
ECON 671 — Metrics

Expanded Notes

Week 5

Motivation: Why Asymptotic Statistics?

In many problems we do not know the exact finite-sample distribution of the statistic we want

to use. A classical example is the one-sample t-statistic

Tn =

√
n (X̄n − µ0)

Sn
, S2

n =
1

n − 1

n

∑
i=1

(Xi − X̄n)
2,

which is exactly tn−1 only under Gaussian sampling. When the data are merely i.i.d. with mean

µ and variance σ2 < ∞, exact distributions are unavailable, yet large-sample approximations

make valid inference possible.

Recall. Central Limit Theorem (CLT). If X1, . . . , Xn are i.i.d. with mean µ and variance σ2 < ∞,

then
√

n (X̄n − µ) ⇒ N (0, σ2).

Slutsky’s theorem. If Yn ⇒ Y and Zn
p→ c ̸= 0, then Yn/Zn ⇒ Y/c.

Applying CLT and Slutsky, we obtain

Tn ⇒ N (0, 1),

because Sn
p→ σ. Hence the usual t-test and confidence intervals for µ remain approximately

valid without Gaussianity when n is large:

Reject H0 : µ = µ0 if |Tn| > z1−α/2, µ ∈
[

X̄n ± z1−α/2
Sn√

n

]
.

More broadly, asymptotic statistics provides a toolkit (LLN/CLT, Continuous Mapping, Slut-

sky, Delta method, and likelihood-based approximations) to:

• justify procedures when exact finite-sample laws are intractable;

• obtain large-sample distributions of estimators and test statistics;
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• derive standard errors and confidence sets under weak regularity (e.g., non-Gaussian data).

Convergence concepts (vectors in Rk)

We model a random vector X = (X1, . . . , Xk) as a measurable map from a probability space to

(Rk,Bk). In simpler words, it is a vector of real random variables. Its (joint) distribution function

is

FX(x) := P(X1 ≤ x1, . . . , Xk ≤ xk), x = (x1, . . . , xk) ∈ Rk.

Definition (Three modes of convergence). Let Xn, X be Rk-valued random vectors.

(i) Convergence in distribution (weak convergence). We write Xn ⇝ X or Xn
d−→ X if any

(hence all) of the following hold:

(a) (Portmanteau; v.d.V. Thm. 2.1) E f (Xn) → E f (X) for every bounded continuous f : Rk →
R.

(b) For all continuity sets A of the law of X, P(Xn ∈ A) → P(X ∈ A). Alternatively, the

sequence of random vectors Xn converges in distribution to a random vector X if:

P(Xn ≤ x) → P(X ≤ x)

for every x at which the limit distribution function x → P(X ≤ x) is continuous.

(c) If k = 1, then FXn(x) → FX(x) for every continuity point x of FX.

If X has distribution L, we also write Xn ⇝ L.

(ii) Convergence in probability. We write Xn
p−→ X if

∀ε > 0 : P(∥Xn − X∥ > ε) → 0.

(iii) Almost sure convergence. We write Xn
a.s.−→ X if

P
(

lim
n→∞

Xn = X
)
= 1.

Proposition (Hierarchy). Almost sure convergence implies convergence in probability, and conver-

gence in probability implies convergence in distribution:

Xn
a.s.−→ X ⇒ Xn

p−→ X ⇒ Xn ⇒ X.

If X is a constant c ∈ Rk, then Xn ⇒ c is equivalent to Xn
p−→ c.

Remark (Why we care). Weak convergence is the language of large-sample approximations:

CLTs give Xn ⇒ X for suitable X (typically Gaussian), and the Portmanteau/continuous-

mapping tools propagate limits through statistics. Almost sure and in-probability convergence

control consistency of estimators.
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Convergence in distribution

Example (Convergence in distribution). Let Xn ∼ U(0, 1 + 1
n ). Its cdf is

Fn(x) =


0, x < 0,

x
1 + 1/n

, 0 ≤ x ≤ 1 + 1
n ,

1, x > 1 + 1
n ,

F(x) =


0, x < 0,

x, 0 ≤ x ≤ 1,

1, x > 1,

so Fn(x) → F(x) for every continuity point of F, hence Xn ⇝ U(0, 1).

0 1 1 + 1/n

0

0.5

1

x

F(
·)

F(x)
Fn(x) with n = 5

Fn(x) with n = 10

Figure 1: Convergence of Fn (dashed) to F (solid) for Xn ∼ U(0, 1 + 1
n ).
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Maxima of uniforms: weak convergence and exponential limit

Example (Convergence in distribution with maxima of uniforms and exponential limit). Why is this example

useful?

Let U1, . . . , Un
i.i.d.∼ U(0, 1) and define the sample maximum

Mn := max{U1, . . . , Un}.

Proposition (Distribution of Mn and degeneracy). For 0 ≤ x ≤ 1,

FMn (x) = P(Mn ≤ x) = P(U1 ≤ x, . . . , Un ≤ x) =
n

∏
i=1

P(Ui ≤ x) = xn.

Hence fMn (x) = nxn−11(0,1)(x) (i.e., Mn ∼ Beta(n, 1)), and Mn
a.s.−→ 1; without rescaling the limit is degenerate at 1.

Definition (Rescaled gap). To obtain a non-degenerate limit, zoom in at the upper endpoint by the natural 1/n

scale:

Yn := n (1 − Mn) ∈ [0, n].

Theorem 1 (Yn converges to an exponential law). For every y ≥ 0,

FYn (y) = P(Yn ≤ y) = P
(

Mn ≥ 1 − y
n

)
= 1 − P

(
Mn ≤ 1 − y

n

)
= 1 −

(
1 − y

n

)n
−→ 1 − e−y.

Therefore Yn ⇒ Exp(1).

Proof. The display above shows pointwise convergence of the cdf to y 7→ 1 − e−y on [0, ∞) and 0 on (−∞, 0).

This is the cdf of Exp(1), so Yn ⇒ Exp(1) by the cdf characterization of weak convergence.

Remark (Two complementary intuitions).

1. Rare-events/Poisson heuristic. For a fixed threshold 1 − y/n, P(Ui > 1 − y/n) = y/n. The number of ex-

ceedances among n trials is Bin(n, y/n) ⇒ Poisson(y). The event {Mn ≤ 1− y/n} means “no exceedance”,

whose probability tends to e−y; by complement, FYn (y) → 1 − e−y.

2. Density transformation. With x = 1 − y/n,

fYn (y) = fMn (1 − y/n) · 1
n
= n

(
1 − y

n

)n−1
· 1

n
→ e−y 1(0,∞)(y).

Moreover E[Yn] = n
(

1 − n
n+1

)
= n

n+1 → 1, consistent with Exp(1).

Remark (What this example teaches).

• For distributions with a finite upper endpoint, maxima stick to the boundary at rate 1/n.

• After the correct rescaling, the gap to the endpoint has a non-degenerate limit; here it is exponential with

mean 1 (a Weibull-type extreme-value limit).

• Re-scaling is the core idea of asymptotic approximations: without it, limits are often trivial.

Convergence in probability (vectors in Rk)

Definition (Metric formulation). Let d be any metric on Rk that induces the usual topology

(e.g., the Euclidean norm). A sequence of random vectors Xn converges in probability to X if

∀ε > 0 : P
(
d(Xn, X) > ε

)
−→ 0.
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We write Xn
p−→ X, or equivalently d(Xn, X)

p−→ 0.

Remark (Independence of the metric and componentwise equivalence). On Rk, the choice of

norm is immaterial. In particular,

Xn
p−→ X ⇐⇒ ∥Xn − X∥2

p−→ 0 ⇐⇒ Xn,j
p−→ Xj for all j = 1, . . . , k,

where the last equivalence follows by the union bound.

Remark (Stability properties). If Xn
p−→ X and g : Rk →Rm is continuous, then g(Xn)

p−→ g(X)

(continuous mapping). If Xn
p−→ X and Yn

p−→ c ̸= 0, then Xn/Yn
p−→ X/c (Slutsky). If X is a

constant c, then Xn
p−→ c is equivalent to Xn ⇒ c.

Theorem 2 (Weak Law of Large Numbers (WLLN)). Let X1, X2, . . . be i.i.d. with EXi = µ and

Var(Xi) = σ2 < ∞, and set X̄n = 1
n ∑n

i=1 Xi. Then, for every ε > 0,

P
(
|X̄n − µ| > ε

)
−→ 0, i.e., X̄n

p−→ µ.

Proof. TBD.

Example (Sample proportion). If Xi ∼ Bernoulli(p) i.i.d., then p̂n = X̄n and the WLLN yields

p̂n
p−→ p.

Example (Consistency of the sample variance via Chebyshev). Let X1, X2, . . . be i.i.d. with

E(Xi) = µ and Var(Xi) = σ2 < ∞, and define the sample variance

S2
n =

1
n − 1

n

∑
i=1

(Xi − X̄n)
2.

By Chebyshev’s inequality, for any ε > 0,

P
(
|S2

n − σ2| ≥ ε
)
≤

E
[
(S2

n − σ2)2]
ε2 =

Var(S2
n)

ε2 .

Hence, a sufficient condition for S2
n

p−→ σ2 is that Var(S2
n) → 0 as n → ∞.

Remark. (Verification, optional.) Under additional moment conditions (e.g., a finite fourth

moment), one can check that Var(S2
n) = O(1/n) → 0.

Remark (What to remember). Convergence in probability is the mode used to formalize con-

sistency. It is robust under continuous transformations (continuous mapping) and algebraic

combinations with deterministic limits (Slutsky). The WLLN gives a first, central example; the

variance example shows how Chebyshev and a variance calculation often suffice to establish

consistency.
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Almost sure convergence

Definition (Almost sure convergence). We say that the sequence Xn converges almost surely

to X if d(Xn, X) → 0 with probability one; that is,

P
(

lim
n→∞

d(Xn, X) = 0
)
= 1.

We denote this by Xn
a.s.−→ X.

Remark. Both almost sure convergence and convergence in probability require Xn and X to be

defined on the same probability space. This is not required for convergence in distribution.

Example (A basic a.s. limit). Let U ∼ U(0, 1) and define Xn = Un.

