
ECON 671 — Metrics

Expanded Notes

Week 1 - Class 1

Sample space and events

Definition (Sample space). The set of all possible outcomes of an experiment is the sample space

S.

Definition (Event). An event is any subset A ⊆ S. Event A occurs if the realized outcome s ∈ S

lies in A.

Example. Fair die: S = {1, 2, 3, 4, 5, 6}. Two coin tosses: S = {HH, HT, TH, TT}.

Countable and uncountable sets

Definition (At most countable and countably infinite). A set A is at most countable if it is finite

or there exists a bijection f : A → B with some subset B ⊆ N (equivalently, a subset of Z). If

A is infinite and there is a bijection A → N, then A is countably infinite.

Proposition (N and Z have the same cardinality). There exists a bijection g : N → Z, for instance

g(0) = 0, g(2k − 1) = k, g(2k) = −k (k ∈ N, k ≥ 1).

Proof. Surjectivity: every z ∈ Z is hit by g (positives via 2z − 1, negatives via 2|z|, and 0 via 0).

Injectivity: distinct n map to distinct elements because the images fall in disjoint blocks {0},

{1, 2, 3, . . .}, and {−1,−2,−3, . . .}.

Theorem 1 (Cantor: (0, 1) is uncountable). There is no bijection between (0, 1) and N. In particular,

R is uncountable.

Diagonal argument. Assume (0, 1) = {x1, x2, . . .} is a list. Write xn = 0.dn1dn2dn3 . . . in decimal

form, choosing representations that do not end with a tail of 9’s. Define a new number y =

0.c1c2c3 . . . by taking cn ∈ {1, 2} with cn ̸= dnn. Then y ∈ (0, 1) and y differs from each xn in

the n-th digit, so y ̸= xn for all n, a contradiction. Hence (0, 1) is uncountable.
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Remark. Any nondegenerate interval [a, b] is uncountable (there is a bijection with (0, 1) via

an affine map).

Set operations

For A, B, C ⊆ S:

A ∪ B = {x : x ∈ A or x ∈ B}, A ∩ B = {x : x ∈ A and x ∈ B}, Ac = {x ∈ S : x /∈ A}.

Theorem 2 (Algebra of sets). For all A, B, C ⊆ S:

a) Commutativity: A ∪ B = B ∪ A and A ∩ B = B ∩ A.

b) Associativity: A ∪ (B ∪ C) = (A ∪ B) ∪ C and similarly for ∩.

c) Distributive laws: A∩ (B∪C) = (A∩ B)∪ (A∩C) and A∪ (B∩C) = (A∪ B)∩ (A∪C).

d) De Morgan (finite): (A ∪ B)c = Ac ∩ Bc and (A ∩ B)c = Ac ∪ Bc.

Proof of (a): commutativity. Show A ∪ B ⊆ B ∪ A. If x ∈ A ∪ B, then x ∈ A or x ∈ B, hence

x ∈ B ∪ A. The reverse inclusion is identical. For intersections: if x ∈ A ∩ B then x ∈ A and

x ∈ B, so x ∈ B ∩ A, and conversely.

Proof of (d): De Morgan (finite). We prove (A ∪ B)c = Ac ∩ Bc by double inclusion. If x ∈ (A ∪
B)c, then x /∈ A and x /∈ B, so x ∈ Ac ∩ Bc. Conversely, if x ∈ Ac ∩ Bc then x /∈ A and x /∈ B,

hence x /∈ A ∪ B, i.e., x ∈ (A ∪ B)c. The other identity is analogous.

Countable unions and intersections

For a family {Ai}i≥1 of subsets of S:

∞⋃
i=1

Ai = {x : ∃i, x ∈ Ai},
∞⋂

i=1

Ai = {x : ∀i, x ∈ Ai}.

Example. In S = (0, 1], let Ai = [1/i, 1]. Then

∞⋃
i=1

Ai = (0, 1] and
∞⋂

i=1

Ai = {1}.

Indeed, any x ∈ (0, 1] belongs to Ai for large enough i, while any x < 1 eventually falls outside

Ai when i > 1/x.

Theorem 3 (De Morgan (general)). For any index set Γ and family {Ai}i∈Γ:(⋃
i∈Γ

Ai

)c
=
⋂
i∈Γ

Ac
i ,

(⋂
i∈Γ

Ai

)c
=
⋃
i∈Γ

Ac
i .
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Proof. Using quantifiers:

x ∈
(⋃

i

Ai

)c
⇐⇒ ¬(∃i : x ∈ Ai) ⇐⇒ (∀i : x /∈ Ai) ⇐⇒ x ∈

⋂
i

Ac
i .

The other identity follows by negating the universal quantifier.

Disjointness and partitions

Definition (Disjoint sets). A and B are disjoint if A ∩ B = ∅. A family {Bi} is pairwise disjoint if

Bi ∩ Bj = ∅ for i ̸= j.

Definition (Partition). A family {Bi}i∈I is a partition of S if (i) it is pairwise disjoint and (ii)⋃
i∈I Bi = S.

Theorem 4 (Partitioning theorem). If {Bi}i∈I is a partition of S, then for every A ⊆ S:

1) A =
⋃
i∈I

(A ∩ Bi).

2) The sets Ai := A ∩ Bi are pairwise disjoint.

Proof of 1). (⊆) Take x ∈ A. Since {Bi} partitions S, there is a unique i with x ∈ Bi. Then

x ∈ A ∩ Bi ⊆
⋃

i(A ∩ Bi). (⊇) If x ∈ ⋃i(A ∩ Bi), some i satisfies x ∈ A ∩ Bi, hence x ∈ A.

Proof of 2). If i ̸= j and x ∈ (A ∩ Bi)∩ (A ∩ Bj), then x ∈ Bi ∩ Bj = ∅, a contradiction. Thus the

intersections are empty.

Images and preimages

Definition (Image and preimage). Let f : A → B. For Y ⊆ A and X ⊆ B,

f (Y) = { f (y) : y ∈ Y}, f−1(X) = {a ∈ A : f (a) ∈ X}.

The preimage is always defined, even if f is not invertible.

