n(¢(T,) — ¢(6)) converges in distribution to a mean-zero nor-
mal random variable whose variance (or covariance matrix) equals the asymptotic variance of
Vn(T, — 0), propagated through the derivative (or gradient) of ¢ evaluated at the true param-

eter value 0.

Theorem 7 (Delta Method). Let ¢ : R¥ — R™ be differentiable at 0. Suppose r,(T, — 0) = T with
7y, — oo. Then

rn(¢(Tn) — ¢(6)) = ¢p(T),

where ¢y, denotes the derivative (linear map) of ¢ at 6, applied to T.
Proof. TBW. O

Example (Delta Method: a simple transformation). Let Xy, ..., X}, be i.i.d. with mean u and
variance 2. Consider T, = X2. By the CLT,

Vi (X, —u) = N(0,0%).
Take ¢(x) = x?, which is differentiable at y with derivative ¢ () = 2u. By the Delta Method,
Vi (X2 —u?) = N(0, (2u)*0?).

Remark (Delta Method at a zero mean). If 4 = 0, then ¢'(0) = 0 and the first-order Delta
Method does not apply. Since /1 X, = Z ~ N(0,0?), we have

nX?=(vVnX,)?* = 77
which is a scaled chi-square distribution:
2

Thus, when u =0,
nX?= (72)(%,

instead of a normal limit.

12



Week 6

Point Estimation

Definition (Parameter). A parameter 6 is any (possibly vector-valued) function of the popula-
tion distribution F. For example, the population mean y = E[X] is a parameter and, more

generally, a functional of F (the first moment).

Definition (Estimator and estimate). An estimator § of a parameter @ is a statistic—i.e., a mea-
surable function of the sample—intended as a guess of 6. Estimators are random variables
because they depend on the random sample. The estimate is the numerical realization of the

estimator for a given dataset.

Remark (Intuition). Think “target vs. recipe vs. outcome”: 6 is the fixed target feature of the
population, §(X) is the recipe that maps the sample to a guess, and the estimate is the concrete

number obtained once the sample is observed.

Method of Moments

There are many estimation methods; an important and popular one is the Method of Moments
(MoM).

* MoM is attractive for semi—parametric settings: it can estimate finite-dimensional pa-

rameters without fully specifying the distribution of X.

¢ It is often intuitive because parameters of interest frequently correspond to moments of

the distribution; then closed—form estimators arise by simple matching.

¢ In other cases, parameters are not explicit functions of the moments and numerical solu-

tion of the moment equations is required.

Basic principle. Let m; denote the jth sample moment and let y; denote the corresponding

population moment. The MoM estimator sets

ﬂ’l]:y], j:1,2,...,
and solves the resulting system for the unknown parameters.

Example (Matching the first two moments). Let Xj, ..., X, be a sample. The first two sample
moments are

m =X = Xi,

|-
M:
3
Il
|
1
)

Il
—

i
The corresponding population moments are y; = E[X] and y» = E[X?]. The MoM estimator

solves my = yq and my = yy for the unknown parameters.

13



Remark (Intuition). MoM “matches features of the data to features of the model.” If the model
says the parameter controls, say, the mean and the second moment, then we pick parameter
values that make the model’s mean and second moment coincide with their empirical coun-

terparts.

Example (Normal Model (Method of Moments)). Suppose Xj, ..., X, 1 N (6, (72). Take the

first two data moments ;
_ 1
m; = X, My = — X~2,
1 2= ; i

and note that the population moments are

m=E[X]=0, w=E[X}=60+"

whose solution is

[y

i=
Remark (Interpretation). The estimator # = X matches the model’s mean to the sample mean.
The variance estimator matches the model’s second moment to the sample second moment,

leading to the uncorrected sample variance (with 1/n). This reflects the moment-matching

principle rather than a bias correction aim.
Example (Poisson). Suppose X3, ..., X, Hd- Poisson(A), so E[X;] = A.
e Match the first moment: set E[X;] = X,,.

Hence the MoM estimator is

>
£
<
I
>
3

Remark (Intuition). For the Poisson family, the mean equals the intensity. Matching the empir-

ical mean therefore pins down A directly.
Example (Gamma). Suppose Xj, ..., X, Hd- Gamma(«, ) under the shape-scale parameteriza-
tion, so

E[X;] = aB, Var(X;) = ap>.

Match model moments to the data:

14



where S2 := % Y, (X; — X,,)? is the (uncorrected) sample variance, which aligns with MoM.
Solving,

. S2 . X2

Pyvm = X, M= m

Remark (Intuition). Mean identifies the product af and variance identifies a8?; dividing the

two equations isolates 8, then plug back to recover a.

When closed forms are unavailable. In many econometric models we can express moments
as functions of parameters, but cannot invert those relations analytically. In such cases, we

solve the MoM equations numerically to obtain the estimator.

Method of Moments: General Formulation

Take § € RF and let m(X,0) be a k x 1 vector of moment functions implied by the model.

Assume the population moment condition
E[m(X,0)] = 0.

Given data {x;}"_,, define the sample counterpart

=

i (0) = % m(x,,0).

Il
—_

The method-of-moments estimator 8 solves the k nonlinear equations

i, () = 0.

Remark (Identification). When the number of moment conditions equals the dimension of 0,
we have exact identification (“just identified”). Then, under regularity, a unique solution exists

in large samples.

Example. Let F(x) = P(X < x) = E[1{X < x}] be the distribution function of a univariate
r.v. X. Given a sample xy, ..., x,, the MoM estimator for F(x) is the fraction of observations

not exceeding x:

Eo(x) = iéuxi <xl).

Remark (MoM view). Here the moment condition is E[1{X < x} — F(x)] = 0 for each fixed x;
replacing the expectation by the sample average yields F,(x).

15



Theorem 8 (Asymptotic distribution at a fixed x). If X; are i.i.d., then for any fixed continuity point
x of F,
Vit (Fa(x) = F(x)) = N(0, F(x)(1 - F(x))).