• If U < 1, then d(Xn, 0) = d(Un, 0) → 0.

• If U = 1, then Xn ≡ 1. Moreover, P(U = 1) = 0.

Hence,

P
(

lim
n→∞

d(Xn, 0) = 0
)
= 1,

because the only event where the limit can fail is {U = 1}, which has probability zero. There-

fore Xn
a.s.−→ 0.

Intuition: how to tell them apart

Almost sure (pathwise): for almost every outcome ω, the tail of the sequence Xn(ω) sticks

to X(ω).

In probability (masswise): for any fixed ε > 0, the mass outside the ε-ball around X

vanishes; occasional large deviations may still occur along many n.

In distribution (lawwise): only the laws matter; CDFs converge, regardless of the joint

construction of (Xn, X).

Hierarchy: Xn
a.s.−→ X ⇒ Xn

p−→ X ⇒ Xn
d−→ X.

Example (In probability but not almost surely). Let Un ∼ U(0, 1) i.i.d. and Xn = 1{Un ≤ 1/n}.

Then P(|Xn − 0| > ε) = 1/n → 0, so Xn
p−→ 0. However, ∑n P(Xn = 1) = ∞ and (Xn = 1)

occurs infinitely often with probability one (Borel–Cantelli), hence Xn ̸→ 0 a.s.

Example (In distribution but not in probability). Expand. Let Xn ∼ N (0, 1) for all n, indepen-

dent of X ∼ N (0, 1). Then Xn
d−→ X (the laws are identical), but P(|Xn − X| > ε) = P(|Z| >

ε/
√

2) > 0 for Z ∼ N (0, 2), so Xn ̸ p−→ X.

Portmanteau Lemma

Lemma. For any random vectors Xn and X, the following statements are equivalent:

(i) P(Xn ≤ x) → P(X ≤ x) for all continuity points x of FX(x) := P(X ≤ x).
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Intuition. Weak convergence is CDF convergence at the points where the limit CDF is

continuous (jumps are the only obstruction).

(ii) E
[

f (Xn)
]
→ E

[
f (X)

]
for all bounded, continuous functions f .

Intuition. Expectations of bounded continuous “test functions” probe the law; if all such

probes agree in the limit, the distributions converge.

(iii) E
[

f (Xn)
]
→ E

[
f (X)

]
for all bounded, Lipschitz functions f .

Intuition. It suffices to test with a smaller class controlling oscillations (Lipschitz). This

class is convergence-determining.

(iv) lim infn→∞ E
[

f (Xn)
]
≥ E

[
f (X)

]
for all nonnegative, continuous f .

Intuition. A Fatou-type lower semicontinuity: mass cannot “disappear” under limits when

tested with nonnegative continuous functions.

(v) lim infn→∞ P(Xn ∈ G) ≥ P(X ∈ G) for every open set G.

Intuition. Probabilities of open sets are lower semicontinuous: the limit cannot undercount

the mass that stays inside opens.

(vi) lim supn→∞ P(Xn ∈ F) ≤ P(X ∈ F) for every closed set F.

Intuition. Dually, probabilities of closed sets are upper semicontinuous: extra mass cannot

suddenly appear in closed sets.

(vii) P(Xn ∈ B) → P(X ∈ B) for all Borel sets B with P(X ∈ δB) = 0, where δB = B − B̊ is

the boundary of B.

Intuition. Convergence holds on all “continuity sets” of the limit law—sets whose boundary

carries no mass.

Remark. Any one of (i)–(vii) may be taken as the definition of weak convergence Xn ⇒ X.

Remark (Why Portmanteau matters). Weak convergence means convergence in distribution:

Xn ⇒ X (a.k.a. Xn
d−→ X). The lemma provides equivalent, easier-to-check criteria:

• Function view ((ii)–(iii)): convergence of E[ f (Xn)] for bounded continuous (even bounded

Lipschitz) f .

• Set view ((v)–(vii)): lower/upper semicontinuity for open/closed sets, and convergence on

continuity sets.

• Practical goal: prove Xn ⇒ X using whichever side is tractable (functions or sets), especially

in Rk where CDFs are unwieldy.

Proof. TBW.
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Continuous Mapping Theorem

A first useful result we can prove using the Portmanteau Lemma is the Continuous Map-

ping Theorem.

Theorem 3. Let Xn, X be random vectors and let g : Rk → Rm be continuous at every point of a

set C such that P(X ∈ C) = 1. Then:

(i) If Xn ⇒ X, then g(Xn) ⇒ g(X).

(ii) If Xn
p−→ X, then g(Xn)

p−→ g(X).

(iii) If Xn
a.s.−→ X, then g(Xn)

a.s.−→ g(X).

Proof. TBW.

Example (Consistency of S via CMT). In the Example Consistency of the sample variance via

Chebyshev (p. 5) we established conditions under which S2
n

p−→ σ2. By the Continuous Map-

ping Theorem, picking g(x) =
√

x (continuous on [0, ∞)),

Sn = g(S2
n)

p−→ g(σ2) = σ.

Theorem 4 (Some relationships between modes of convergence). Let Xn, X and Yn be random

vectors, and let c be a constant. Then:

(i) If Xn
a.s.−→ X, then Xn

p−→ X.

(ii) If Xn
p−→ X, then Xn ⇒ X.

(iii) Xn
p−→ c iff Xn ⇒ c.

(iv) If Xn ⇒ X and d(Xn, Yn)
p−→ 0, then Yn ⇒ X.

(v) If Xn ⇒ X and Yn
p−→ c, then (Xn, Yn) ⇒ (X, c).

(vi) If Xn
p−→ X and Yn

p−→ Y, then (Xn, Yn)
p−→ (X, Y).

Proof. TBW.

Lemma (Slutsky’s Lemma). Let Xn, X and Yn be random vectors or variables. If Xn ⇒ X and Yn ⇒ c

for a constant c, then:

(i) Xn + Yn ⇒ X + c.

(ii) YnXn ⇒ cX.

(iii) Y−1
n Xn ⇒ c−1X (provided c ̸= 0).

Remark. The constant c may also be a constant vector or matrix, assuming the operations

above are well-defined and of correct size.
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Proof. TBW.

Some applications

Example (t-statistic). Let Y1, Y2, . . . be i.i.d. with E(Y1) = 0 and E(Y2
1 ) < ∞. The t-statistic,

defined as tn =
√

n Ȳn/Sn, is asymptotically standard normal using the results above. In

particular, we have already shown that

S2
n

p−→ σ2, and by the continuous mapping theorem Sn
p−→ σ.

Next, by the central limit theorem (proved later),

√
n Ȳn ⇒ N (0, σ2).

Applying Slutsky’s lemma,

tn =

√
n Ȳn

Sn
⇒ N (0, 1).

Example (Normalized statistic and asymptotic CI). Suppose Tn estimates θ, and Sn estimates

σ. Assume
√

n (Tn − θ) ⇒ N (0, σ2), S2
n

p−→ σ2.

Define the normalized statistic

Zn =

√
n (Tn − θ)

Sn
.

By Slutsky’s lemma, Zn ⇒ N (0, 1). Let zα be the upper α-quantile of the standard normal, i.e.,

P(Z > zα) = α for Z ∼ N (0, 1). Then

P(−zα ≤ Zn ≤ zα) → 1 − 2α.

Equivalently, an asymptotic (1 − 2α) confidence interval for θ is[
Tn − Sn√

n zα , Tn +
Sn√

n zα

]
.

Notation: op and Op

Definition (Stochastic o and O). Let (Xn) be random variables (or vectors) and (Rn) a sequence

of positive scalars (“rates”).

• Xn = op(Rn) means
Xn

Rn

p−→ 0.

• Xn = Op(Rn) means that
Xn

Rn
is bounded in probability, i.e., for every ε > 0 there exists

M < ∞ such that

lim sup
n→∞

P
(∣∣∣Xn

Rn

∣∣∣ > M
)
< ε.
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Equivalently, {Xn
Rn
}n is tight.

Remark (Deterministic analogy). For deterministic sequences (an) and (bn), an = o(bn) means

an/bn → 0, and an = O(bn) means (an/bn) is bounded. The symbols op(1) and Op(1) are the

stochastic counterparts of o(1) and O(1).

Calculus rules for op and Op

The following implications are standard and will be used without comment:

op(1) + op(1) = op(1), op(1) + Op(1) = Op(1), Op(1) op(1) = op(1),

(1 + op(1))−1 = Op(1),

op(Rn) = Rn op(1), Op(Rn) = Rn Op(1), op(Op(1)) = op(1).

Reading rule. Each display abbreviates a statement about explicitly named sequences, e.g.

op(1) + op(1) = op(1) means: if Xn
p−→ 0 and Yn

p−→ 0, then Xn + Yn
p−→ 0 (an instance of the

continuous mapping theorem).

Lemma (Rates under smooth transformations). Let R : Rk → R satisfy R(0) = 0, and let Xn
p−→ 0

in Rk. For every p > 0:

(i) If R(h) = o(∥h∥ p) as h → 0, then R(Xn) = op(∥Xn∥ p).

(ii) If R(h) = O(∥h∥ p) as h → 0, then R(Xn) = Op(∥Xn∥ p).

Characteristic functions

From the Portmanteau lemma, to show Xn ⇒ X it suffices to verify E[ f (Xn)] → E[ f (X)]

for all bounded, continuous f . A particularly convenient choice of such test functions is the

characteristic function

φX(t) = E
(
e it⊤X), t ∈ Rk.

Theorem 5 (Lévy’s continuity theorem). Let Xn and X be random vectors in Rk.

(i) If Xn ⇒ X, then E
(

e it⊤Xn

)
→ E

(
e it⊤X

)
for every t ∈ Rk.

(ii) If E
(

e it⊤Xn

)
converges pointwise to a function ϕ(t) that is continuous at 0, then ϕ is the char-

acteristic function of some random vector X and Xn ⇒ X.

Remark. Part (i) is immediate from Portmanteau since x 7→ e it⊤x is bounded and continuous.

Part (ii) states the converse direction; we record it without proof.