Example. If f : R → R with f (x) = x2, then f−1({−1}) = ∅, f−1({0}) = {0}, and f−1([1, 4]) =

[−2,−1] ∪ [1, 2].

Proposition (Image/preimage laws). For Y, Z ⊆ A and X, W ⊆ B:

f (Y ∪ Z) = f (Y) ∪ f (Z), f (Y ∩ Z) ⊆ f (Y) ∩ f (Z),

f−1(X ∪ W) = f−1(X) ∪ f−1(W), f−1(X ∩ W) = f−1(X) ∩ f−1(W),

f−1(Xc) =
(

f−1(X)
)c.

Moreover, f (Y ∩ Z) ⊆ f (Y) ∩ f (Z) can be strict when f is not injective.
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Proof. All identities (and the inclusion) follow by double inclusion from the definitions. For

instance, if a ∈ f−1(X ∪ W), then f (a) ∈ X ∪ W, i.e., f (a) ∈ X or f (a) ∈ W, hence a ∈ f−1(X)

or a ∈ f−1(W), so a ∈ f−1(X) ∪ f−1(W).
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Week 1 — Class 2

Sets, maps, image and preimage

Let f : A → B be any map between sets (read carefully the domain and codomain).

• For Y ⊆ A, the image is f (Y) = { f (y) : y ∈ Y} ⊆ B.

• For X ⊆ B, the preimage is f−1(X) = {a ∈ A : f (a) ∈ X} ⊆ A.

Preimages exist for any f (no invertibility needed) and are the key notion in measurability.

Example. Let f : {1, 2, 3} → {a, b} with f (1) = a, f (2) = a, f (3) = b. Then f ({1, 3}) = {a, b}
and f−1({a}) = {1, 2}.

The σ-algebras and power sets

Let S be a base set. Its power set P(S) is the collection of all subsets of S. If S has a countable

number of elements, say N, the power set has 2N elements.

A collection B ⊆ P(S) is a σ-algebra if:

1. ∅ ∈ B and S ∈ B,

2. if A ∈ B then Ac ∈ B,

3. if A1, A2, · · · ∈ B then
⋃∞

n=1 An ∈ B.

Key 1: The first to properties means S ∈ B because ∅c = S.

Key 2: By De Morgan, B is also closed under countable intersections.

Proof. By De Morgan’s law,
∞⋂

n=1

An =

(
∞⋃

n=1

A c
n

)c

.

Since An ∈ B, we have A c
n ∈ B (closure under complements), and since B is closed under

countable unions,
⋃∞

n=1 A c
n ∈ B. Taking the complement once more keeps us in B, proving the

claim.

Smallest and largest. The smallest σ-algebra on S is {∅, S}; the largest is P(S).

Key question: “Do we need P(S) to be countable?” No. “Countable” in the definition refers

to the operations (countable unions/intersections), not to the size of the collection. P(S) can be

uncountable and still be a perfectly valid σ-algebra. In practice, when S is uncountable (e.g.,

S = R), we typically do not use P(S) because it contains non-measurable sets; we work with a

manageable σ-algebra such as the Borel σ-algebra (or its completion under Lebesgue measure).

5



Example (Finite S). If S = {1, 2, 3}, then B = {∅, {1}, {2, 3}, S} is a σ-algebra: check comple-

ments and (finite/ countable) unions.

Proposition (Intersection of σ-algebras). Let {Ai}i∈I be σ-algebras on the same base set S, and define

B :=
⋂
i∈I

Ai = {A ⊆ S : A ∈ Ai for all i ∈ I}.

Then B is a σ-algebra on S.

Proof. We verify the three axioms algebraically for B.

(1) ∅, S ∈ B. Since each Ai is a σ-algebra on S, ∅ ∈ Ai and S ∈ Ai for every i ∈ I. Because

they are in every set, ∅, S ∈ ⋂i∈I Ai = B.

(2) Closure under complements. Let A ∈ B. Because A is in every set, A ∈ Ai for every i ∈ I.

Because each Ai is a σ-algebra, Ac ∈ Ai for every i ∈ I. It follows that, Ac ∈ ⋂i∈I Ai = B.

(3) Closure under countable unions. Let (An : n ∈ N) ⊆ B. For each n and each i ∈ I we have

An ∈ Ai. Since every Ai is a σ-algebra,
⋃∞

n=1 An ∈ Ai for every i ∈ I. By last,
⋃∞

n=1 An ∈⋂
i∈I Ai = B.

B is a σ-algebra on S.

Generated σ-algebras

Two levels. Fix a base set S.

• Elements of S are points x ∈ S.

• Elements of P(S) are sets of points A ⊆ S.

• A σ-algebra A is a set of sets of points, i.e. A ⊆ P(S).

• A generator M ⊆ P(S) is also a set of sets of points.

So the relation M ⊆ A is a subset relation between two collections of subsets of S.

Definition (generated σ-algebra). Given M ⊆ P(S), define the family of all σ-algebras that

contain M:

S(M) :=
{
A ⊆ P(S) : A is a σ-algebra on S and M ⊆ A

}
.

The σ-algebra generated by M is

σ(M) :=
⋂

A∈S(M)

A.

Why this intersection is “the smallest”. (i) M ⊆ σ(M) because every A ∈ S(M) contains

M.
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(ii) If B is any σ-algebra with M ⊆ B, then B ∈ S(M), hence σ(M) ⊆ B.

Together, (i)–(ii) show σ(M) is the unique smallest σ-algebra containing M.

Example (Singleton generator on a finite set). Let S = {1, 2, 3} and M = {{1}}. Start with

{∅, S } ∪ M = {∅, S, {1}}. Close under complements: add {1}c = {2, 3}. Close under

unions/intersections: with {∅, S, {1}, {2, 3}}, any union/intersection stays in the same four

sets. No new sets appear, hence

σ(M) = {∅, {1}, {2, 3}, S}.

What is an element of what?

1, 2, 3︸ ︷︷ ︸
∈S

∈ {1}, {2, 3}︸ ︷︷ ︸
∈P(S)

∈ {∅, {1}, {2, 3}, S}︸ ︷︷ ︸
=σ(M)⊆P(S)

.

Here, {1} is an element of σ(M); σ(M) is a subset of P(S).