Proof. Consistency follows from the WLLN since 1{X; < x} are ii.d. bounded with mean
F(x), hence F,(x) LNy S (x). For the limit distribution, apply the CLT to the Bernoulli variables
Y; := 1{X; < x} with variance F(x){1 — F(x)}:

Vit (Y, — E[Y]]) = N (0, Var(Y,)),

which is exactly the stated result. O

Example (Euler Equation (from Hansen, 11.11)). A consumer chooses consumption C; in pe-

riod t and C;41 in period t 4- 1. Preferences are

1
U(Ct, Cry1) = u(Cr) + Bu(CtJrl)r
and the budget constraint is
Ci+ Cit < W,
t+1

where W; is the endowment and R;;; is the (uncertain) gross return on investment from ¢
to t + 1. Using the budget constraint to substitute C;y11 = (W; — C;)R+1, expected utility in
period t is

E [u(Ct) + ;u((Wt - Ct)RtH)} .

The consumer chooses C; to maximize expected utility. Assume CRRA utility u(c) =

¢!=*/(1 — a). The first-order condition is the Euler equation

E <Rt+1 (%1)7“ - /3) = 0.

Suppose we want to estimate a, the coefficient of relative risk aversion, treating 8 as known.
Define the moment function
(Res1,Cri1, Co) i= Ry (1) —
m(Ri+1, Cri1, Cr ) 1= Req1 | =6 B,

t

so that the population moment condition is
E [m(Rt—HI Cit1,Cy, 06)] = 0.

Given data {C;, C;11, R¢41})_4, the sample moment is
1 —
iy (0) 1= = Y [Rtﬂ(ctctl) - 5] ,
t=1
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and the Method—-of-Moments estimator & is defined as the solution to
mn (&) - 0,
which is typically obtained numerically.

Properties of Moment Estimators

* Moment estimators are not necessarily “best” estimators, although in special cases they

coincide with optimal ones.

e Under mild regularity conditions, they converge at rate \/n and are asymptotically nor-

mal.

¢ This asymptotic normality follows from the CLT and mean-value (Taylor) expansions of

the moment equations.
¢ The Method of Moments is attractive because of its semi—parametric nature and robust-

ness features.

Identification

Definition (Identification (Hansen, Def. 11.1)). The parameter 6 is identified in @ if there exists

a unique 6p € O that solves the moment condition
E[m(X,0)] = 0.
Consistency of the Method of Moments
To show that the MoM estimator is consistent, we impose the following assumptions:

1. X; arei.i.d.

2. |lm(x,0)|| < M(x) and E[M(X)] < oo.

3. m(X,0) is continuous in 0 with probability 1.
4. © is compact.

5. The population moment equation E[m (X, 0)] = 0 has a unique solution 6.

Assumptions (A1)—(A4) ensure that the sample moment function

1, (6) =

S| =

m(Xi,H)

n

~
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is a uniformly consistent estimator of its expectation. Indeed, since X; arei.i.d., the transformed

variables m(X;, 0) are also i.i.d.; by the weak law of large numbers,
i (0) & E[m(X,0)].

Adding (A5) yields consistency: the sample solution 8 to 17, (8) = 0 converges in probabil-

ity to the population solution 6.

Asymptotic Distribution

Define

Q) := Var(m(X, 6p)), Q:=FE [aagm(

and let \V be a neighborhood of 6y. On top of (A1)-(A5), assume:

Xﬁo)] ,

6. El|lm(X, 00) ] < oo.

7. $E[m(X,0)] is continuous in 6 € N.

8. m(X,0) is Lipschitz—continuous in 6 on N.
9. Qs full rank.

10. 6y lies in the interior of ©.

Under assumptions (A1)-(A10),
Vn(@—6) = N0, V), Vv=Q'laQ™

Why do these assumptions matter?
® (A6) ensures finite second moments, needed for the CLT.

* (A7) guarantees local invertibility of m(X, ) near 6y, via the inverse function theorem;

this is required to apply the Delta Method.

* (AS8) controls the Taylor remainder so that the linear approximation is accurate asymp-

totically.
* (A9)is anidentification condition: it ensures that movements in 8 produce unique changes
in the moments.

In exact identification (k equations, kK unknowns), each moment must contribute unique
information. If two moment conditions convey the same information, we cannot uniquely

pin down 6.
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Suppose we have a point estimate § for our parameter of interest. The asymptotic variance

of a Method—of-Moments estimator is
vV=Q'0Q",
and we estimate it using plug-in quantities:

N A_1A A A 1& A P |
V = Q 1QQ 1/ Q E Em xl/ xllg)/l Q = E
i=1 i=1

Example. Euler Equation (continued) Recall the sample moment
_ 1 -
R O]
t=1

The asymptotic variance is
v=0"'0Q",

0= Var<Rt+1< Ser) “—ﬁ), Q= E(Rm(cg;l)_“log(%l)).

The plug-in estimator is therefore

where

lyn <Rt+1(%)& —ﬁ)z

< Yie 1Rt+1( ’“) “108<C<t:f1)>2.

Remarks on Method of Moments

Method of Moments is widely used in both macro and micro applications. In macro, it often
appears under the label “calibration,” in which case the asymptotic variance is typically not
the central object of interest.

There exist many extensions of Method of Moments that appear throughout econometrics;

some of them are introduced next.

Generalized Method of Moments
So far we assumed exact identification: as many parameters as moment conditions,

0 cRF, E[m(X,0)]=0,

with m being an | x 1 function and [ = k.
If | > k (over—identification), the system cannot be solved exactly. Instead, GMM finds the

¢ that makes the sample moments “as close to zero as possible.”
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Formally, choose an | x [ weighting matrix W > 0 and define the criterion
J(0) = n1m,(0) W i, (6).

The GMM estimator is
6= argmgin](@).

An important ingredient is the choice of W. A simple option is W = I;, which yields a least—
squares match of the moment conditions. However, this is generally not the optimal choice of

weight matrix.

Simulated Method of Moments

In some models, the moments of interest are not available in closed form. For example, a
macroeconomic model may not permit a closed—form expression for E[¢(X,0)], such as the
correlation between output and inflation.

However, the researcher may be able to simulate the model for a given parameter 6. In that
case, one can use the Simulated Method of Moments (SMM).