Example (Binomial(n, 1/n) converges to Poisson(1)). Let Xn be a sequence of random vari-

ables such that Xn ∼ Binomial(n, 1/n). Its characteristic function is

φXn(t) =
(

1 + e it−1
n

)n
.
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As n → ∞,

φXn(t) −→ exp
(
e it − 1

)
,

using limn→∞
(
1 + z

n

)n
= ez. Since exp(eit − 1) is the characteristic function of Poisson(1),

Lévy’s theorem yields

Xn ⇒ Poisson(1).

Central Limit Theorem

Theorem 6 (Central Limit Theorem). Let Y1, . . . , Yn be i.i.d. r.v.’s with E(Yi) = 0 and E(Y2
i ) = 1.

Then
√

n Ȳn ⇒ N (0, 1).

Proof. Let φY(t) = E[eitY1 ] denote the characteristic function of Y1. A second–order Taylor

expansion of φY at t = 0 yields

φY(t) = 1 + it E(Y1)−
t2

2
E(Y2

1 ) + o(t2) = 1 − t2

2
+ o(t2),

since E(Y1) = 0 and E(Y2
1 ) = 1. Consider now the characteristic function of

√
n Ȳn. Because

the Yi are i.i.d.,

φ√
n Ȳn

(t) =
(

φY

(
t√
n

) )n
.

Using the expansion above with t/
√

n in place of t,

φY

(
t√
n

)
= 1 − t2

2n
+ o
( 1

n

)
.

Hence

φ√
n Ȳn

(t) =
(

1 − t2

2n
+ o
( 1

n

))n

−→ e−t2/2,

because
(
1 + z

n + o( 1
n )
)n → ez. The limit e−t2/2 is the characteristic function of N (0, 1). By

Lévy’s Continuity Theorem,
√

n Ȳn ⇒ N (0, 1).

Delta Method

We estimate a primitive parameter θ with Tn, yet the target is a smooth function ϕ(θ). By the

Continuous Mapping Theorem, if Tn
p−→ θ and ϕ is continuous at θ, then ϕ(Tn)

p−→ ϕ(θ). For

inference we still need the rate and a limit law for rn{ϕ(Tn)− ϕ(θ)} to obtain standard errors,

confidence intervals, and tests. When ϕ is differentiable at θ and rn(Tn − θ) ⇒ T with rn → ∞,

a first-order Taylor expansion gives

ϕ(Tn) = ϕ(θ) + ϕ′
θ(Tn − θ) + op(r−1

n ) ⇒ rn{ϕ(Tn)− ϕ(θ)} ⇒ ϕ′
θ(T).

11



In the classical CLT case rn =
√

n and
√

n(Tn − θ) ⇒ N (0, Σ), it follows that

√
n{ϕ(Tn)− ϕ(θ)} ⇒ N

(
0, ∇ϕ(θ)⊤Σ∇ϕ(θ)

)
,

informally summarized as
√

n
(
ϕ(Tn)− ϕ(θ)

)
≈ ϕ′(θ)

√
n (Tn − θ).

In words, the quantity
√

n
(
ϕ(Tn) − ϕ(θ)

)
converges in distribution to a mean–zero nor-

mal random variable whose variance (or covariance matrix) equals the asymptotic variance of
√

n(Tn − θ), propagated through the derivative (or gradient) of ϕ evaluated at the true param-

eter value θ.

Theorem 7 (Delta Method). Let ϕ : Rk → Rm be differentiable at θ. Suppose rn(Tn − θ) ⇒ T with

rn → ∞. Then

rn
(
ϕ(Tn)− ϕ(θ)

)
⇒ ϕ′

θ(T),

where ϕ′
θ denotes the derivative (linear map) of ϕ at θ, applied to T.

Proof. TBW.

Example (Delta Method: a simple transformation). Let X1, . . . , Xn be i.i.d. with mean µ and

variance σ2. Consider Tn = X̄ 2
n . By the CLT,

√
n (X̄n − µ) ⇒ N (0, σ2).

Take ϕ(x) = x2, which is differentiable at µ with derivative ϕ′(µ) = 2µ. By the Delta Method,

√
n
(
X̄ 2

n − µ2)⇒ N
(
0, (2µ)2σ2) .

Remark (Delta Method at a zero mean). If µ = 0, then ϕ′(0) = 0 and the first–order Delta

Method does not apply. Since
√

n X̄n ⇒ Z ∼ N (0, σ2), we have

n X̄ 2
n = (

√
n X̄n)

2 ⇒ Z2,

which is a scaled chi–square distribution:

Z2 ∼ σ2χ2
1.

Thus, when µ = 0,

n X̄ 2
n ⇒ σ2χ2

1,

instead of a normal limit.
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Week 6

Point Estimation

Definition (Parameter). A parameter θ is any (possibly vector–valued) function of the popula-

tion distribution F. For example, the population mean µ = E[X] is a parameter and, more

generally, a functional of F (the first moment).

Definition (Estimator and estimate). An estimator θ̂ of a parameter θ is a statistic—i.e., a mea-

surable function of the sample—intended as a guess of θ. Estimators are random variables

because they depend on the random sample. The estimate is the numerical realization of the

estimator for a given dataset.

Remark (Intuition). Think “target vs. recipe vs. outcome”: θ is the fixed target feature of the

population, θ̂(X) is the recipe that maps the sample to a guess, and the estimate is the concrete

number obtained once the sample is observed.

Method of Moments

There are many estimation methods; an important and popular one is the Method of Moments

(MoM).

• MoM is attractive for semi–parametric settings: it can estimate finite–dimensional pa-

rameters without fully specifying the distribution of X.

• It is often intuitive because parameters of interest frequently correspond to moments of

the distribution; then closed–form estimators arise by simple matching.

• In other cases, parameters are not explicit functions of the moments and numerical solu-

tion of the moment equations is required.

Basic principle. Let mj denote the jth sample moment and let µj denote the corresponding

population moment. The MoM estimator sets

mj = µj, j = 1, 2, . . . ,

and solves the resulting system for the unknown parameters.

Example (Matching the first two moments). Let X1, . . . , Xn be a sample. The first two sample

moments are

m1 = X̄ =
1
n

n

∑
i=1

Xi, m2 =
1
n

n

∑
i=1

X2
i .

The corresponding population moments are µ1 = E[X] and µ2 = E[X2]. The MoM estimator

solves m1 = µ1 and m2 = µ2 for the unknown parameters.

13



Remark (Intuition). MoM “matches features of the data to features of the model.” If the model

says the parameter controls, say, the mean and the second moment, then we pick parameter

values that make the model’s mean and second moment coincide with their empirical coun-

terparts.

Example (Normal Model (Method of Moments)). Suppose X1, . . . , Xn
i.i.d.∼ N (θ, σ2). Take the

first two data moments

m1 = X̄, m2 =
1
n

n

∑
i=1

X2
i ,

and note that the population moments are

µ1 = E[X] = θ, µ2 = E[X2] = θ2 + σ2.

Setting m1 = µ1 and m2 = µ2 yields the system

X̄ = θ,
1
n

n

∑
i=1

X2
i = θ2 + σ2,

whose solution is

θ̂ = X̄, σ̂2 =
1
n

n

∑
i=1

(Xi − X̄)2.

Remark (Interpretation). The estimator θ̂ = X̄ matches the model’s mean to the sample mean.

The variance estimator matches the model’s second moment to the sample second moment,

leading to the uncorrected sample variance (with 1/n). This reflects the moment–matching

principle rather than a bias correction aim.

Example (Poisson). Suppose X1, . . . , Xn
i.i.d.∼ Poisson(λ), so E[Xi] = λ.

• Match the first moment: set E[Xi] = X̄n.

Hence the MoM estimator is

λ̂MM = X̄n.

Remark (Intuition). For the Poisson family, the mean equals the intensity. Matching the empir-

ical mean therefore pins down λ directly.

Example (Gamma). Suppose X1, . . . , Xn
i.i.d.∼ Gamma(α, β) under the shape–scale parameteriza-

tion, so

E[Xi] = αβ, Var(Xi) = αβ2.

Match model moments to the data:

αβ = X̄n, αβ2 = S2
n,

14



where S2
n := 1

n ∑n
i=1(Xi − X̄n)2 is the (uncorrected) sample variance, which aligns with MoM.

Solving,

β̂MM =
S2

n
X̄n

, α̂MM =
X̄2

n
S2

n
.

Remark (Intuition). Mean identifies the product αβ and variance identifies αβ2; dividing the

two equations isolates β, then plug back to recover α.

When closed forms are unavailable. In many econometric models we can express moments

as functions of parameters, but cannot invert those relations analytically. In such cases, we

solve the MoM equations numerically to obtain the estimator.

Method of Moments: General Formulation

Take θ ∈ Rk and let m(X, θ) be a k × 1 vector of moment functions implied by the model.

Assume the population moment condition

E
[
m(X, θ)

]
= 0.

Given data {xi}n
i=1, define the sample counterpart

m̄n(θ) :=
1
n

n

∑
i=1

m(xi, θ).

The method-of-moments estimator θ̂ solves the k nonlinear equations

m̄n(θ̂) = 0.

Remark (Identification). When the number of moment conditions equals the dimension of θ,

we have exact identification (“just identified”). Then, under regularity, a unique solution exists

in large samples.

Example. Let F(x) = P(X ≤ x) = E
[
1{X ≤ x}

]
be the distribution function of a univariate

r.v. X. Given a sample x1, . . . , xn, the MoM estimator for F(x) is the fraction of observations

not exceeding x:

Fn(x) =
1
n

n

∑
i=1

1{xi ≤ x}.

Remark (MoM view). Here the moment condition is E[1{X ≤ x} − F(x)] = 0 for each fixed x;

replacing the expectation by the sample average yields Fn(x).
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Theorem 8 (Asymptotic distribution at a fixed x). If Xi are i.i.d., then for any fixed continuity point

x of F,
√

n
(

Fn(x)− F(x)
)
⇒ N

(
0, F(x)

(
1 − F(x)

))
.

Proof. Consistency follows from the WLLN since 1{Xi ≤ x} are i.i.d. bounded with mean

F(x), hence Fn(x)
p−→ F(x). For the limit distribution, apply the CLT to the Bernoulli variables

Yi := 1{Xi ≤ x} with variance F(x){1 − F(x)}:

√
n
(
Ȳn − E[Yi]

)
⇒ N (0, Var(Yi)) ,

which is exactly the stated result.