Why more generators can explode to P(S)? If M = {{1}, {2}} on the same S, then comple-

ments add {2, 3} and {1, 3}; unions/intersections generate {3} and every other subset; hence

σ(M) = P(S).

Borel as a generated σ − algebra (notation mirror). Let G = {(a, b) : a < b, a, b ∈ R} (all

open intervals). Then

S(G) =
{
A ⊆ P(R) : A is a σ-algebra and G ⊆ A

}
, B(R) =

⋂
A∈S(G)

A.

This explicitly encodes “the smallest σ-algebra containing all open intervals”.1

Borel on R. The Borel σ-algebra B(R) is the σ-algebra generated by all open intervals (a, b).

It contains open and closed sets, half-open intervals, countable unions/intersections of those,

and all sets obtainable from them by taking complements. (In metric spaces, one may equiva-

lently generate with open balls.)

Why not use P(R)? Because it is “too large”: it contains pathological non-measurable sets

for which a reasonable measure (like Lebesgue) cannot be defined consistently. Borel sets strike

a balance between expressiveness and tractability.

1Note to future me: I am not fully sure of understanding this properly. It might be helpful to revise and make
an intuition.
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Measures and measure spaces

Definition. (Measurable space, measurable sets)

Fix a sample space S. If B is a σ-algebra, then we call the pair (S,B) a measurable space, and the

elements of B are called measurable sets.

A measure space is a triple (S,B, µ) where B is a σ-algebra on S and µ : B → [0, ∞) ∪ {∞}
satisfies:

1. µ(∅) = 0

2. µ
(⋃∞

n=1 An

)
= ∑∞

n=1 µ(An) for disjoint An ∈ B

Example. Some common measure spaces:

• Counting measure on a countable S: µ(A) = |A| is the cardinality (possibly ∞).

• Dirac measure at x ∈ S: εx(A) = 1{x ∈ A} (this is a probability measure). Don’t get it.

• Lebesgue measure λ on Rn: generalizes length/area/volume; e.g. λ((a, b]) = b − a on

R.

Measurable maps

Definition. Let (S1,B1) and (S2,B2) be measurable spaces.2 A map f : S1 → S2 is measurable

(w.r.t. B1,B2) if

f−1(A2) ∈ B1 for all A2 ∈ B2.

That is, the preimages of measurable sets are measurable.

Remark (Terminology). When the codomain is (R,B(R)) (or R), one usually says measurable

function rather than measurable map.

Minimal intuition. “Events” live in the codomain: A2 ∈ B2. Measurability says: pulling

events back through f gives events in the domain: f−1(A2) ∈ B1. This is why a random

variable X : Ω → R is defined as a measurable map (Ω,F ) → (R,B(R)).

Preimage calculus. For any map f and sets A, B:

f−1
(⋃

i

Ai

)
=
⋃

i

f−1(Ai), f−1
(⋂

i

Ai

)
=
⋂

i

f−1(Ai), f−1(Ac) =
(

f−1(A)
)c.

Hence if f−1 sends a generator of B2 into B1, then it sends all of B2 into B1 (closure under

countable unions/complements).

2Typo check for future me: it’s metric spaces and Borel σ-algebra.
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Example (Indicator functions). Let (Ω,B1) be measurable and (R,B2) with Borel sets. For a

measurable set B ∈ B1, define IB : Ω → R by

IB(ω) =

1, ω ∈ B,

0, ω /∈ B.

Since IB only takes values in {0, 1}, for any A2 ∈ B2,

I−1
B (A2) =



∅, A2 ∩ {0, 1} = ∅,

B, A2 ∩ {0, 1} = {1},

Bc, A2 ∩ {0, 1} = {0},

Ω, A2 ∩ {0, 1} = {0, 1}.

Each right-hand set is in B1 (since B ∈ B1 and B1 is closed under complements; ∅, Ω ∈ B1), so

IB is measurable. Equivalently: {IB = 1} = B ∈ B1 and {IB = 0} = Bc ∈ B1.

Simple (step) functions

Definition (Simple function). Fix a measurable space (S,B). A function s : S → R is a simple

function (or step function) if it takes only finitely many values. Equivalently, there exist pairwise

disjoint measurable sets A1, . . . , An ∈ B and scalars c1, . . . , cn ∈ R such that

s(x) =
n

∑
i=1

ci 1Ai(x) for all x ∈ S.

We call s nonnegative if s(x) ≥ 0 for all x; in that case we can choose the representation with all

ci ≥ 0.

Intuition. A simple function is piecewise constant on a measurable partition {A1, . . . , An} of S.

Example. On S = R, the map s(x) = 3 1(0,1](x) + 1 1(1,2](x) is simple and nonnegative.

x

s(x)

0 1 2

1

3
3 on (0, 1]

1 on (1, 2]

0 elsewhere

Remark (What we use it for). Simple nonnegative functions are the building blocks of the
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Lebesgue integral: for s = ∑n
i=1 ci 1Ai with ci ≥ 0,

∫
S

s dµ =
n

∑
i=1

ci µ(Ai).

General nonnegative measurable functions are defined/integrated by approximating them

from below with simple ones.

Lebesgue integral

Let (S,B, µ) be a measure space and let A ∈ B be a measurable set. Define the indicator IA :

S → R by IA(x) = 1 if x ∈ A and 0 otherwise which is measurable.

Definition. (Integral of an indicator) The Lebesgue integral of IA with respect to µ is∫
S

IA dµ := µ(A).

Interpretation.

• Counting measure:
∫

IA d# = #(A) (número de elementos de A).

• Lebesgue measure:
∫

IA dλ = λ(A) (longitud/área/volumen de A).

• Probability:
∫

S IA dP = P(A), i.e., the probability of A under P, where B determines

which sets (events) are measurable.

From indicator functions, we can naturally extend to simple functions. If s = ∑n
i=1 ci 1Ai with

pairwise disjoint Ai ∈ B and ci ≥ 0, define

∫
S

s dµ :=
n

∑
i=1

ci µ(Ai).

A simple function is a finite–valued measurable function. Equivalently,3 it can be written as a

finite linear combination of indicators:

s(x) =
n

∑
i=1

ci 1Ai(x), Ai ∈ B.