Instead of matching the empirical moment m; to the theoretical moment y1 (0), we simulate

the model S times and compute the simulated moment

fi1(0)

based on those S draws from the model. We then choose 6 that minimizes the discrepancy
between the sample moment m; and the simulated moment fi; (6).
SMM thus replaces analytically intractable expectations with simulation-based approxi-

mations.
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Week 7

Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) is a fundamental method for estimating parameters
in parametric statistical models. A parametric model specifies a full probability structure for
the data, indexed by an unknown parameter vector 6 € ®. For discrete variables, the model is
described by a pmf 77(x | €), and for continuous variables by a density f(x | #). In both cases,
the goal is to use the observed sample to learn about the underlying parameter governing the
distribution.

We assume that the data {X;}” , areii.d. draws from the postulated model. Independence

implies that the joint density factorizes as

n

flxr x| 0) =] f(xi ]6),

i=1

and similarly for mass functions. This leads directly to the likelihood function,

an):ﬁf(xiwx or Ln<0>:ﬁn<xi|e>,

which treats the data as fixed and evaluates how plausible each parameter value is as a gener-
ator of the observed sample.

It is helpful to emphasize the opposite roles played by density functions and likelihood
functions. A density f(x | 6) treats 6 as fixed and quantifies how likely the data would be
under that parameter. In contrast, the likelihood L, () treats the observed sample as fixed
and asks which values of 6 make the sample most plausible. Estimation via MLE therefore
amounts to selecting the parameter that maximizes this likelihood, i.e., the parameter value
that best explains the observed data within the assumed model.

Throughout, we assume the model is correctly specified: there exists a unique 6y € © such
that f(x | 6p) coincides with the true data-generating distribution f(x). Uniqueness ensures
that there is only one parameter value consistent with the population distribution. In contrast,
under misspecification no 6 € © perfectly reproduces f(x), and the interpretation of MLE
changes accordingly.

Under correct specification, the principle of maximum likelihood provides a natural and
powerful criterion: the estimator is the value of 6 that maximizes L, (6), making the observed

sample most compatible with the assumed model.

Definition (Maximum Likelihood Estimator (MLE)). Given a parametric model with likeli-
hood function L, (0), the maximum likelihood estimator of 6 is any value 0 € © that maximizes

the likelihood:

0 = L,(60).
argmax Ly (6)
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In practice, we often attempt to find 0 by differentiating the likelihood (or log-likelihood)
with respect to 6, setting the derivative equal to zero, and solving the resulting first-order
condition. This yields a necessary condition for an interior maximum, but it is not sufficient:
one must still check that the candidate solution corresponds to a maximum (rather than a
minimum or saddle point). Moreover, for many models the first-order condition does not
admit a closed—form solution, and numerical optimization routines are required.

Typically it is analytically and numerically more convenient to work with the logarithm of
the likelihood function.

Definition (Log-likelihood function). The log-likelihood is defined as

0,(8) = log Ly (8) = ilog F(Xi]0),

where f(- | 8) denotes the density (or pmf) of X; under parameter 6.

Working with ¢, (8) is numerically more stable than working with L, (6), because the prod-
uct of many densities can become extremely small, while their logarithms add to a quantity of
reasonable magnitude. Importantly, the maximizer of ¢,(6) coincides with the maximizer of

L, (), since the logarithm is a strictly increasing transformation:

arg max L,(0) = argmeegé n(6).

Example (Normal distribution). Assume X; ESY (1, 03%), where 0p > 0 is known and we wish

to estimate the mean . The log-density for a single observation is

1 x —u)?
log f(x | 1) = —1 log(2ng) — &1,
0

so the sample log-likelihood is

1 n
En(ﬂ) - —Elog 27T0b ﬁ Z
0 i=1

Differentiating with respect to y and setting the derivative to zero gives the first-order condi-

tion
Ly (1) —ii(X'—w =0
d]z{ n 0_3 i:1 1 7
whose solution is .
|
‘u = Xn = — Z Xi.
ni3
A second derivative check,
& = <0
duz ™" g
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confirms that fi = X, indeed maximizes the log-likelihood and is therefore the MLE for y.

Example (Poisson distribution). Assume X; g Poisson(A) with pmf

e ANY

flx|A)= , x=20,12,...

x!
The log—density for a single observation is

log f(x | A) = —A + xlog A — log(x!),

so the sample log-likelihood is

1=

Xi) logA — ) log(X;!).
i=1

0u(A) = ilogf(xi [A) = —nA+ (

Il
=

The first—order condition is

d

1 n
o () ——n+X;Xi—0,

1

which yields the solution

>

|
>
3

The second derivative,

d? 1

n

i=1
shows that A = X, is indeed a maximizer, and thus the MLE for the Poisson parameter A.

Example (Linear model with Gaussian errors). Assume a simple linear regression with a single

regressor X; and no intercept,

Yi=BXi+e, e S N(0,02),

where (Tg is known. Conditional on X; = x;, the density of Y; is

(vi — Bxi)?

1
f(]/i!xizﬁ):exp< ),
\/ 2703 205
so that the conditional log—density is

(vi — ﬁxi)Z.

1
log f(yi | xi, B) = —Elog(ZW(%) BT
0
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The sample log-likelihood is therefore

%il/ BX;)?

,(B) = —flog 271(70 o
0

i=1

Differentiating with respect to B and setting the derivative equal to zero gives the first-order

condition
L 0(B) = 5 X (% - ) = 0
d‘B n 0_5 = 1 1 1 -
Solving for B yields the MLE
n T XY
:B = 71 }221 7

which coincides with the usual least-squares estimator in this simple regression setup.

Likelihood Analog Principle

To understand why MLE behaves well in large samples, it is useful to introduce the expected

log—density (or population log-likelihood).

Definition (Expected log—density). For a given parameter value 6 € ©, define

((0) :=E[log f(X|0)],
where the expectation is taken under the true data—generating distribution.

Theorem 9 (Likelihood Analog Principle; Hansen, Thm. 10.2). If the model is correctly specified,
there exists a unique 6y € © such that f(x | 6y) equals the true density f(x), and this true parameter
maximizes the expected log—density:
6o = £(6).
o = argmax {(6)
Why is this insightful?

e The sample analog of /() is the average log-likelihood

- 14
10(0) ==~ £a(0) = - )" log f(X; | 0),
i=1
which has the same maximizer as the full log-likelihood ¢, (#). Thus the MLE § maxi-
mizes £, (6).

e In parallel, at the population level § maximizes £(6). Hence we can view 0 as the sam-
ple analog of 0y: the estimator solves in the sample the same optimization problem that

defines the true parameter in the population, with expectations replaced by averages.
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Invariance Property

A particularly convenient feature of maximum likelihood is its invariance under smooth trans-

formations of the parameter.