Example (Euler Equation (from Hansen, 11.11)). A consumer chooses consumption Ct in pe-

riod t and Ct+1 in period t + 1. Preferences are

U(Ct, Ct+1) = u(Ct) +
1
β

u(Ct+1),

and the budget constraint is

Ct +
Ct+1

Rt+1
≤ Wt,

where Wt is the endowment and Rt+1 is the (uncertain) gross return on investment from t

to t + 1. Using the budget constraint to substitute Ct+1 = (Wt − Ct)Rt+1, expected utility in

period t is

E

[
u(Ct) +

1
β

u
(
(Wt − Ct)Rt+1

)]
.

The consumer chooses Ct to maximize expected utility. Assume CRRA utility u(c) =

c1−α/(1 − α). The first–order condition is the Euler equation

E

(
Rt+1

(
Ct+1

Ct

)−α
− β

)
= 0.

Suppose we want to estimate α, the coefficient of relative risk aversion, treating β as known.

Define the moment function

m(Rt+1, Ct+1, Ct, α) := Rt+1

(
Ct+1

Ct

)−α
− β,

so that the population moment condition is

E
[
m(Rt+1, Ct+1, Ct, α)

]
= 0.

Given data {Ct, Ct+1, Rt+1}n
t=1, the sample moment is

m̄n(α) :=
1
n

n

∑
t=1

[
Rt+1

(
Ct+1

Ct

)−α
− β

]
,
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and the Method–of–Moments estimator α̂ is defined as the solution to

m̄n(α̂) = 0,

which is typically obtained numerically.

Properties of Moment Estimators

• Moment estimators are not necessarily “best” estimators, although in special cases they

coincide with optimal ones.

• Under mild regularity conditions, they converge at rate
√

n and are asymptotically nor-

mal.

• This asymptotic normality follows from the CLT and mean–value (Taylor) expansions of

the moment equations.

• The Method of Moments is attractive because of its semi–parametric nature and robust-

ness features.

Identification

Definition (Identification (Hansen, Def. 11.1)). The parameter θ is identified in Θ if there exists

a unique θ0 ∈ Θ that solves the moment condition

E
[
m(X, θ)

]
= 0.

Consistency of the Method of Moments

To show that the MoM estimator is consistent, we impose the following assumptions:

1. Xi are i.i.d.

2. ∥m(x, θ)∥ ≤ M(x) and E[M(X)] < ∞.

3. m(X, θ) is continuous in θ with probability 1.

4. Θ is compact.

5. The population moment equation E[m(X, θ)] = 0 has a unique solution θ0.

Assumptions (A1)–(A4) ensure that the sample moment function

m̄n(θ) =
1
n

n

∑
i=1

m(Xi, θ)
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is a uniformly consistent estimator of its expectation. Indeed, since Xi are i.i.d., the transformed

variables m(Xi, θ) are also i.i.d.; by the weak law of large numbers,

m̄n(θ)
p−→ E[m(X, θ)].

Adding (A5) yields consistency: the sample solution θ̂ to m̄n(θ̂) = 0 converges in probabil-

ity to the population solution θ0.

Asymptotic Distribution

Define

Ω := Var
(
m(X, θ0)

)
, Q := E

[
∂

∂θ
m(X, θ0)

]
,

and let N be a neighborhood of θ0. On top of (A1)–(A5), assume:

6. E[∥m(X, θ0)∥2] < ∞.

7. ∂
∂θ E[m(X, θ)] is continuous in θ ∈ N .

8. m(X, θ) is Lipschitz–continuous in θ on N .

9. Q is full rank.

10. θ0 lies in the interior of Θ.

Under assumptions (A1)–(A10),

√
n (θ̂ − θ0) ⇒ N (0, V), V = Q−1Ω Q−1.

Why do these assumptions matter?

• (A6) ensures finite second moments, needed for the CLT.

• (A7) guarantees local invertibility of m(X, θ) near θ0, via the inverse function theorem;

this is required to apply the Delta Method.

• (A8) controls the Taylor remainder so that the linear approximation is accurate asymp-

totically.

• (A9) is an identification condition: it ensures that movements in θ produce unique changes

in the moments.

In exact identification (k equations, k unknowns), each moment must contribute unique

information. If two moment conditions convey the same information, we cannot uniquely

pin down θ.
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Suppose we have a point estimate θ̂ for our parameter of interest. The asymptotic variance

of a Method–of–Moments estimator is

V = Q−1ΩQ−1,

and we estimate it using plug–in quantities:

V̂ = Q̂−1Ω̂Q̂−1, Ω̂ =
1
n

n

∑
i=1

m(xi, θ̂)m(xi, θ̂)′, Q̂ =
1
n

n

∑
i=1

∂

∂θ
m(xi, θ̂)′.

Example. Euler Equation (continued) Recall the sample moment

m̄n(α) =
1
n

n

∑
t=1

[
Rt+1

(
Ct+1

Ct

)−α
− β

]
.

The asymptotic variance is

V = Q−1ΩQ−1,

where

Ω = Var
(

Rt+1

(
Ct+1

Ct

)−α
− β

)
, Q = E

(
Rt+1

(
Ct+1

Ct

)−α
log
(

Ct+1
Ct

))
.

The plug–in estimator is therefore

V̂ =

1
n ∑n

t=1

(
Rt+1

(
Ct+1

Ct

)−α̂
− β

)2

(
1
n ∑n

t=1 Rt+1

(
Ct+1

Ct

)−α̂
log
(

Ct+1
Ct

))2 .

Remarks on Method of Moments

Method of Moments is widely used in both macro and micro applications. In macro, it often

appears under the label “calibration,” in which case the asymptotic variance is typically not

the central object of interest.

There exist many extensions of Method of Moments that appear throughout econometrics;

some of them are introduced next.

Generalized Method of Moments

So far we assumed exact identification: as many parameters as moment conditions,

θ ∈ Rk, E[m(X, θ)] = 0,

with m being an l × 1 function and l = k.

If l > k (over–identification), the system cannot be solved exactly. Instead, GMM finds the

θ that makes the sample moments “as close to zero as possible.”
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Formally, choose an l × l weighting matrix W > 0 and define the criterion

J(θ) = n m̄n(θ)
′W m̄n(θ).

The GMM estimator is

θ̂ = arg min
θ

J(θ).

An important ingredient is the choice of W. A simple option is W = Il , which yields a least–

squares match of the moment conditions. However, this is generally not the optimal choice of

weight matrix.

Simulated Method of Moments

In some models, the moments of interest are not available in closed form. For example, a

macroeconomic model may not permit a closed–form expression for E[g(X, θ)], such as the

correlation between output and inflation.

However, the researcher may be able to simulate the model for a given parameter θ. In that

case, one can use the Simulated Method of Moments (SMM).

Instead of matching the empirical moment m1 to the theoretical moment µ1(θ), we simulate

the model S times and compute the simulated moment

µ̃1(θ)

based on those S draws from the model. We then choose θ̂ that minimizes the discrepancy

between the sample moment m1 and the simulated moment µ̃1(θ).

SMM thus replaces analytically intractable expectations with simulation–based approxi-

mations.
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Week 7

Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) is a fundamental method for estimating parameters

in parametric statistical models. A parametric model specifies a full probability structure for

the data, indexed by an unknown parameter vector θ ∈ Θ. For discrete variables, the model is

described by a pmf π(x | θ), and for continuous variables by a density f (x | θ). In both cases,

the goal is to use the observed sample to learn about the underlying parameter governing the

distribution.

We assume that the data {Xi}n
i=1 are i.i.d. draws from the postulated model. Independence

implies that the joint density factorizes as

f (x1, . . . , xn | θ) =
n

∏
i=1

f (xi | θ),

and similarly for mass functions. This leads directly to the likelihood function,

Ln(θ) =
n

∏
i=1

f (Xi | θ), or Ln(θ) =
n

∏
i=1

π(Xi | θ),

which treats the data as fixed and evaluates how plausible each parameter value is as a gener-

ator of the observed sample.

It is helpful to emphasize the opposite roles played by density functions and likelihood

functions. A density f (x | θ) treats θ as fixed and quantifies how likely the data would be

under that parameter. In contrast, the likelihood Ln(θ) treats the observed sample as fixed

and asks which values of θ make the sample most plausible. Estimation via MLE therefore

amounts to selecting the parameter that maximizes this likelihood, i.e., the parameter value

that best explains the observed data within the assumed model.

Throughout, we assume the model is correctly specified: there exists a unique θ0 ∈ Θ such

that f (x | θ0) coincides with the true data-generating distribution f (x). Uniqueness ensures

that there is only one parameter value consistent with the population distribution. In contrast,

under misspecification no θ ∈ Θ perfectly reproduces f (x), and the interpretation of MLE

changes accordingly.

Under correct specification, the principle of maximum likelihood provides a natural and

powerful criterion: the estimator is the value of θ that maximizes Ln(θ), making the observed

sample most compatible with the assumed model.

Definition (Maximum Likelihood Estimator (MLE)). Given a parametric model with likeli-

hood function Ln(θ), the maximum likelihood estimator of θ is any value θ̂ ∈ Θ that maximizes

the likelihood:

θ̂ = arg max
θ∈Θ

Ln(θ).
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In practice, we often attempt to find θ̂ by differentiating the likelihood (or log–likelihood)

with respect to θ, setting the derivative equal to zero, and solving the resulting first–order

condition. This yields a necessary condition for an interior maximum, but it is not sufficient:

one must still check that the candidate solution corresponds to a maximum (rather than a

minimum or saddle point). Moreover, for many models the first–order condition does not

admit a closed–form solution, and numerical optimization routines are required.

Typically it is analytically and numerically more convenient to work with the logarithm of

the likelihood function.

Definition (Log–likelihood function). The log–likelihood is defined as

ℓn(θ) ≡ log Ln(θ) =
n

∑
i=1

log f (Xi | θ),

where f (· | θ) denotes the density (or pmf) of Xi under parameter θ.