Such s is measurable because sums and scalar multiples of measurable maps are measurable

(addition and scaling are continuous; compose with ( f , g) 7→ f + g).

We first restrict attention to the set of nonnegative simple functions,

S+ := { s : S → R | s simple and s ≥ 0 }.

3If s takes finitely many values {c1, . . . , cn}, set Ai := s−1({ci}); then Ai ∈ B, are pairwise disjoint, and s =
∑n

i=1 ci 1Ai . Conversely, any finite sum ∑i ci1Ai with Ai ∈ B is measurable and takes only values in {c1, . . . , cn}.
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This avoids undefined expressions like ∞−∞ and matches the way general nonnegative func-

tions will be built as limits from below. Moreover, if s ∈ S+ admits a decomposition with

pairwise disjoint Ai, then necessarily ci ≥ 0 (because s(x) = ci on Ai).

Definition (Integral of a nonnegative simple function). If s = ∑n
i=1 ci 1Ai with Ai ∈ B pairwise

disjoint and ci ≥ 0, define

∫
S

s dµ :=
n

∑
i=1

ci µ(Ai) ∈ [0, ∞) ∪ {∞}.

This value is well defined (independent of the particular representation): if s = ∑i ci1Ai =

∑j dj1Bj , refine to the disjoint partition {Ai ∩ Bj}i,j and both sums coincide.

Proposition (Basic properties on S+). Let s, t ∈ S+ (nonnegative simple functions) and a, b ≥ 0.

Then:

1. Nonnegativity and nullity:
∫

s dµ ≥ 0, and
∫

s dµ = 0 iff s = 0 a.e.

2. Homogeneity:
∫
(as) dµ = a

∫
s dµ.

3. Additivity:
∫
(s + t) dµ =

∫
s dµ +

∫
t dµ.

4. Monotonicity: If s ≤ t a.e., then
∫

s dµ ≤
∫

t dµ.

5. Restriction to a set: For E ∈ B,

∫
E

s dµ :=
∫

S
s 1E dµ =

n

∑
i=1

ci µ(Ai ∩ E).

6. Well-definedness (independence of representation): If s = ∑i ci1Ai = ∑j dj1Bj , then both

formulas give the same value.

Proof sketch (a bit beyond scope). Write s = ∑i ci1Ai with Ai disjoint and ci ≥ 0.

1. Since µ(Ai) ≥ 0, the sum is ≥ 0; if it equals 0, then µ(Ai) = 0 whenever ci > 0, hence

s = 0 a.e.

2.
∫
(as) =

∫
∑i(aci)1Ai = ∑i(aci)µ(Ai) = a ∑i ciµ(Ai).

3. Refine to a disjoint partition {Ai ∩ Bj}i,j for representations of s and t; use finite additivity

(a consequence of countable additivity of µ).

4. t − s ≥ 0 implies
∫
(t − s) ≥ 0, hence

∫
s ≤

∫
t.

5. Replace Ai by Ai ∩ E in the definition.

6. Use the common refinement {Ai ∩Bj}i,j; both sums reduce to ∑i,j(value on Ai ∩Bj) µ(Ai ∩
Bj).
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Lebesgue integral (beyond simple functions)

So far we can integrate nonnegative simple functions. For a general nonnegative measurable

function f : S → [0, ∞], we “integrate from below”: we build simple functions that sit under f

and climb up to it.

“From below” (what it means). We construct a sequence (sn)n≥1 of nonnegative simple func-

tions such that

0 ≤ s1 ≤ s2 ≤ · · · ≤ f and sn(x) ↑ f (x) for each x ∈ S.

Think of sn as a staircase with finer and finer steps that never overshoots f .

A concrete construction you can always use. For each n ∈ N, set

f (n)(x) := min{ f (x), n}, sn(x) := 2−n ⌊2 n f (n)(x)
⌋
.

Then each sn is simple (it only takes values in {0, 1/2n, . . . , n}), 0 ≤ sn ≤ f , and sn(x) ↑ f (x)

pointwise. This is exactly “approximate f from below by simple functions.”

Definition (Integral of a nonnegative measurable function). Let S+ be the set of nonnegative

simple functions on S. For a measurable f : S → [0, ∞],∫
S

f dµ := sup
{ ∫

S
h dµ : h ∈ S+, 0 ≤ h ≤ f

}
.

Reading it: take all simple functions that fit under f , integrate each, and keep the largest value

(the supremum).

Remark (Integrability (as on the slide)). We say that f is µ-integrable if
∫

S
f dµ < ∞.

x

y

f (x)

sn sits below f

Figure 1: Approximating f from below by simple “staircases” sn. The integral of f is the
supremum of the integrals of all such staircases.
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Lebesgue integral for general (signed) functions

Assume a measure space (S,B, µ). Define the space of integrable (absolutely integrable) func-

tions

L(µ) :=
{

f measurable :
∫

S
| f | dµ < ∞

}
.

Positive/negative parts. For a measurable f : S → R set

f+(x) := max{ f (x), 0}, f−(x) := max{− f (x), 0}.

Then f+, f− ≥ 0 are measurable and

f = f+ − f−, | f | = f+ + f−, f+ f− = 0 a.e.

(Reason: t 7→ max{t, 0} and t 7→ max{−t, 0} are continuous, hence preserve measurability; the

identities are pointwise algebra.)

Definition (Integral of f ∈ L(µ)). If f ∈ L(µ), define∫
S

f dµ :=
∫

S
f+ dµ −

∫
S

f− dµ.

Example. If A, B ∈ B are disjoint and f = 2 1A − 3 1B, then

f+ = 2 1A, f− = 3 1B,
∫

S
f dµ = 2 µ(A)− 3 µ(B).

Well-definedness: since | f | = f+ + f−,∫
S

f+ dµ ≤
∫

S
| f | dµ < ∞,

∫
S

f− dµ ≤
∫

S
| f | dµ < ∞,

so no ∞ − ∞ ambiguity arises.4

4Here it might be helpful to remember the triangle inequality in L1: for f ∈ L1(µ),∣∣∣∫ f dµ
∣∣∣ ≤ ∫

| f | dµ.