Theorem 10 (Invariance of the MLE; Hansen, Thm. 10.3). Let 0 be the MLE of 0 € R™. For any
transformation h : R™ — R and B = h(8), the MLE of B is

A

B =h(6).

Proof. TBW. O

Score, Hessian, and Information

To analyze the large-sample behavior of maximum likelihood estimators, it is crucial to study
how the log-likelihood reacts to local perturbations in the parameter. This sensitivity is cap-
tured by the score and the curvature of the log-likelihood, encoded in the Hessian. Throughout

this section we assume that the density f(x | ) is differentiable with respect to 6.

Likelihood Score. The (sample) score is the gradient of the log-likelihood,

$(0) = 25 £n(0) = é;elogf(xi 1 6).

When 6 is a vector, S,(0) is a vector of partial derivatives. The score measures the direction
and magnitude in which the log-likelihood increases most steeply. For any interior maximum
of the log-likelihood, the score must vanish: S, () = 0.

Likelihood Hessian. The curvature of the log-likelihood is summarized by the (negative)

Hessian,
82 n
Hul6) = ~ 5555 ¢ ; eaef log f(Xi 19).

This matrix quantifies how quickly the log-likelihood bends away from its maximum. A
sharply curved log-likelihood corresponds to a large Hessian and therefore more precise esti-
mation.

To move from sample objects to population analogs, we introduce the efficient score, evalu-

ated at the true parameter value.

Efficient Score. For a single observation X, the efficient score at 6 is

0
S:= %logf(X | 6).
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Under correct specification and standard regularity conditions, the efficient score plays a cen-

tral role in efficiency bounds.

Theorem 11 (Hansen, Thm. 10.40). Assume the model is correctly specified, the support of X does not

depend on 6, and 6y lies in the interior of ®. Then the efficient score satisfies
E(S) =0.
Proof. TBW. O

Fisher Information. The Fisher information is the variance of the efficient score,
Ty = E(SS').

It measures the amount of information about 6 contained in a single observation and provides

the benchmark for efficiency.

Expected Hessian. The population counterpart of the Hessian is defined as

82

o= 5000

2(60),
where £(60) denotes the expected log—density.

Theorem 12 (Hansen, Thm. 10.5; Information Matrix Equality). Assume the model is correctly

specified and the support of X does not depend on 6. Then
I9 = HB/

where
2

d
Ty :=Eo[S(X,0)S(X,0)],  Hgi=—Ey|5oo5log f(X [ 0)].

This equality shows that, under correct specification, the curvature of the log-likelihood

and the variability of the score encode the same information.
Proof. TBW. O

Theorem 13 (Hansen, Thm. 10.6; Cramér—Rao Lower Bound). Assume the model is correctly spec-
ified, the support of X does not depend on 6, and 6 lies in the interior of ©. If @ is an unbiased estimator
of 0, then

var(d) > (nZy) .

Proof. TBW. O

Definition (Hansen, Def. 10.8). The Cramér-Rao Lower Bound (CRLB) is (nZy) .
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Definition (Hansen, Def. 10.9). An unbiased estimator 6 is Cramér—Rao efficient if it attains the

lower bound:
var(f) = (nZy) .

This yields a fundamental conclusion: within the class of unbiased estimators, the minimal
achievable variance is determined by the inverse Fisher information scaled by . Fisher infor-

mation therefore provides the natural limit for the precision of unbiased estimation.

Consistency

To study the consistency of the MLE, it is convenient to normalize the log-likelihood by the

sample size and work with the average log-likelihood

2(6) = L 1,(0) = iélogﬂxi 10)

If X; arei.i.d. and log f(X; | 0) is a measurable transformation of X;, then log f(X; | 0) are also
ii.d. By the Weak Law of Large Numbers,

7,(0) L 0(6) := Ellog f(X | 6)] for each fixed 6.

Recall from the likelihood analog principle that, under correct specification, the true parameter
0o maximizes the population objective £(8). The MLE § maximizes the sample objective 7, (6).
A natural question is therefore whether the maximizer of ¢, converges to the maximizer of ¢,

i.e. whether § — p Bo. The next theorem gives sufficient conditions.
Theorem 14 (Consistency of the MLE; Hansen, Thm. 10.8). Assume the following:
1. X;areiid.

2. E(log f(X | 0)) < G(X) for some integrable function G, with E(G(X)) < oo.

o8}

. log f(X | ) is continuous in 0 almost everywhere.
4. The parameter space © is compact.
5. Forall 0 # 6y, we have £(0) < £(6)).

Then the maximum likelihood estimator is consistent:
0L 0,

Remark (Role of the assumptions). Assumption (ii) guarantees that the log—density has a finite
expectation, which is needed to apply the WLLN to log f(X; | 0). Assumption (iii), combined
with (ii) and compactness of ® in (iv), allows one to strengthen the pointwise LLN into a

uniform law of large numbers for ¢, (0). Finally, (v) is an identification assumption: it ensures
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that the population objective £(6) has a unique maximizer at 6, so that the maximizer of the
sample objective must converge to this unique population maximizer.
Asymptotic Normality

The previous result establishes consistency. To obtain distributional approximations for infer-
ence, we impose stronger smoothness conditions on the likelihood. The next theorem summa-

rizes the classical result.
Theorem 15 (10.9 in Hansen textbook). Assume the conditions of Theorem 10.8 hold and, in addition,
1. || 1og f(X | 6)|* < o0
2. Hg is continuous in € N
3. S log f(X | 0) is Lipschitz-continuous in N
4. Hg, >0
5. Oy lies in the interior of ®
6. I =Hp

Then

Vi (0 —6) -5 N(O, 19—01).

The conditions above provide the ingredients for a Taylor expansion of the score around
o and ensure that both the score and Hessian behave suitably for the Central Limit Theorem
to apply. The result states that the MLE is asymptotically normal with covariance equal to the

inverse of the Fisher information.