Working with ℓn(θ) is numerically more stable than working with Ln(θ), because the prod-

uct of many densities can become extremely small, while their logarithms add to a quantity of

reasonable magnitude. Importantly, the maximizer of ℓn(θ) coincides with the maximizer of

Ln(θ), since the logarithm is a strictly increasing transformation:

arg max
θ∈Θ

Ln(θ) = arg max
θ∈Θ

ℓn(θ).

Example (Normal distribution). Assume Xi
i.i.d.∼ N (µ, σ2

0 ), where σ0 > 0 is known and we wish

to estimate the mean µ. The log–density for a single observation is

log f (x | µ) = −1
2

log(2πσ2
0 )−

(x − µ)2

2σ2
0

,

so the sample log–likelihood is

ℓn(µ) = −n
2

log(2πσ2
0 )−

1
2σ2

0

n

∑
i=1

(Xi − µ)2.

Differentiating with respect to µ and setting the derivative to zero gives the first–order condi-

tion
d

dµ
ℓn(µ) =

1
σ2

0

n

∑
i=1

(Xi − µ) = 0,

whose solution is

µ̂ = X̄n :=
1
n

n

∑
i=1

Xi.

A second derivative check,
d2

dµ2 ℓn(µ) = − n
σ2

0
< 0,
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confirms that µ̂ = X̄n indeed maximizes the log–likelihood and is therefore the MLE for µ.

Example (Poisson distribution). Assume Xi
i.i.d.∼ Poisson(λ) with pmf

f (x | λ) =
e−λλx

x!
, x = 0, 1, 2, . . .

The log–density for a single observation is

log f (x | λ) = −λ + x log λ − log(x!),

so the sample log–likelihood is

ℓn(λ) =
n

∑
i=1

log f (Xi | λ) = −nλ +
( n

∑
i=1

Xi

)
log λ −

n

∑
i=1

log(Xi!).

The first–order condition is

d
dλ

ℓn(λ) = −n +
1
λ

n

∑
i=1

Xi = 0,

which yields the solution

λ̂ = X̄n.

The second derivative,

d2

dλ2 ℓn(λ) = − 1
λ2

n

∑
i=1

Xi < 0 at λ = λ̂,

shows that λ̂ = X̄n is indeed a maximizer, and thus the MLE for the Poisson parameter λ.

Example (Linear model with Gaussian errors). Assume a simple linear regression with a single

regressor Xi and no intercept,

Yi = βXi + ε i, ε i
i.i.d.∼ N (0, σ2

0 ),

where σ2
0 is known. Conditional on Xi = xi, the density of Yi is

f (yi | xi, β) =
1√

2πσ2
0

exp
(
− (yi − βxi)

2

2σ2
0

)
,

so that the conditional log–density is

log f (yi | xi, β) = −1
2

log(2πσ2
0 )−

(yi − βxi)
2

2σ2
0

.
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The sample log–likelihood is therefore

ℓn(β) = −n
2

log(2πσ2
0 )−

1
2σ2

0

n

∑
i=1

(Yi − βXi)
2.

Differentiating with respect to β and setting the derivative equal to zero gives the first–order

condition
d

dβ
ℓn(β) =

1
σ2

0

n

∑
i=1

Xi (Yi − βXi) = 0.

Solving for β yields the MLE

β̂ =
∑n

i=1 XiYi

∑n
i=1 X2

i
,

which coincides with the usual least–squares estimator in this simple regression setup.

Likelihood Analog Principle

To understand why MLE behaves well in large samples, it is useful to introduce the expected

log–density (or population log–likelihood).

Definition (Expected log–density). For a given parameter value θ ∈ Θ, define

ℓ(θ) := E
[

log f (X | θ)
]
,

where the expectation is taken under the true data–generating distribution.

Theorem 9 (Likelihood Analog Principle; Hansen, Thm. 10.2). If the model is correctly specified,

there exists a unique θ0 ∈ Θ such that f (x | θ0) equals the true density f (x), and this true parameter

maximizes the expected log–density:

θ0 = arg max
θ∈Θ

ℓ(θ).

Why is this insightful?

• The sample analog of ℓ(θ) is the average log–likelihood

ℓ̄n(θ) :=
1
n
ℓn(θ) =

1
n

n

∑
i=1

log f (Xi | θ),

which has the same maximizer as the full log–likelihood ℓn(θ). Thus the MLE θ̂ maxi-

mizes ℓ̄n(θ).

• In parallel, at the population level θ0 maximizes ℓ(θ). Hence we can view θ̂ as the sam-

ple analog of θ0: the estimator solves in the sample the same optimization problem that

defines the true parameter in the population, with expectations replaced by averages.
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Invariance Property

A particularly convenient feature of maximum likelihood is its invariance under smooth trans-

formations of the parameter.

Theorem 10 (Invariance of the MLE; Hansen, Thm. 10.3). Let θ̂ be the MLE of θ ∈ Rm. For any

transformation h : Rm → Rℓ and β = h(θ), the MLE of β is

β̂ = h(θ̂).

Proof. TBW.

Score, Hessian, and Information

To analyze the large–sample behavior of maximum likelihood estimators, it is crucial to study

how the log–likelihood reacts to local perturbations in the parameter. This sensitivity is cap-

tured by the score and the curvature of the log–likelihood, encoded in the Hessian. Throughout

this section we assume that the density f (x | θ) is differentiable with respect to θ.

Likelihood Score. The (sample) score is the gradient of the log–likelihood,

Sn(θ) :=
∂

∂θ
ℓn(θ) =

n

∑
i=1

∂

∂θ
log f (Xi | θ).

When θ is a vector, Sn(θ) is a vector of partial derivatives. The score measures the direction

and magnitude in which the log–likelihood increases most steeply. For any interior maximum

of the log–likelihood, the score must vanish: Sn(θ̂) = 0.

Likelihood Hessian. The curvature of the log–likelihood is summarized by the (negative)

Hessian,

Hn(θ) := − ∂2

∂θ ∂θ′
ℓn(θ) = −

n

∑
i=1

∂2

∂θ ∂θ′
log f (Xi | θ).

This matrix quantifies how quickly the log–likelihood bends away from its maximum. A

sharply curved log–likelihood corresponds to a large Hessian and therefore more precise esti-

mation.

To move from sample objects to population analogs, we introduce the efficient score, evalu-

ated at the true parameter value.

Efficient Score. For a single observation X, the efficient score at θ0 is

S :=
∂

∂θ
log f (X | θ0).
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Under correct specification and standard regularity conditions, the efficient score plays a cen-

tral role in efficiency bounds.

Theorem 11 (Hansen, Thm. 10.40). Assume the model is correctly specified, the support of X does not

depend on θ, and θ0 lies in the interior of Θ. Then the efficient score satisfies

E(S) = 0.

Proof. TBW.

Fisher Information. The Fisher information is the variance of the efficient score,

Iθ = E(SS′).

It measures the amount of information about θ contained in a single observation and provides

the benchmark for efficiency.

Expected Hessian. The population counterpart of the Hessian is defined as

Hθ := − ∂2

∂θ ∂θ′
ℓ(θ0),

where ℓ(θ) denotes the expected log–density.

Theorem 12 (Hansen, Thm. 10.5; Information Matrix Equality). Assume the model is correctly

specified and the support of X does not depend on θ. Then

Iθ = Hθ ,

where

Iθ := Eθ

[
S(X, θ)S(X, θ)′

]
, Hθ := −Eθ

[
∂2

∂θ ∂θ′
log f (X | θ)

]
.

This equality shows that, under correct specification, the curvature of the log–likelihood

and the variability of the score encode the same information.

Proof. TBW.

Theorem 13 (Hansen, Thm. 10.6; Cramér–Rao Lower Bound). Assume the model is correctly spec-

ified, the support of X does not depend on θ, and θ0 lies in the interior of Θ. If θ̃ is an unbiased estimator

of θ, then

var(θ̃) ≥ (nIθ)
−1.

Proof. TBW.

Definition (Hansen, Def. 10.8). The Cramér–Rao Lower Bound (CRLB) is (nIθ)
−1.
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Definition (Hansen, Def. 10.9). An unbiased estimator θ̃ is Cramér–Rao efficient if it attains the

lower bound:

var(θ̃) = (nIθ)
−1.

This yields a fundamental conclusion: within the class of unbiased estimators, the minimal

achievable variance is determined by the inverse Fisher information scaled by n. Fisher infor-

mation therefore provides the natural limit for the precision of unbiased estimation.

Consistency

To study the consistency of the MLE, it is convenient to normalize the log–likelihood by the

sample size and work with the average log–likelihood

ℓ̄n(θ) :=
1
n
ℓn(θ) =

1
n

n

∑
i=1

log f (Xi | θ).

If Xi are i.i.d. and log f (Xi | θ) is a measurable transformation of Xi, then log f (Xi | θ) are also

i.i.d. By the Weak Law of Large Numbers,

ℓ̄n(θ)
p−→ ℓ(θ) := E[log f (X | θ)] for each fixed θ.

Recall from the likelihood analog principle that, under correct specification, the true parameter

θ0 maximizes the population objective ℓ(θ). The MLE θ̂ maximizes the sample objective ℓ̄n(θ).

A natural question is therefore whether the maximizer of ℓ̄n converges to the maximizer of ℓ,

i.e. whether θ̂ →p θ0. The next theorem gives sufficient conditions.

Theorem 14 (Consistency of the MLE; Hansen, Thm. 10.8). Assume the following:

1. Xi are i.i.d.

2. E(log f (X | θ)) ≤ G(X) for some integrable function G, with E(G(X)) < ∞.

3. log f (X | θ) is continuous in θ almost everywhere.

4. The parameter space Θ is compact.

5. For all θ ̸= θ0, we have ℓ(θ) < ℓ(θ0).

Then the maximum likelihood estimator is consistent:

θ̂
p−→ θ0.

Remark (Role of the assumptions). Assumption (ii) guarantees that the log–density has a finite

expectation, which is needed to apply the WLLN to log f (Xi | θ). Assumption (iii), combined

with (ii) and compactness of Θ in (iv), allows one to strengthen the pointwise LLN into a

uniform law of large numbers for ℓ̄n(θ). Finally, (v) is an identification assumption: it ensures
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that the population objective ℓ(θ) has a unique maximizer at θ0, so that the maximizer of the

sample objective must converge to this unique population maximizer.