Proof. Write f = f+ − f− with f+ = max{ f , 0} and f− = max{− f , 0}. Then f± ≥ 0, | f | = f+ + f−, and (since
f ∈ L1) both

∫
f+dµ and

∫
f−dµ are finite. Hence∣∣∣∫ f dµ
∣∣∣ = ∣∣∣ ∫ f+ dµ −

∫
f− dµ

∣∣∣ ≤ ∫
f+ dµ +

∫
f− dµ =

∫
| f | dµ.
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Equality µ-almost everywhere

Definition. Fix two measurable functions f , g : S → R+. We say

f = g µ-a.e. ⇐⇒ µ
(
{x ∈ S : f (x) ̸= g(x)}

)
= 0.

Thus: they may differ only on a µ-null set. The phrase “almost” is always with respect to

the underlying measure µ. In Lp spaces we identify functions that are equal µ-a.e.

Example (Graphical intuition). Let S = [0, 5] with Lebesgue measure. Take any measurable

curve f ; define g(x) = f (x) for all x ̸= x0 and set g(x0) = f (x0) + 1. Since µ({x0}) = 0, we

have f = g µ-a.e.

x

y

f (x) = g(x)µ − a.e.

x0

f (x0)

g(x0)

Figure 2: Equal almost everywhere: g equals f except at a single point x0 (a µ-null set).

Properties of the Lebesgue integral. Let f , g ≥ 0 be measurable (more generally, f , g ∈
L1(µ)).

1. If f = g µ-a.e., then
∫

S
f dµ =

∫
S

g dµ.

Proof: out of scope. Intuition: If two functions differ only on a set of measure zero, that set has

no mass, so their integrals coincide.

2. If f ≤ g µ-a.e., then
∫

S
f dµ ≤

∫
S

g dµ.

Proof: out of scope. Intuition: The integral is a measure–weighted sum. If f ≤ g almost

everywhere, then pointwise f contributes no more than g except on a null set (which contributes

nothing), so the total cannot exceed
∫

S g dµ.

3. For f ≥ 0,

f = 0 µ-a.e. ⇐⇒
∫

S
f dµ = 0.

Proof: out of scope. Intuition: A nonnegative function has nonnegative “area.” If
∫

S f dµ = 0,

there cannot be any region of positive measure where f stays above some ε > 0; otherwise the area

would be at least ε µ(that region) > 0. Hence f = 0 except on a µ-null set. Conversely, if f = 0

a.e., its integral is clearly 0.

14



Convergence theorems (when can we swap limit and integral?)

We collect the three results used throughout the course to pass limits through the Lebesgue

integral.

Theorem 5 (Monotone Convergence Theorem (MCT) - Beppo Levi). Let (S,B, µ) be a measure

space. Suppose fn : S → [0, ∞) are measurable functions with f1 ≤ f2 ≤ · · · µ-a.e., and let f :=

limn→∞ fn (pointwise a.e.).

Then

lim
n→∞

∫
S

fn dµ =
∫

S
f dµ.

Proof. Step 1 (upper bound). Since 0 ≤ fn ≤ f for each n, by monotonicity of the integral,∫
fn dµ ≤

∫
f dµ. Hence

lim sup
n→∞

∫
fn dµ ≤

∫
f dµ. (∗)

Step 2 (lower bound via simple under-approximations). Pick any nonnegative simple func-

tion h ≤ f . Write it as a finite staircase h = ∑m
k=1 ck 1Ak with ck ≥ 0 and disjoint Ak.

For each “level” ck, look at the part where fn already reaches that level:

Bk,n := Ak ∩ { fn ≥ ck} (the portion of Ak where fn has caught up with h).

Because fn ↑ f and h ≤ f , these sets expand: Bk,n ↑ Ak. Therefore their measures grow:

µ(Bk,n) ↑ µ(Ak) (continuity from below of measures). On Bk,n we have fn ≥ ck, so by mono-

tonicity of the integral

∫
S

fn dµ ≥
m

∑
k=1

∫
Bk,n

ck dµ =
m

∑
k=1

ck µ(Bk,n).

Letting n → ∞ and using that the sum is finite,

lim inf
n→∞

∫
S

fn dµ ≥
m

∑
k=1

ck µ(Ak) =
∫

S
h dµ.

Since this holds for every simple h ≤ f , taking the supremum over such h yields∫
S

f dµ ≤ lim inf
n→∞

∫
S

fn dµ. (∗∗)

Remark (liminf/limsup intuition). For a sequence (an), look at each tail {ak : k ≥ n} and take

its infimum:

ℓn := inf
k≥n

ak (ℓn is increasing in n).

15



Then the liminf is the supremum of these tail infima (the “best eventual lower bound”):

lim inf
n→∞

an = lim
n→∞

ℓn = sup
n

inf
k≥n

ak.

Dually, with un := supk≥n ak (decreasing),

lim sup
n→∞

an = lim
n→∞

un = inf
n

sup
k≥n

ak.

Step 3 (combine). From (∗) and (∗∗),∫
f dµ ≤ lim inf

n

∫
fn dµ ≤ lim sup

n

∫
fn dµ ≤

∫
f dµ,

so all three quantities are equal and the limit exists with value
∫

f dµ.

Read it. If fn increases pointwise to f and all are nonnegative, we may swap limit and integral.

The proof mirrors the “integrate from below” idea: any simple h ≤ f eventually gets captured

under the fn’s in measure, forcing the integrals of fn up to
∫

f .5

x

y

h = c1

c2

c3
f
fn

B1,n B2,n B3,n
x

y

ffn+1

B1,n+1 B2,n+1 B3,n+1

Figure 3: Step 2 (visual): for each step of h, the region where fn already exceeds that level grows, forcing
∫

fn to
eventually exceed

∫
h. Since this holds for any h ≤ f , taking the supremum yields

∫
f ≤ lim infn

∫
fn.

Proof sketch (intuition). Approximate f by simple functions from below and note that, for

nonnegative, increasing fn, the integrals of these approximations also increase to
∫

f dµ. The

key is that
∫
(·) is continuous along monotone increases of nonnegative functions (no cancel-

lations from negative parts).