Asymptotic Cramér-Rao Efficiency

Definition (10.10 in Hansen textbook). An estimator 0 is asymptotically Cramér—Rao efficient if
Vi@ —6) -z, E(Z)=0, Var(Z)=1,".

Theorem 16 (10.10 in Hansen textbook). Under the conditions of Theorem 10.9, the MLE is asymp-
totically Cramér—Rao efficient.

This result is important because the MLE is generally not unbiased in finite samples, yet
asymptotically it achieves the smallest possible variance among all regular unbiased estima-
tors. The caveat, of course, is that efficiency is derived within a parametric model; if the model

is misspecified, alternative estimators may perform better.
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Variance Estimation

In practice, the asymptotic variance V. = Z, 1= Ha, !'is unknown and must be estimated.

There are two common approaches:

e Sample Hessian Estimator:

0 = ( Y. ( - 9)))1 - (—}laj;,zn@))_l.

i=

¢ QOuter Product Estimator:

0 =T,1 = (1 i <839 log f(X; | 9)) (889 log f(Xi | 9)>,>

Both estimators can be shown to be consistent for V.

-1

Variance Estimation: Poisson Example

Consider the model X; ~ Poisson(A) with pmf

e AN
Xl'! '

flxi|A) =

Then
logf(Xi | /\) =-A+X IOg)L - log(Xi!)’

so the score and curvature per observation are

X; 0> X;

0
Si(/\):ﬁlogf(xﬂ/\):—ljty, mlogf(XiIA)z—ﬁ.

The sample Hessian estimator is

n 2 -1 n ) -1
0 = (1): (—a‘}zlogf(xi | ﬁ))) - (Tf) .

Since A = X,,,

and therefore
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Week 8

Evaluating Estimators

Different estimation procedures may produce different estimators for the same parameter.
Sometimes they coincide, but often they do not. To compare them, it is useful to develop
criteria that assess the statistical quality of an estimator.

In what follows, we review the standard properties used to evaluate estimators and illus-
trate how these criteria apply in common examples.

Bias

Definition (Bias). Let W be an estimator of a parameter 6. The bias of W is
Biasg(W) = Eq(W) — 6.

If Biasp(W) = O for all 0, the estimator is called unbiased. Unbiasedness is often desirable
because it means the estimator hits the true parameter on average. However, an unbiased esti-
mator is not necessarily preferable: in many situations we are willing to sacrifice unbiasedness

for lower variance.

Theorem 17 (6.2 in Hansen). If § is an unbiased estimator of 0, then

A

B=ab+0b
is an unbiased estimator of p = af + b.

Proof. TBW. O

Note. Nonlinear transformations usually do not preserve unbiasedness.

BLUE: Best Linear Unbiased Estimator

Theorem 18 (6.3 in Hansen; BLUE). If 0 < oo, the sample mean X, has the lowest variance among

all linear unbiased estimators of y.

Proof. TBW. O

Mean Squared Error

Definition (Mean Squared Error). The mean squared error (MSE) of an estimator W of 6 is

MSEq (W) = Eq[(W — 0)?].
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The MSE is the average squared deviation between W and the true parameter 6. It decomposes

Eg(W — )% = Varg(W) + (Eg(W) — 8)” = Varg(W) + Biasg(W)>2.

This decomposition shows that the MSE combines two aspects of estimation quality:
* variance (precision), and
* bias (accuracy).

Because these components may trade off against one another, an estimator with small bias but
large variance may be worse in MSE than a biased estimator with lower variance.

For unbiased estimators, the decomposition reduces to
MSEy(W) = Varyg(W).
Example (Normal MSE). Let Xy, ..., X, be i.i.d. N ( U, 02). The statistics X and S? are unbiased:
E(X)=pu,  E(S*) =%

Hence their MSEs equal their variances:

2
E(X — u)* = Var(X) = %,

204

2 22 _ 2y _
E(S° — 0%)” = Var(5%) PR

Example (Normal MSE — MLE for ¢?). Consider instead the MLE for ¢

Its expectation is

Var(06?) = Var (nn—lsz> = (n ; 1>2Va1‘(52) = M

Combining bias and variance gives
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the MLE for 0 has a smaller MSE than S?, even though it is biased.

Best Unbiased Estimators

The idea of identifying a “best” estimator in terms of mean squared error (MSE) is appealing,
but it is only feasible once we restrict attention to a particular class of estimators. A natural
restriction is the class of unbiased estimators. Within this class, comparing two estimators re-
duces to comparing their variances: the unbiased estimator with the smallest variance is then
the best.

Definition (Best Unbiased Estimator; UMVUE). An estimator W* is a best unbiased estimator of
a function 7(6) if:
Eg(W*) = 7(0) forall6,

and for any other unbiased estimator W satisfying [Eo(W) = 7(6), we have
Vary(W*) < Vary(W) forallé.

Such an estimator is also called a uniform minimum variance unbiased estimator (UMVUE) of T(8).

Note. A UMVUE may not exist, and when it exists it may not be unique.

A useful strategy for finding the best unbiased estimator is to rely on a lower bound for
the variance of all unbiased estimators. Last week we studied the Cramér-Rao lower bound
(CRLB). Any unbiased estimator that achieves this bound must be the best unbiased estimator.

However, the CRLB may not always be attainable. In some models, no unbiased estimator
reaches the bound. A standard illustration comes from the normal distribution: the CRLB for
0? (equal to 20* /n) is attainable only when yu is known. If y is unknown, no unbiased estimator

of 02 can attain this lower bound.

Loss Functions

The mean squared error is one particular example of a loss function. Loss functions are part of
the broader framework of decision theory.

After observing data X = x, drawn from f(x | 6) with 6 € ©, the statistician chooses an
action a in an action space A. In point estimation, the action represents the proposed estimate.
The loss incurred from reporting a2 when the true parameter is 6 is denoted L(6, a), and should
be small whenever a is close to 6.

Common loss functions include:

¢ Absolute error loss:
L(6,a) = |a—6|.

* Squared error loss:
L(6,a) = (a—0)%
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More general asymmetric loss functions may penalize overestimation and underestimation

differently.

Risk Functions

In decision-theoretic analysis, the quality of an estimator is described by its risk function:
R(0,6) =Eo[L(6,6(X))].

For a given 6, R(0, ) is the expected loss incurred if estimator J is used.