Asymptotic Normality

The previous result establishes consistency. To obtain distributional approximations for infer-

ence, we impose stronger smoothness conditions on the likelihood. The next theorem summa-

rizes the classical result.

Theorem 15 (10.9 in Hansen textbook). Assume the conditions of Theorem 10.8 hold and, in addition,

1. E
∥∥ ∂

∂θ log f (X | θ0)
∥∥2

< ∞

2. Hθ is continuous in θ ∈ N

3. ∂
∂θ log f (X | θ) is Lipschitz-continuous in N

4. Hθ0 > 0

5. θ0 lies in the interior of Θ

6. Iθ = Hθ

Then
√

n (θ̂ − θ0)
d−→ N

(
0, I−1

θ0

)
.

The conditions above provide the ingredients for a Taylor expansion of the score around

θ0 and ensure that both the score and Hessian behave suitably for the Central Limit Theorem

to apply. The result states that the MLE is asymptotically normal with covariance equal to the

inverse of the Fisher information.

Asymptotic Cramér–Rao Efficiency

Definition (10.10 in Hansen textbook). An estimator θ̃ is asymptotically Cramér–Rao efficient if

√
n(θ̃ − θ0)

d−→ Z, E(Z) = 0, Var(Z) = I−1
θ0

.

Theorem 16 (10.10 in Hansen textbook). Under the conditions of Theorem 10.9, the MLE is asymp-

totically Cramér–Rao efficient.

This result is important because the MLE is generally not unbiased in finite samples, yet

asymptotically it achieves the smallest possible variance among all regular unbiased estima-

tors. The caveat, of course, is that efficiency is derived within a parametric model; if the model

is misspecified, alternative estimators may perform better.
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Variance Estimation

In practice, the asymptotic variance V = I−1
θ0

= H−1
θ0

is unknown and must be estimated.

There are two common approaches:

• Sample Hessian Estimator:

V̂1 = Ĥ−1
θ =

(
1
n

n

∑
i=1

(
− ∂2

∂θ∂θ′
log f (Xi | θ̂)

))−1

=

(
− 1

n
∂2

∂θ∂θ′
ℓn(θ̂)

)−1

.

• Outer Product Estimator:

V̂2 = I−1
θ =

(
1
n

n

∑
i=1

(
∂

∂θ
log f (Xi | θ̂)

)(
∂

∂θ
log f (Xi | θ̂)

)′)−1

.

Both estimators can be shown to be consistent for V.

Variance Estimation: Poisson Example

Consider the model Xi ∼ Poisson(λ) with pmf

f (xi | λ) =
e−λλxi

xi!
.

Then

log f (Xi | λ) = −λ + Xi log λ − log(Xi!),

so the score and curvature per observation are

Si(λ) =
∂

∂λ
log f (Xi | λ) = −1 +

Xi

λ
,

∂2

∂λ2 log f (Xi | λ) = − Xi

λ2 .

The sample Hessian estimator is

V̂1 =

(
1
n

n

∑
i=1

(
− ∂2

∂λ2 log f (Xi | λ̂)

))−1

=

(
1
n

n

∑
i=1

Xi

λ̂2

)−1

.

Since λ̂ = X̄n,
1
n

n

∑
i=1

Xi

λ̂2
=

X̄n

λ̂2
=

λ̂

λ̂2
=

1
λ̂

,

and therefore

V̂1 = λ̂.
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Week 8

Evaluating Estimators

Different estimation procedures may produce different estimators for the same parameter.

Sometimes they coincide, but often they do not. To compare them, it is useful to develop

criteria that assess the statistical quality of an estimator.

In what follows, we review the standard properties used to evaluate estimators and illus-

trate how these criteria apply in common examples.

Bias

Definition (Bias). Let W be an estimator of a parameter θ. The bias of W is

Biasθ(W) ≡ Eθ(W)− θ.

If Biasθ(W) = 0 for all θ, the estimator is called unbiased. Unbiasedness is often desirable

because it means the estimator hits the true parameter on average. However, an unbiased esti-

mator is not necessarily preferable: in many situations we are willing to sacrifice unbiasedness

for lower variance.

Theorem 17 (6.2 in Hansen). If θ̂ is an unbiased estimator of θ, then

β̂ = aθ̂ + b

is an unbiased estimator of β = aθ + b.

Proof. TBW.

Note. Nonlinear transformations usually do not preserve unbiasedness.

BLUE: Best Linear Unbiased Estimator

Theorem 18 (6.3 in Hansen; BLUE). If σ2 < ∞, the sample mean X̄n has the lowest variance among

all linear unbiased estimators of µ.

Proof. TBW.

Mean Squared Error

Definition (Mean Squared Error). The mean squared error (MSE) of an estimator W of θ is

MSEθ(W) = Eθ

[
(W − θ)2].
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The MSE is the average squared deviation between W and the true parameter θ. It decomposes

as

Eθ(W − θ)2 = Varθ(W) +
(
Eθ(W)− θ

)2
= Varθ(W) + Biasθ(W)2.

This decomposition shows that the MSE combines two aspects of estimation quality:

• variance (precision), and

• bias (accuracy).

Because these components may trade off against one another, an estimator with small bias but

large variance may be worse in MSE than a biased estimator with lower variance.

For unbiased estimators, the decomposition reduces to

MSEθ(W) = Varθ(W).

Example (Normal MSE). Let X1, . . . , Xn be i.i.d. N (µ, σ2). The statistics X̄ and S2 are unbiased:

E(X̄) = µ, E(S2) = σ2.

Hence their MSEs equal their variances:

E(X̄ − µ)2 = Var(X̄) =
σ2

n
,

E(S2 − σ2)2 = Var(S2) =
2σ4

n − 1
.

Example (Normal MSE — MLE for σ2). Consider instead the MLE for σ2:

σ̂2 =
1
n

n

∑
i=1

(Xi − X̄)2 =
n

n − 1
S2.

Its expectation is

E(σ̂2) = E

(
n − 1

n
S2
)
=

n − 1
n

σ2,

so the estimator is biased downward. However, the variance is

Var(σ̂2) = Var
(

n − 1
n

S2
)
=

(
n − 1

n

)2

Var(S2) =
2(n − 1)σ4

n2 .

Combining bias and variance gives

E(σ̂2 − σ2)2 =
2(n − 1)σ4

n2 +

(
n − 1

n
σ2 − σ2

)2

=

(
2n − 1

n2

)
σ4.

Since

E(σ̂2 − σ2)2 < E(S2 − σ2)2,
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the MLE for σ2 has a smaller MSE than S2, even though it is biased.

Best Unbiased Estimators

The idea of identifying a “best” estimator in terms of mean squared error (MSE) is appealing,

but it is only feasible once we restrict attention to a particular class of estimators. A natural

restriction is the class of unbiased estimators. Within this class, comparing two estimators re-

duces to comparing their variances: the unbiased estimator with the smallest variance is then

the best.

Definition (Best Unbiased Estimator; UMVUE). An estimator W∗ is a best unbiased estimator of

a function τ(θ) if:

Eθ(W∗) = τ(θ) for all θ,

and for any other unbiased estimator W satisfying Eθ(W) = τ(θ), we have

Varθ(W∗) ≤ Varθ(W) for all θ.

Such an estimator is also called a uniform minimum variance unbiased estimator (UMVUE) of τ(θ).

Note. A UMVUE may not exist, and when it exists it may not be unique.

A useful strategy for finding the best unbiased estimator is to rely on a lower bound for

the variance of all unbiased estimators. Last week we studied the Cramér–Rao lower bound

(CRLB). Any unbiased estimator that achieves this bound must be the best unbiased estimator.

However, the CRLB may not always be attainable. In some models, no unbiased estimator

reaches the bound. A standard illustration comes from the normal distribution: the CRLB for

σ2 (equal to 2σ4/n) is attainable only when µ is known. If µ is unknown, no unbiased estimator

of σ2 can attain this lower bound.

Loss Functions

The mean squared error is one particular example of a loss function. Loss functions are part of

the broader framework of decision theory.

After observing data X = x, drawn from f (x | θ) with θ ∈ Θ, the statistician chooses an

action a in an action space A. In point estimation, the action represents the proposed estimate.

The loss incurred from reporting a when the true parameter is θ is denoted L(θ, a), and should

be small whenever a is close to θ.

Common loss functions include:

• Absolute error loss:

L(θ, a) = |a − θ|.

• Squared error loss:

L(θ, a) = (a − θ)2.
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More general asymmetric loss functions may penalize overestimation and underestimation

differently.

Risk Functions

In decision-theoretic analysis, the quality of an estimator is described by its risk function:

R(θ, δ) = Eθ

[
L(θ, δ(X))

]
.

For a given θ, R(θ, δ) is the expected loss incurred if estimator δ is used.

We prefer estimator δ1 to δ2 if

R(θ, δ1) < R(θ, δ2) for all θ ∈ Θ.

For squared error loss, the risk coincides with the mean squared error:

R(θ, δ) = Eθ

[
(δ(X)− θ)2] = Varθ(δ(X)) +

(
Biasθ(δ(X))

)2.

Example (Stein’s Loss). Assume X1, . . . , Xn are i.i.d. with finite variance σ2. Stein’s loss for

estimating σ2 is

L(σ2, a) =
a

σ2 − 1 − log
( a

σ2

)
.

Consider estimators of the form δb = bS2, where S2 is the usual unbiased estimator of variance.

Then the risk under Stein’s loss is

R(σ2, δb) = E

(
bS2

σ2 − 1 − log
(

bS2

σ2

))
= b E

(
S2

σ2

)
− 1 − E

[
log
(

bS2

σ2

)]
.

Since E(S2/σ2) = 1,

R(σ2, δb) = b − log b − 1 − E

[
log
(

S2

σ2

)]
.

The expression is minimized at b = 1, so δ1 = S2 is optimal among estimators of the form bS2.

Bayes Risk

From Week 7, recall that a Bayesian framework evaluates estimators by averaging over the

posterior distribution. Given a prior π(θ) and data X, the posterior is π(θ | X). The Bayes risk

of an estimator T is the expected posterior loss:

R(T | X) =
∫

Θ
ℓ(T, θ)π(θ | X) dθ.