5Intuition for future me: If you keep adding area from below without ever overshooting, the accumulated area
increases and eventually equals the total area. That’s the MCT: for a sequence of nonnegative functions with fn ↑ f
pointwise, the integrals also increase and reach

∫
f dµ. Picture f as a mountain and each fn as a staircase filling

it from below. Each step adds nonnegative volume on top of fn−1, so the integral cannot go down; and since the
staircase never exceeds f , it cannot surpass

∫
f dµ. As n refines the staircase, you “touch” the whole mountain:∫

fn dµ ↑
∫

f dµ.
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f

x

fn(x)

Figure 4: Monotone nonnegative approximations fn ↑ f : area increases to
∫

f dµ.

Week 1 – Discussion

Problem 1. For any three events, A, B,and C, defined on a sample space S:

a. Commutativity. A ∪ B = B ∪ A and A ∩ B = B ∩ A.

Proof (sketch). For any x,

x ∈ A ∪ B ⇐⇒ (x ∈ A or x ∈ B) ⇐⇒ x ∈ B ∪ A.

Similarly, x ∈ A ∩ B ⇐⇒ (x ∈ A and x ∈ B) ⇐⇒ x ∈ B ∩ A.

b. Associativity. A ∪ (B ∪ C) = (A ∪ B) ∪ C and A ∩ (B ∩ C) = (A ∩ B) ∩ C.

Proof (sketch). For any x,

x ∈ A ∪ (B ∪ C) ⇐⇒ (x ∈ A) or (x ∈ B) or (x ∈ C) ⇐⇒ x ∈ (A ∪ B) ∪ C.

The intersection case is identical with “or” replaced by “and.”

c. Distributive laws. A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) and A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪
C).

Proof (sketch). For any x,

x ∈ A ∩ (B ∪ C) ⇐⇒ (x ∈ A) and
(
(x ∈ B) or (x ∈ C)

)
⇐⇒

(
(x ∈ A ∩ B) or (x ∈ A ∩ C)

)
⇐⇒ x ∈ (A ∩ B) ∪ (A ∩ C).

For the second identity,

x ∈ A ∪ (B ∩ C) ⇐⇒ (x ∈ A) or
(
(x ∈ B) and (x ∈ C)

)
⇐⇒

(
(x ∈ A or x ∈ B) and (x ∈ A or x ∈ C)

)
⇐⇒ x ∈ (A ∪ B) ∩ (A ∪ C).
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d. De Morgan’s laws. (A ∪ B)c = Ac ∩ Bc and (A ∩ B)c = Ac ∪ Bc.

Proof (sketch). For any x,

x ∈ (A ∪ B)c ⇐⇒ ¬(x ∈ A ∪ B) ⇐⇒ (¬x ∈ A) and (¬x ∈ B) ⇐⇒ x ∈ Ac ∩ Bc.

Likewise,

x ∈ (A ∩ B)c ⇐⇒ ¬(x ∈ A ∩ B) ⇐⇒ (¬x ∈ A) or (¬x ∈ B) ⇐⇒ x ∈ Ac ∪ Bc.

Problem 2. Verify the following identities:

a. A \ B = A \ (A ∩ B) = A ∩ Bc.

Proof (sketch). By definition, A \ B = A ∩ Bc. Also,

A \ (A ∩ B) = A ∩ (A ∩ B)c = A ∩ (Ac ∪ Bc) = (A ∩ Ac) ∪ (A ∩ Bc) = A ∩ Bc.

Hence all three sets coincide.

b. B = (B ∩ A) ∪ (B ∩ Ac).

Proof (sketch). If x ∈ B, then either x ∈ A or x ∈ Ac. Thus x ∈ (B ∩ A) ∪ (B ∩ Ac), so

B ⊆ (B ∩ A) ∪ (B ∩ Ac). Conversely, every element of (B ∩ A) or (B ∩ Ac) lies in B, so

(B ∩ A) ∪ (B ∩ Ac) ⊆ B. Therefore equality holds.

c. B \ A = B ∩ Ac.

Proof (sketch). This is the definition of set difference: B \ A := {x : x ∈ B and x /∈ A} =

B ∩ Ac.

d. A ∪ B = A ∪ (B ∩ Ac).

Proof (sketch). Using distributivity and complements,

A ∪ (B ∩ Ac) = (A ∪ B) ∩ (A ∪ Ac) = (A ∪ B) ∩ S = A ∪ B.

Equivalently, by (b), B = (B ∩ A) ∪ (B ∩ Ac), hence A ∪ B = A ∪
(
(B ∩ A) ∪ (B ∩ Ac)

)
=

(A ∪ (B ∩ A)) ∪ (B ∩ Ac) = A ∪ (B ∩ Ac) since B ∩ A ⊆ A.

Problem 3. Provide an example of two σ-algebras such that their union is not a σ-algebra.

Solution. Let S = {1, 2, 3} and define

A = {∅, {1}, {2, 3}, S}, C = {∅, {2}, {1, 3}, S}.
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Each of A and C is a σ-algebra on S (they contain ∅, are closed under complements in S,

and—being finite—are closed under countable unions).

Consider their union:

A∪ C = {∅, {1}, {2}, {1, 3}, {2, 3}, S}.

This family is not a σ-algebra because it is not even closed under finite unions:

{1} ∈ A ∪ C, {2} ∈ A ∪ C, but {1} ∪ {2} = {1, 2} /∈ A ∪ C.

Therefore A∪ C fails to be a σ-algebra.

Problem 4.) Prove that if B is a σ-algebra on S and A1, A2, . . . ∈ B, then
∞⋂

n=1

An ∈ B.

Proof. Because B is closed under complements, for each n ∈ N we have Cn := A c
n ∈ B.

Since B is closed under countable unions,

U :=
∞⋃

n=1

Cn ∈ B.

Again using closure under complements and De Morgan’s law,

Uc =

(
∞⋃

n=1

Cn

)c

=
∞⋂

n=1

C c
n =

∞⋂
n=1

An ∈ B.

Hence
⋂∞

n=1 An ∈ B, as claimed.
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Week 2 — Class 3

Theorem 6 (Faotu’s Lemma). Let (S,B, µ) be a measure space. Suppose fn : S → [0, ∞) ∪ {∞} are

measurable functions ∀n ∈ N.

Then ∫
S

lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
S

fn dµ.