We prefer estimator d; to & if
R(6,61) < R(8,67) forall 0 € ©.

For squared error loss, the risk coincides with the mean squared error:

R(6,8) = Ep[(8(X) — 0)%] = Vary(6(X)) + (Biasg(6(X)))’.

2

Example (Stein’s Loss). Assume Xj, ..., X, are i.i.d. with finite variance ¢~. Stein’s loss for

estimating ¢? is

L(c?,a) = % —1 —log(%) .

Consider estimators of the form 6, = bS?, where S? is the usual unbiased estimator of variance.

Then the risk under Stein’s loss is

bs? bS? s2 bs?

Since E(S%/¢?) =1,
2
R(¢?,6,) =b—1logh—1—E [log(i)} .
The expression is minimized at b = 1, so §; = S? is optimal among estimators of the form bS2.

Bayes Risk

From Week 7, recall that a Bayesian framework evaluates estimators by averaging over the
posterior distribution. Given a prior 77(6) and data X, the posterior is 77(6 | X). The Bayes risk

of an estimator T is the expected posterior loss:
R(T | X) :/ (T, 0) 72(6 | X) db.
S

For a given loss function ¢(T, 6), the optimal Bayes estimator is the one that minimizes R(T |
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Example (7.3.28). With squared error loss,
/ (0 —a) (0] X)do =E[(0 —a)? | X].
c)

This is minimized at 2 = E(6 | X), the posterior mean. Thus, under squared error loss, the

Bayes estimator is the posterior expectation.
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Week 9: Linear Regression

Introduction to Simple Linear Regression

In simple linear regression, we study the functional dependence of one variable on another.

Given observed pairs (X, Y;), the model postulates a linear relationship of the form
Yi = o+ BXi+¢,

where:

* Y] is the response (dependent) variable,

X; is the predictor (independent) variable,

* «is an unknown intercept,

B is an unknown slope,

* ¢; is a disturbance term with E[e;] = 0.
Population Regression Function
The expected value of Y; conditional on X; = x; is
IE(YZ | Xi = xi) = 0c+ﬁx,-.

This expression is known as the population regression function. It represents the conditional
expectation of Y given X = x, under the assumption that the relationship between Y and X is

linear in the parameters.

Summarizing Sample Data

Given sample data (x1,y1), ..., (Xn, ¥ ), we define the sample means

=i

S|
S|

Z X;, y= Z Yi-
i=1 i=1

We also define the sums of squares:

Sxx = (xi - X)2/ Syy = Z(yz - ]?)2/
=1 1

1

and the cross-product sum
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Least Squares Estimation

A residual e; measures the vertical distance between each data point (x;, y;) and the fitted line:

ei = yi — (& + px;).

The sum of squared residuals (SSR) is

SSR = ie? = i(yi - (0&+,Bxi))2.

Il
—_
Il
—

The least squares estimators of « and f minimize SSR with respect to both parameters.

Derivative with Respect to the Intercept

The first-order condition with respect to « is:

PR — 2 (i~ (wt px) =0,

i=1

Simplifying,

which yields

Derivative with Respect to the Slope

The first-order condition with respect to f8 is:

S = 2Ll pr) =0

Substituting & = i — px and simplifying gives

_ L= %)y —§) _ Swy

p

Z?:l(xi - X)2 Sxx'
Least Squares Estimates
Putting everything together:
ﬁ = 57/ & = ]/ - IB X.
XX
These coefficients define the fitted line §; = & + Bxi, which minimizes the sum of squared

residuals.
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Residuals and Their Properties

Residuals are defined as

ei:yi—&—ﬁxi.

Two key properties follow directly from the first-order conditions:

=
A\
Il
L
g
—~
2
|
=i
N—
D
Il
()

i=1 i=1

These identities express that the residuals sum to zero and are orthogonal to the regressor

(after centering).

Three Sums of Squares

To evaluate the performance of least squares, we compare the sum of squared residuals with
the total variation in y;.
Starting from the fitted model
yi =&+ Bxi+e,

we subtract  and use & = § — B to obtain
yi—§=pxi— %) +ei

This decomposition implies

1

(-9 =P L (- 9 Lk

i=1

We define:
SST = SSE + SSR,

where:
¢ SST: Total Sum of Squares,
¢ SSE: Explained Sum of Squares,

® SSR: Sum of Squared Residuals.

Coefficient of Determination R?

The coefficient of determination measures the proportion of variance explained by the model:

SSE _ B yia(xi—x)?

R% = )
SST Y (yi —9)?
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Alternatively, using Sy, and Syy:

R (T =Dy — 7))
(T (v = 02) (T (v = 9)7)

Another common expression is:

>
Y€

RE=1-_==1%
Yisi(yi —9)?

This makes clear that 0 < R? < 1, and that minimizing the sum of squared residuals is
equivalent to maximizing R>.
Interpretation of the Least Squares Line

If x is the predictor and y is the response, the least squares line yields predictions of y based on
X.

The fitted line minimizes the total vertical distance between observed points and the re-
gression line.

Importantly, least squares is primarily a method for fitting; without further assumptions,
it does not automatically provide statistical inference such as confidence intervals, hypothesis
testing, or causal interpretation.
= The method provides a best-fitting line for the data.
= Additional assumptions are needed for inference.

Least Squares in Matrix Form

The linear model can be written compactly as
y=Xp+e
and the residual vector as
e=1vy— Xp.
Matrix dimensions:
¢ y: n x 1 vector of observations,
¢ X:n X k matrix of predictors,
* B: k x 1 vector of parameters,

e ¢: n x 1 vector of residuals.
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Least Squares Criterion

The sum of squared residuals in matrix form is
S(B) =ce=(y—XB)(y— XB) =y'y — yXp— B X'y + BX'XP.

Taking the derivative with respect to j:

asa f{f ) —2X'y+2X'Xp = 0.

Solving:
X'XB=Xy, B=(XX)"Xy.

This is the least squares estimator of j.

Note: For (X'X) ~1 to exist, X must have full column rank k, which requires nn > k.

Least Squares as a Projection

The least squares estimator can be viewed as an orthogonal projection of the data vector y € R"

onto the column space of X, denoted by
S(X) = {Xa:a € R},

Intuitively, S(X) is the set of all linear combinations of the regressors: every element of S(X)
is a “candidate fitted value” vector that one can obtain by choosing some coefficient vector a.