For a given loss function ℓ(T, θ), the optimal Bayes estimator is the one that minimizes R(T |
X).
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Example (7.3.28). With squared error loss,∫
Θ
(θ − a)2 π(θ | X) dθ = E

[
(θ − a)2 | X

]
.

This is minimized at a = E(θ | X), the posterior mean. Thus, under squared error loss, the

Bayes estimator is the posterior expectation.
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Week 9: Linear Regression

Introduction to Simple Linear Regression

In simple linear regression, we study the functional dependence of one variable on another.

Given observed pairs (Xi, Yi), the model postulates a linear relationship of the form

Yi = α + βXi + ε i,

where:

• Yi is the response (dependent) variable,

• Xi is the predictor (independent) variable,

• α is an unknown intercept,

• β is an unknown slope,

• ε i is a disturbance term with E[ε i] = 0.

Population Regression Function

The expected value of Yi conditional on Xi = xi is

E(Yi | Xi = xi) = α + βxi.

This expression is known as the population regression function. It represents the conditional

expectation of Y given X = x, under the assumption that the relationship between Y and X is

linear in the parameters.

Summarizing Sample Data

Given sample data (x1, y1), . . . , (xn, yn), we define the sample means

x̄ =
1
n

n

∑
i=1

xi, ȳ =
1
n

n

∑
i=1

yi.

We also define the sums of squares:

Sxx =
n

∑
i=1

(xi − x̄)2, Syy =
n

∑
i=1

(yi − ȳ)2,

and the cross-product sum

Sxy =
n

∑
i=1

(xi − x̄)(yi − ȳ).
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Least Squares Estimation

A residual ei measures the vertical distance between each data point (xi, yi) and the fitted line:

ei = yi − (α + βxi).

The sum of squared residuals (SSR) is

SSR =
n

∑
i=1

e2
i =

n

∑
i=1

(
yi − (α + βxi)

)2.

The least squares estimators of α and β minimize SSR with respect to both parameters.

Derivative with Respect to the Intercept

The first-order condition with respect to α is:

∂SSR
∂α

= −2
n

∑
i=1

(yi − (α + βxi)) = 0.

Simplifying,
n

∑
i=1

yi = nα + β
n

∑
i=1

xi,

which yields

α = ȳ − βx̄.

Derivative with Respect to the Slope

The first-order condition with respect to β is:

∂SSR
∂β

= −2
n

∑
i=1

xi(yi − (α + βxi)) = 0.

Substituting α = ȳ − βx̄ and simplifying gives

β =
∑n

i=1(xi − x̄)(yi − ȳ)
∑n

i=1(xi − x̄)2 =
Sxy

Sxx
.

Least Squares Estimates

Putting everything together:

β̂ =
Sxy

Sxx
, α̂ = ȳ − β̂ x̄.

These coefficients define the fitted line ŷi = α̂ + β̂xi, which minimizes the sum of squared

residuals.
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Residuals and Their Properties

Residuals are defined as

ei = yi − α̂ − β̂xi.

Two key properties follow directly from the first-order conditions:

n

∑
i=1

ei = 0,
n

∑
i=1

(xi − x̄)ei = 0.

These identities express that the residuals sum to zero and are orthogonal to the regressor

(after centering).

Three Sums of Squares

To evaluate the performance of least squares, we compare the sum of squared residuals with

the total variation in yi.

Starting from the fitted model

yi = α̂ + β̂xi + ei,

we subtract ȳ and use α̂ = ȳ − β̂x̄ to obtain

yi − ȳ = β̂(xi − x̄) + ei.

This decomposition implies

n

∑
i=1

(yi − ȳ)2 = β̂2
n

∑
i=1

(xi − x̄)2 +
n

∑
i=1

e2
i .

We define:

SST = SSE + SSR,

where:

• SST: Total Sum of Squares,

• SSE: Explained Sum of Squares,

• SSR: Sum of Squared Residuals.

Coefficient of Determination R2

The coefficient of determination measures the proportion of variance explained by the model:

R2 =
SSE
SST

=
β̂2 ∑n

i=1(xi − x̄)2

∑n
i=1(yi − ȳ)2 .
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Alternatively, using Sxy and Sxx:

R2 =
(∑n

i=1(xi − x̄)(yi − ȳ))2

(∑n
i=1(xi − x̄)2) (∑n

i=1(yi − ȳ)2)
.

Another common expression is:

R2 = 1 − ∑n
i=1 e2

i

∑n
i=1(yi − ȳ)2 .

This makes clear that 0 ≤ R2 ≤ 1, and that minimizing the sum of squared residuals is

equivalent to maximizing R2.

Interpretation of the Least Squares Line

If x is the predictor and y is the response, the least squares line yields predictions of y based on

x.

The fitted line minimizes the total vertical distance between observed points and the re-

gression line.

Importantly, least squares is primarily a method for fitting; without further assumptions,

it does not automatically provide statistical inference such as confidence intervals, hypothesis

testing, or causal interpretation.

⇒ The method provides a best-fitting line for the data.

⇒ Additional assumptions are needed for inference.

Least Squares in Matrix Form

The linear model can be written compactly as

y = Xβ + ε,

and the residual vector as

e = y − Xβ̂.

Matrix dimensions:

• y: n × 1 vector of observations,

• X: n × k matrix of predictors,

• β: k × 1 vector of parameters,

• e: n × 1 vector of residuals.
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Least Squares Criterion

The sum of squared residuals in matrix form is

S(β̂) = e′e = (y − Xβ̂)′(y − Xβ̂) = y′y − y′Xβ̂ − β̂′X′y + β̂′X′Xβ̂.

Taking the derivative with respect to β̂:

∂S(β̂)

∂β̂
= −2X′y + 2X′Xβ̂ = 0.

Solving:

X′Xβ̂ = X′y, β̂ = (X′X)−1X′y.

This is the least squares estimator of β.

Note: For (X′X)−1 to exist, X must have full column rank k, which requires n ≥ k.

Least Squares as a Projection

The least squares estimator can be viewed as an orthogonal projection of the data vector y ∈ Rn

onto the column space of X, denoted by

S(X) = {Xa : a ∈ Rk}.

Intuitively, S(X) is the set of all linear combinations of the regressors: every element of S(X)

is a “candidate fitted value” vector that one can obtain by choosing some coefficient vector a.

We know that the least squares estimator satisfies

β̂ = (X′X)−1X′y, ŷ = Xβ̂.

Substituting the expression for β̂, we obtain

ŷ = X(X′X)−1X′y.

This shows that the fitted values can be written as a linear transformation of y:

ŷ = Hy,

where

H = X(X′X)−1X′

is called the hat matrix or projection matrix onto S(X).

39



Residual Vector and Annihilator Matrix

The residual vector is

e = y − Xβ̂ = y − ŷ.

Using the expression for ŷ, we can rewrite this as

e = y − X(X′X)−1X′y = (I − X(X′X)−1X′)y.

Define the annihilator matrix M by

M = I − X(X′X)−1X′.

Then

e = My.

The terminology “annihilator” reflects that M kills (annihilates) the component of any vector

lying in S(X): it removes the part that is explainable by X, leaving only the orthogonal residual

part.

Algebraic Properties of M

The matrix M has the following properties:

• Symmetric: M = M′.

• Idempotent: M2 = M.

Idempotence captures the idea of a projection: once a vector has been projected, projecting it

again does nothing.

Moreover,

MX = 0,

so the columns of X lie in the null space of M. This means that the residuals are orthogonal to

the space spanned by X.

Using e = My and MX = 0, we have

X′e = X′My = 0,

which expresses the familiar least squares normal equations: each regressor is orthogonal to

the residual vector. Geometrically, the regression plane S(X) and the residual vector e meet at

a right angle.
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Properties of the Projection Matrix and Residuals

We have already defined the hat matrix

H = X(X′X)−1X′,

so that ŷ = Hy and e = My with M = I − H.

The matrix H satisfies:

• H = H′ (symmetric),

• H2 = H (idempotent),

• H + M = I,

• HM = MH = 0.

Thus H and M are complementary orthogonal projections:

• H projects onto S(X),

• M projects onto S⊥(X), the subspace orthogonal to S(X).

Using H + M = I, we can decompose y as

y = Hy + My = ŷ + e.

Because H and M project onto orthogonal subspaces, we also have

ŷ′e = 0,

which means that the fitted values and the residuals are orthogonal vectors in Rn.

Geometric Interpretation of Least Squares

The least squares method admits a clear geometric interpretation in Rn:

• Think of the data vector y as a point in Rn.

• The subspace S(X), spanned by the columns of X, is the set of all linear combinations of

the regressors. Any vector Xa in S(X) represents what the data would look like if it were

perfectly explained by X with coefficients a.

• The residual vector is e = y − ŷ, where ŷ ∈ S(X). The length squared of the residual is

e′e = ∥e∥2,

the squared distance from y to the regression subspace S(X).
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The least squares estimator chooses ŷ = Xβ̂ in such a way that e′e is minimized. Geometri-

cally, this means:

• ŷ is the orthogonal projection of y onto S(X);

• e is the component of y lying in the orthogonal complement S⊥(X).

Let

S(X) = {Xa : a ∈ Rk}, S⊥(X) = {z ∈ Rn : X′z = 0}.

Then:

• H projects any y onto S(X): ŷ = Hy ∈ S(X);

• M projects any y onto S⊥(X): e = My ∈ S⊥(X);

• The decomposition

y = ŷ + e, ŷ ∈ S(X), e ∈ S⊥(X),

expresses y as the sum of two orthogonal components: the explained part and the unex-

plained (residual) part.

Because of orthogonality, we have a Pythagorean identity:

∥y∥2 = ∥ŷ∥2 + ∥e∥2,

which, after suitable centering, underlies the decomposition

SST = SSE + SSR.

Thus the usual variance decomposition in regression is just a geometric statement about the

lengths of orthogonal vectors in Rn.

The following picture gives a schematic geometric interpretation of least squares as an

orthogonal projection of y onto S(X):

S(X)

y

ŷ

e

Figure 2: Geometric view: y decomposed into ŷ ∈ S(X) and e ∈ S⊥(X).
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Derivation of R2

Definition of R2. The coefficient of determination R2 measures the fraction of the total sample

variation in y that is explained by the model.