Let’s build intuition. When dealing with nonnegative functions (which can be

“ugly” or even infinite on some parts of the domain), the integral is lower semicon-

tinuous with respect to pointwise limits. In other words, if we look at the eventual

floor of the sequence at each point (the pointwise lim inf) and integrate it, the re-

sult will never exceed the best possible lower limit of the integrals of the original

sequence. This is the essence of Fatou’s Lemma.

Why it is useful and what it does not require.

• It does not require convergence of fn to a function f ; nonnegativity is enough.

• It does not require domination (that assumption appears in the Dominated Convergence

Theorem, which is stronger but demands an integrable bound).

• It provides a robust lower bound when passing to limits: very useful when one can only

control “tails” or “eventual minima.”

Remark. By contrast, the “reverse Fatou” (with lim sup) does require extra conditions (e.g.,

domination) in order for the inequality to hold in the opposite direction.

Proposition (How MCT yields Fatou’s Lemma (mechanism)). For nonnegative measurable ( fn),

define gn(x) := infk≥n fk(x). Then gn ↑ lim infn fn and, for each n, gn ≤ fk for all k ≥ n. By MCT,∫
S

lim inf
n

fn dµ = lim
n→∞

∫
S

gn dµ ≤ lim inf
n→∞

∫
S

fn dµ,

which is Fatou’s Lemma.

Intuition. Replace the sequence by its “eventual floor” gn—now monotone. Inte-

grate first along this monotone path (by MCT), then compare to the original inte-

grals using gn ≤ fk for large k.

Theorem 7 (Reverse Fatou under domination). Let ( fn) be measurable and suppose there exists

g ∈ L1(µ) with fn ≤ g a.e. for all n. Then

lim sup
n→∞

∫
S

fn dµ ≤
∫

S
lim sup

n→∞
fn dµ.

More generally, for signed fn, if f−n ≤ h ∈ L1 uniformly (uniformly integrable negative parts), the

same inequality holds after splitting into positive/negative parts.
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Intuition. The domination fn ≤ g prevents mass from “escaping upward” on small

sets. Apply Fatou to g − fn ≥ 0:∫
lim inf(g− fn) ≤ lim inf

∫
(g− fn) ⇒

∫
g−

∫
lim sup fn ≤

∫
g− lim sup

∫
fn,

and rearrange.

Theorem 8 (Dominated Convergence Theorem (DCT)). Let (S,B, µ) be a measure space. Let

( fn)n∈N be a sequence of measurable functions fn : S → R and let f : S → R be measurable such that

fn(x) → f (x) for µ-almost every x ∈ S.

Assume there exists a dominating function g : S → [0, ∞) with g ∈ L1(µ) such that

| fn(x)| ≤ g(x) for all n ∈ N and µ-almost every x ∈ S.

Then:

1. fn ∈ L1(µ) for every n, and f ∈ L1(µ);

2. lim
n→∞

∫
S

fn dµ =
∫

S
f dµ.

Let’s build intuition. If you have a sequence of measurable functions fn that con-

verge pointwise to f , and all of them are uniformly bounded in magnitude by some

integrable “guardian” function g ∈ L1, then you can safely swap limit and integral:

lim
n→∞

∫
fn dµ =

∫
f dµ.

The role of g is to prevent the functions from “exploding” in sets of small measure,

ensuring that no mass is lost or gained when passing the limit inside the integral.

g

−g

fn x

fn(x)

Figure 5: DCT/Reverse-Fatou intuition: even if fn oscillates, domination prevents “mass leak-
age.”

Remark. How does this differ from the Monotone Convergence Theorem (MCT)?
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MCT applies only to monotone increasing nonnegative sequences fn ↑ f , and in that case no

dominating function is needed: the monotonicity alone guarantees safety in swapping limit

and integral. The Dominated Convergence Theorem (DCT) is strictly more general: it drops

the monotonicity requirement but demands the existence of an integrable bound g.

Remark (MCT vs. Fatou vs. DCT—when to use which?). Compact comparison:

• MCT (Beppo Levi): Nonnegative and monotone increasing. Then
∫

lim = lim
∫

.

• Fatou: Nonnegative, no convergence needed. Gives a lower bound:
∫

lim inf ≤ lim inf
∫

.

• Reverse Fatou (dominated): If fn ≤ g ∈ L1, then lim sup
∫

≤
∫

lim sup .

• DCT: Pointwise a.e. convergence and | fn| ≤ g ∈ L1. Then full swap: lim
∫

fn =
∫

f .

Remark (Quick checklist for swapping limit and integral). When you want lim
∫

fn =
∫

lim fn,

check:

1. Is it monotone and nonnegative? ⇒ MCT applies.

2. Is there an L1 dominator g for | fn|? ⇒ DCT applies.

3. None of the above? Use Fatou to get a one-sided inequality (often enough for bounds).
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Probability Theory

Definition (Probability function / measure). Given a sample space S and an associated σ-

algebra B, a probability function is a map P : B → [0, 1] that satisfies:

1. P(A) ≥ 0 for all A ∈ B;

2. P(S) = 1;

3. If A1, A2, . . . ∈ B are pairwise disjoint, then P
( ∞⋃

i=1

Ai

)
=

∞

∑
i=1

P(Ai).

These are the Axioms of Probability (Kolmogorov).6

Theorem 9 (Basic consequences of the axioms). If P is a probability function and A ∈ B, then:

(a) P(∅) = 0;

(b) P(A) ≤ 1 (and by (i) also P(A) ≥ 0);

(c) P(Ac) = 1 − P(A).

Proof (using only the axioms). One by one:

(a) Since S = ∅ ∪ S and the pieces are disjoint, additivity gives 1 = P(S) = P(∅) + P(S),

hence P(∅) = 0.

(b) Monotonicity follows from additivity: if A ⊆ B, then B = A ∪ (B \ A), so P(B) =

P(A) + P(B \ A) ≥ P(A). Since A ⊆ S, we get P(A) ≤ P(S) = 1.

(c) S = A ∪ Ac with disjoint parts; thus 1 = P(S) = P(A) +P(Ac), i.e., P(Ac) = 1 − P(A).