We know that the least squares estimator satisfies
p=(XX)"'Xy,  §=Xp
Substituting the expression for 3, we obtain
7= X(X'X)"'Xy.
This shows that the fitted values can be written as a linear transformation of y:
y=Hy,

where
H=X(X'X)"'x

is called the hat matrix or projection matrix onto S(X).
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Residual Vector and Annihilator Matrix

The residual vector is
e=y-Xp=y-7.
Using the expression for j, we can rewrite this as
e=y— X(X'X) X'y = (I-X(X'X)"1X)y.
Define the annihilator matrix M by
M=1-XXX)"'Xx"
Then
e = My.

The terminology “annihilator” reflects that M kills (annihilates) the component of any vector
lying in S(X): it removes the part that is explainable by X, leaving only the orthogonal residual
part.
Algebraic Properties of M
The matrix M has the following properties:

e Symmetric: M = M'.

e Idempotent: M? = M.

Idempotence captures the idea of a projection: once a vector has been projected, projecting it
again does nothing.
Moreover,
MX =0,

so the columns of X lie in the null space of M. This means that the residuals are orthogonal to
the space spanned by X.
Using e = My and MX = 0, we have

X'e = X'My =0,

which expresses the familiar least squares normal equations: each regressor is orthogonal to
the residual vector. Geometrically, the regression plane S(X) and the residual vector e meet at

a right angle.
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Properties of the Projection Matrix and Residuals

We have already defined the hat matrix
H=X(X'X)"'X/,

sothat = Hyande = My with M =1 — H.

The matrix H satisfies:

H = H’ (symmetric),

H? = H (idempotent),

H+M=1],

HM = MH = 0.
Thus H and M are complementary orthogonal projections:
e H projects onto S(X),
* M projects onto S*(X), the subspace orthogonal to S(X).

Using H + M = I, we can decompose y as
y=Hy+My=y9y+e.

Because H and M project onto orthogonal subspaces, we also have

which means that the fitted values and the residuals are orthogonal vectors in IR".

Geometric Interpretation of Least Squares
The least squares method admits a clear geometric interpretation in IR":
¢ Think of the data vector y as a point in R".

* The subspace S(X), spanned by the columns of X, is the set of all linear combinations of
the regressors. Any vector Xa in S(X) represents what the data would look like if it were

perfectly explained by X with coefficients a.

e The residual vector is e = y — J, where § € S(X). The length squared of the residual is
de = |le]?,
the squared distance from y to the regression subspace S(X).
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The least squares estimator chooses § = X} in such a way that ¢’e is minimized. Geometri-

cally, this means:
e 7 is the orthogonal projection of y onto S(X);
* ¢is the component of y lying in the orthogonal complement S+ (X).

Let
S(X)={Xa:aeR}, SHX)={zecR":X'z=0}

Then:
e H projects any y onto S(X): = Hy € S(X);
* M projects any y onto S*(X): e = My € S+ (X);

® The decomposition
y=9+e,  9€S(X), eeSs(X),

expresses y as the sum of two orthogonal components: the explained part and the unex-

plained (residual) part.

Because of orthogonality, we have a Pythagorean identity:
lyl* = 11911 + llell?,
which, after suitable centering, underlies the decomposition
SST = SSE + SSR.

Thus the usual variance decomposition in regression is just a geometric statement about the
lengths of orthogonal vectors in R".
The following picture gives a schematic geometric interpretation of least squares as an

orthogonal projection of y onto S(X):

<>

Figure 2: Geometric view: y decomposed into § € S(X) and e € S+ (X).
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Derivation of R?

Definition of R2. The coefficient of determination R?> measures the fraction of the total sample
variation in y that is explained by the model.

In matrix form, the total sample variation can be written as

SST =y’ Ny,
where
N=1I- 111’
n

is idempotent and 1 is the n x 1 vector of ones. Note that Ny has components y; — 7, so
YNy = X (vi = 9)%

Decomposition of total variation (§ST). Using the regression decomposition
y=Xp+e=g+e

we obtain
YNy = BX'NXB +¢e,

because ' X'Ne = 0 (since Ne = e and X’e = 0). We then define
e SSE = B'X'NXp: Sum of Squares Explained,
* SSR = ¢’e: Sum of Squares Residual.

Hence,
SST = SSE + SSR.

Coefficient of Determination R? and Adjusted R?

Definition of R2. Using the decomposition above,

SST y'Ny YNy = SST’

R2 _ SSE _ BX'NXB [ e _  SSR

Interpretation.
* R? represents the proportion of the variance in y that is explained by the model.
e 0 < R?<1,with higher values indicating a better in-sample fit.

Adjusted R?. To account for the number of regressors k and penalize overfitting, we define

the adjusted coefficient of determination:

R? 1 ee/(n—k) 1 n—1

yY'Ny/(n—1) n—k

(1— R?).
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Adjusted R? is therefore more appropriate for comparing models with different numbers of
predictors, since it increases only when the added variables improve the fit sufficiently after
accounting for the loss of degrees of freedom.

Frisch—-Waugh-Lovell (FWL) Theorem

There are several additional results that can be derived without imposing further statistical
assumptions on the error term. A key one in econometrics is the Frisch-Waugh—Lovell (FWL)
Theorem, which characterizes how OLS behaves when we include control variables.

Linear Regression Model and Partition of Regressors

Consider the linear regression model

y=X1p1+ Xof2 +¢

where:

* y: dependent variable (an n x 1 vector);

* Xj: regressors of interest;

e X5: control variables;

® ¢ error term.
We can think of X = [X; X3] as the full regressor matrix, partitioned into variables whose
coefficients we care about directly (81) and variables that we include only as controls (8>).
Key Statement of the FWL Theorem

Instead of estimating the full system at once, the OLS coefficient 31 can be obtained by the

following three-step procedure:
1. Regress y on X, and obtain the residuals 7.
2. Regress each column of X; on X, and obtain the residuals X;.
3. Regress i on X; to obtain f;.
Why does this work?
¢ The FWL theorem uses the orthogonality properties of OLS residuals.