In matrix form, the total sample variation can be written as

SST = y′Ny,

where

N = I − 1
n

11′

is idempotent and 1 is the n × 1 vector of ones. Note that Ny has components yi − ȳ, so

y′Ny = ∑n
i=1(yi − ȳ)2.

Decomposition of total variation (SST). Using the regression decomposition

y = Xβ̂ + e = ŷ + e,

we obtain

y′Ny = β̂′X′NXβ̂ + e′e,

because β̂′X′Ne = 0 (since Ne = e and X′e = 0). We then define

• SSE = β̂′X′NXβ̂: Sum of Squares Explained,

• SSR = e′e: Sum of Squares Residual.

Hence,

SST = SSE + SSR.

Coefficient of Determination R2 and Adjusted R2

Definition of R2. Using the decomposition above,

R2 =
SSE
SST

=
β̂′X′NXβ̂

y′Ny
= 1 − e′e

y′Ny
= 1 − SSR

SST
.

Interpretation.

• R2 represents the proportion of the variance in y that is explained by the model.

• 0 ≤ R2 ≤ 1, with higher values indicating a better in-sample fit.

Adjusted R2. To account for the number of regressors k and penalize overfitting, we define

the adjusted coefficient of determination:

R̄2 = 1 − e′e/(n − k)
y′Ny/(n − 1)

= 1 − n − 1
n − k

(1 − R2).
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Adjusted R2 is therefore more appropriate for comparing models with different numbers of

predictors, since it increases only when the added variables improve the fit sufficiently after

accounting for the loss of degrees of freedom.

Frisch–Waugh–Lovell (FWL) Theorem

There are several additional results that can be derived without imposing further statistical

assumptions on the error term. A key one in econometrics is the Frisch–Waugh–Lovell (FWL)

Theorem, which characterizes how OLS behaves when we include control variables.

Linear Regression Model and Partition of Regressors

Consider the linear regression model

y = X1β1 + X2β2 + ε,

where:

• y: dependent variable (an n × 1 vector);

• X1: regressors of interest;

• X2: control variables;

• ε: error term.

We can think of X = [X1 X2] as the full regressor matrix, partitioned into variables whose

coefficients we care about directly (β1) and variables that we include only as controls (β2).

Key Statement of the FWL Theorem

Instead of estimating the full system at once, the OLS coefficient β̂1 can be obtained by the

following three-step procedure:

1. Regress y on X2 and obtain the residuals ỹ.

2. Regress each column of X1 on X2 and obtain the residuals X̃1.

3. Regress ỹ on X̃1 to obtain β̂1.

Why does this work?

• The FWL theorem uses the orthogonality properties of OLS residuals.

• By “partialling out” X2 from both y and X1, we remove the influence of X2, isolating the

remaining linear relationship between y and X1.

• The result holds because OLS minimizes the residual sum of squares and enforces or-

thogonality between regressors and residuals.
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Algebraic Proof of the FWL Theorem

Let X = [X1 X2] and consider

y = X1β1 + X2β2 + ε.

Define

P2 = X2(X′
2X2)

−1X′
2, M2 = I − P2,

so that P2 projects onto the column space of X2 and M2 projects onto its orthogonal comple-

ment.

The OLS first-order conditions for the full model are

X′(y − Xβ̂) = 0,

which, in block form, are equivalent toX′
1(y − X1 β̂1 − X2 β̂2) = 0,

X′
2(y − X1 β̂1 − X2 β̂2) = 0.

Now pre-multiply the first equation by M2:

X′
1M2(y − X1 β̂1 − X2 β̂2) = X′

1(I − P2)(y − X1 β̂1 − X2 β̂2) = 0.

Using linearity and the fact that M2X2 = 0 (since M2 annihilates the space spanned by X2), we

obtain

X′
1M2y − X′

1M2X1 β̂1 = 0 =⇒ X′
1M2X1 β̂1 = X′

1M2y. (∗)

Define

X̃1 := M2X1, ỹ := M2y.

Since M2 is symmetric, M′
2 = M2, we can rewrite (∗) as

X̃′
1X̃1 β̂1 = X̃′

1ỹ.

These are exactly the normal equations of the regression of ỹ on X̃1. Therefore, the coefficient β̂1

obtained from the full regression on [X1 X2] coincides with the coefficient from the regression

of residualized y on residualized X1.

Implications and Applications

The FWL theorem is widely used in applied econometrics, particularly for understanding

causal relationships and for interpreting regression coefficients with controls.

• Suppose you are interested in the relationship between y and X1, but you know that there

is a set of important control variables X2.
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• Instead of plotting y against X1, you can:

1. residualize y with respect to X2, obtaining ỹ,

2. residualize X1 with respect to X2, obtaining X̃1,

3. plot ỹ against X̃1.

This plot visualizes the “partialled-out” relationship, i.e. the part of y and X1 that remains

after removing linear effects of X2.

• For instance, one might plot residualized wages (after controlling for age, gender, race,

etc.) against residualized years of education: the slope in this plot corresponds to the

education coefficient in the full regression.

OLS: from Line Fitting to Statistics

Up to now, least squares has been introduced as a purely geometric or algebraic line-fitting

procedure: choose β̂ to minimize the sum of squared residuals and obtain the projection ŷ =

Xβ̂.

To turn this into a statistical procedure, we now add assumptions about the data-generating

process and interpret OLS as an estimator of an underlying population parameter β. In partic-

ular, we show how OLS arises as:

• a method of moments (MoM) estimator,

• an unbiased estimator under suitable exogeneity assumptions,

• an estimator with a well-defined (finite-sample or asymptotic) variance, which can be

computed under homoskedasticity or in a heteroskedasticity-robust way.

OLS as a Method of Moments Estimator

Moment Conditions and Estimator

Ordinary Least Squares (OLS) can be interpreted as a method of moments estimator.

Assume the linear model

y = Xβ + ε,

and impose the moment (exogeneity) condition

E[X′ε] = 0 ⇐⇒ E[X′(y − Xβ)] = 0.

Intuitively, this assumption says that the regressors X are uncorrelated with the error term ε;

there is no systematic relationship between the regressors and the part of y left unexplained by

the model.
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The method of moments idea is to replace the population expectation by its sample analog

and then solve for β. The sample analog of the moment condition is

1
n

n

∑
i=1

Xi(yi − X′
i β) = 0 ⇐⇒ X′(y − Xβ) = 0.

Solving these equations yields

β̂ = (X′X)−1X′y,

which is exactly the OLS estimator. Thus OLS is the method of moments estimator associated

with the (vector) moment condition E[X′(y − Xβ)] = 0.

Unbiasedness of OLS

The OLS estimator can be written as

β̂ = (X′X)−1X′y = β + (X′X)−1X′ε.

To study its expectation, it is convenient to condition on X and then apply the iterated law of

expectations:

E[β̂] = E
[

E[β̂ | X]
]
.

Substituting the expression for β̂,

E[β̂ | X] = β + (X′X)−1X′E[ε | X].

Assume exogeneity: E[ε | X] = 0. Then

E[β̂ | X] = β =⇒ E[β̂] = β.

Hence OLS is unbiased under the conditional mean independence assumption E[ε | X] = 0.

Variance of the OLS Estimator

We now derive the variance of β̂. Using the law of total variance,

Var(β̂) = E
[

Var(β̂ | X)
]
+ Var

(
E[β̂ | X]

)
.

From the previous step, E[β̂ | X] = β, so

Var
(
E[β̂ | X]

)
= 0

and

Var(β̂) = E
[

Var(β̂ | X)
]
.
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Using β̂ = β + (X′X)−1X′ε, we obtain

Var(β̂ | X) = (X′X)−1X′ Var(ε | X)X(X′X)−1.

Homoskedasticity. Suppose

Var(ε | X) = σ2 I

for some scalar σ2 (errors have constant variance and are uncorrelated across observations).

Then

Var(β̂ | X) = σ2(X′X)−1,

and consequently

Var(β̂) = σ2 E
[
(X′X)−1].

In practice, we estimate σ2 by the residual-based estimator

s2 =
1

n − k
e′e,

and use

V̂ar(β̂) = s2(X′X)−1

as the estimated covariance matrix under homoskedasticity.

Heteroskedasticity. More generally, we may have

Var(ε | X) = Ω,

where Ω is an n × n covariance matrix that allows for heteroskedasticity (and possibly corre-

lation) across observations. Then

Var(β̂ | X) = (X′X)−1X′ΩX(X′X)−1.

This expression motivates heteroskedasticity-robust variance estimators.

OLS as a Method of Moments Estimator (Sandwich Variance)

Finally, we connect OLS to the general method of moments / GMM variance formula.

Recall: for a just-identified MoM/GMM estimator θ̂ with moment function m(Zi, θ) ∈ Rk,

the asymptotic variance can be written as

V̂ =
(
Q̂−1)′Ω̂ Q̂−1,

where

Ω̂ =
1
n

n

∑
i=1

m(Zi, θ̂)m(Zi, θ̂)′, Q̂ =
1
n

n

∑
i=1

∂

∂θ
m(Zi, θ̂)′.
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For OLS, take Zi = (Xi, yi) and

m(Xi, yi, β) = Xi(yi − X′
i β),

so that the moment condition E[m(Xi, yi, β)] = 0 is exactly E[Xi(yi − X′
i β)] = 0.

With residuals ei = yi − X′
i β̂, we have

Ω̂ =
1
n

n

∑
i=1

e2
i XiX′

i .

The Jacobian with respect to β is

∂

∂β
m(Xi, yi, β)′ = −XiX′

i ,

so

Q̂ = − 1
n

n

∑
i=1

XiX′
i = − 1

n
X′X.

Substituting these into the GMM variance formula yields the heteroskedasticity-robust

(sandwich) covariance estimator:

V̂ =

(
1
n

X′X
)−1

(
1
n

n

∑
i=1

e2
i XiX′

i

)(
1
n

X′X
)−1

.

This expression coincides with the familiar Eicker–White heteroskedasticity-robust vari-

ance estimator for OLS: it replaces σ2 I with an empirical estimate of Ω constructed from the

squared residuals e2
i and the regressors Xi.
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