* By “partialling out” X, from both y and X;, we remove the influence of X5, isolating the

remaining linear relationship between y and Xj.

¢ The result holds because OLS minimizes the residual sum of squares and enforces or-

thogonality between regressors and residuals.
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Algebraic Proof of the FWL Theorem

Let X = [X; X»] and consider
y = X1B1 + Xof2 + &

Define
P = Xp(X5X2) 1X),  My=1-D,

so that P, projects onto the column space of X, and M, projects onto its orthogonal comple-
ment.

The OLS first-order conditions for the full model are

which, in block form, are equivalent to
Xi(y — X1p1 — Xop2) =0,
X)(y — X1p1 — Xop2) = 0.

Now pre-multiply the first equation by M,:
XiMa(y — X1p1 — Xapa) = X1(I— P2)(y — Xap1 — Xap2) = 0.

Using linearity and the fact that M> X, = 0 (since M; annihilates the space spanned by X»), we
obtain
XiMyy — XiMaX1p1 =0 =  X;MyXiB1 = X{May. (%)

Define
X; = MyXy, 7 := May.

Since M, is symmetric, M, = M, we can rewrite (*) as

X1 X181 = X7
These are exactly the normal equations of the regression of i on X;. Therefore, the coefficient
obtained from the full regression on [X; X;| coincides with the coefficient from the regression
of residualized y on residualized Xj.

Implications and Applications

The FWL theorem is widely used in applied econometrics, particularly for understanding

causal relationships and for interpreting regression coefficients with controls.

* Suppose you are interested in the relationship between y and X;, but you know that there

is a set of important control variables X>.
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¢ Instead of plotting y against X, you can:

1. residualize y with respect to X», obtaining ¥,
2. residualize X; with respect to X5, obtaining Xy,

3. plot 7 against X;.

This plot visualizes the “partialled-out” relationship, i.e. the part of y and X; that remains

after removing linear effects of X».

¢ For instance, one might plot residualized wages (after controlling for age, gender, race,
etc.) against residualized years of education: the slope in this plot corresponds to the

education coefficient in the full regression.

OLS: from Line Fitting to Statistics

Up to now, least squares has been introduced as a purely geometric or algebraic line-fitting
procedure: choose  to minimize the sum of squared residuals and obtain the projection § =
XB.

To turn this into a statistical procedure, we now add assumptions about the data-generating
process and interpret OLS as an estimator of an underlying population parameter B. In partic-

ular, we show how OLS arises as:
¢ a method of moments (MoM) estimator,
¢ an unbiased estimator under suitable exogeneity assumptions,

* an estimator with a well-defined (finite-sample or asymptotic) variance, which can be

computed under homoskedasticity or in a heteroskedasticity-robust way:.

OLS as a Method of Moments Estimator
Moment Conditions and Estimator

Ordinary Least Squares (OLS) can be interpreted as a method of moments estimator.
Assume the linear model
y=Xp+e

and impose the moment (exogeneity) condition
E[Xe)=0 <= E[X'(y—Xp)]=0.

Intuitively, this assumption says that the regressors X are uncorrelated with the error term ¢;
there is no systematic relationship between the regressors and the part of y left unexplained by
the model.
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The method of moments idea is to replace the population expectation by its sample analog

and then solve for B. The sample analog of the moment condition is

LY Xy X[p) =0 = X(y-Xp)=0

i=1

Solving these equations yields
B=(X'X)"'XYy,

which is exactly the OLS estimator. Thus OLS is the method of moments estimator associated
with the (vector) moment condition E[X'(y — XB)] = 0.

Unbiasedness of OLS

The OLS estimator can be written as
B=(X'X)"1X'y =B+ (X'X) X

To study its expectation, it is convenient to condition on X and then apply the iterated law of

expectations:
E[f] =E[E[g | X]].

Substituting the expression for j,
E[B | X] =B+ (X'X)'X'Ele | X].
Assume exogeneity: E[e | X] = 0. Then
E[B|X]=p = E[f]=5
Hence OLS is unbiased under the conditional mean independence assumption Ele | X] = 0.

Variance of the OLS Estimator

We now derive the variance of A. Using the law of total variance,
Var() = E[Var(§ | X)] + Var (E[} | X)),
From the previous step, E[ | X] = , so
Var (E[f | X]) = 0
and

Var(B) = E[ Var(B | X))
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Using B = B + (X'X) "' X'e, we obtain

Var(B | X) = (X'X) "1 X' Var(e | X)X(X'X) L.
Homoskedasticity. Suppose
Var(e | X) = 0?1

for some scalar ¢? (errors have constant variance and are uncorrelated across observations).
Then
Var(B | X) = c*(X'X) 7},

and consequently
Var(B) = 2 E[(X'X) 1]

In practice, we estimate 02 by the residual-based estimator

!
s% = ee
n—k

and use
Var(p) = $2(x'X) !

as the estimated covariance matrix under homoskedasticity.

Heteroskedasticity. More generally, we may have
Var(e | X) = Q,

where () is an 1 X n covariance matrix that allows for heteroskedasticity (and possibly corre-

lation) across observations. Then
Var(B | X) = (X'X)7'X'QX(X'X) .
This expression motivates heteroskedasticity-robust variance estimators.

OLS as a Method of Moments Estimator (Sandwich Variance)

Finally, we connect OLS to the general method of moments / GMM variance formula.
Recall: for a just-identified MoM/GMM estimator  with moment function m(Z;,6) € R¥,

the asymptotic variance can be written as

where

S|
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For OLS, take Z; = (X;,y;) and

m(Xi,yi, B) = Xi(yi — XiB),

so that the moment condition E[m (X, y;, )] = 0 is exactly E[X;(y; — X/B)] = 0.
With residuals e; = y; — X!, we have

The Jacobian with respect to B is

SO
Q 2 XX, — X/X
i=1 o .

Substituting these into the GMM variance formula yields the heteroskedasticity-robust

(sandwich) covariance estimator:

v 1 / - 1 - 2 / 1 / -
V= (-xX Yy exix!) (=x'X) .
n ni= n

This expression coincides with the familiar Eicker-White heteroskedasticity-robust vari-
ance estimator for OLS: it replaces 2] with an empirical estimate of Q constructed from the

squared residuals e7 and the regressors X;.
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