Theorem 10 (Two-set identities and monotonicity). If P is a probability function and A, B ∈ B,

then

(a) P(B ∩ Ac) = P(B)− P(A ∩ B).

(b) P(A ∪ B) = P(A) + P(B)− P(A ∩ B).

(c) If A ⊆ B then P(A) ≤ P(B).

Short proof from the axioms. One by one:

(a) Partition B as a disjoint union: B = (B ∩ A) ∪̇ (B ∩ Ac). By additivity, P(B) = P(B ∩
A) + P(B ∩ Ac), hence the identity.

6Intuition for future me. This is just a normalized measure: (i) forbids negative mass, (ii) fixes total mass to 1, (iii)
guarantees additivity over countable disjoint unions.
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(b) Decompose A ∪ B into three disjoint pieces: (A \ B), (B \ A), and (A ∩ B). Then P(A ∪
B) = P(A \ B) + P(B \ A) + P(A ∩ B). Also, P(A) = P(A \ B) + P(A ∩ B) and P(B) =

P(B \ A) + P(A ∩ B). Combine and rearrange to obtain the formula.

(c) If A ⊆ B, then B = A ∪̇ (B \ A), so P(B) = P(A) + P(B \ A) ≥ P(A).

S

A B

Figure 6: Identities in Thm. 10 follow by partitioning into disjoint pieces and using additivity.

Theorem 11 (Partition identity and union bound). If P is a probability function, then:

(a) For any partition (Ci)i≥1 of S,

P(A) =
∞

∑
i=1

P(A ∩ Ci).

(b) For any sets A1, A2, . . .,

P
( ∞⋃

i=1

Ai

)
≤

∞

∑
i=1

P(Ai).

Proof. Using only the axioms:

(a) Because (Ci) is a partition, the sets (A ∩ Ci) are pairwise disjoint and A =
⋃∞

i=1(A ∩ Ci).

Countable additivity gives P(A) = ∑i P(A ∩ Ci).

(b) The issue is that the Ai need not be disjoint. “Disjointify” them by

A∗
1 = A1, A∗

k = Ak \
⋃
j<k

Aj (k ≥ 2).

Then (A∗
i ) are pairwise disjoint and

⋃
i Ai =

⊎
i A∗

i , so P(
⋃

i Ai) = ∑i P(A∗
i ). Since

A∗
i ⊆ Ai, by monotonicity P(A∗

i ) ≤ P(Ai), hence the inequality.

Proposition (Continuity from below). Let (Ω,F , P) be a probability space and let (An)n≥1 ⊂ F be

an increasing sequence, i.e., A1 ⊆ A2 ⊆ · · · . Then

lim
n→∞

P(An) = P

(
∞⋃

n=1

An

)
.
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Proposition (Continuity from above). Let (Ω,F , P) be a probability space and let (Bn)n≥1 ⊂ F be

a decreasing sequence, i.e., B1 ⊇ B2 ⊇ · · · . Then

lim
n→∞

P(Bn) = P

(
∞⋂

n=1

Bn

)
.
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Counting

Counting is about computing the total number of ways an outcome can occur in a finite sample

space. Always check:

• with vs. without replacement;

• with order vs. without order.

Notation. n! = n × (n − 1)× · · · × 2 × 1,
(

n
r

)
=

n!
r!(n − r)!

(for n ≥ r).

Selections of size r from n objects.

• Ordered, without replacement:

n!
(n − r)!

= n (n − 1) · · · (n − r + 1).

• Ordered, with replacement: nr.

• Unordered, without replacement:
(

n
r

)
(divide out the r! orderings).

• Unordered, with replacement:
(

n + r − 1
r

)
. Unordered with replacement is like assignin

integer values to x1, ..., xn s.t.

x1 + ... + xn = r

Instead of integers, let map this into vertical lines. Complete this part and fully under-

stand it.

Why counting matters (equally likely outcomes). If S = {s1, . . . , sN} and each outcome has

probability 1/N, then for any A ⊆ S,

P(A) = ∑
si∈A

P({si}) = ∑
si∈A

1
N

=
#elements in A
#elements in S

.

Example. Poker hands How many distinct 5-card hands can be dealt from a standard 52-card

deck?

• Order does not matter (a hand is a set).

• Cards are drawn without replacement.

• Formula:
(

52
5

)
=

52!
5! 47!

= 2,598,960.

Interpretation. Every possible 5-card poker hand is one of these ≈ 2.6 million outcomes.

Example. PIN codes How many different 4-digit PIN codes can be formed using digits 0–9?
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• Order matters (1234 ̸= 4321).

• Digits can repeat (with replacement).

• Formula: 104 = 10,000.

Interpretation. A random guess at a PIN has probability 1/10,000.

Conditional Probability

Example. Roll a fair six-sided die; S = {1, 2, 3, 4, 5, 6}. The events then are:

A = {even} = {2, 4, 6}, B = {greater than 3} = {4, 5, 6}.

Probabilities:

P(A) =
3
6
=

1
2

, P(B) =
3
6
=

1
2

, P(A ∩ B) = P({4, 6}) = 2
6
=

1
3

.

Conditional: P(A | B) =
P(A ∩ B)

P(B)
=

1
3
1
2

=
2
3

.

Knowing B occurred restricts the sample space to {4, 5, 6}, where two of three outcomes are

even, i.e. are in A.

Bayes’ Rule

Using the definition

P(A | B) =
P(A ∩ B)

P(B)
(P(B) > 0),

we obtain the product rule

P(A ∩ B) = P(A | B)P(B).

Similarly,

P(A ∩ B) = P(B | A)P(A).

Equating both expressions yields Bayes’ rule:

P(A | B) = P(B | A)
P(A)

P(B)
(P(B) > 0).

Bayes’ Rule (partition form)

Theorem 12 (Bayes’ Rule). Let A1, A2, . . . be a partition of the sample space, and let B be any event.

Then, for each i = 1, 2, . . .,

P(Ai | B) =
P(B | Ai)P(Ai)

∑∞
j=1 P(B | Aj)P(Aj)

.

Appears often in economics: Monty Hall; Bayesian updating in micro; Bayesian econometrics.
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Bayes’ Rule: Monty Hall

Setup: Three doors; one has a prize. You pick door A. Monty opens one of the other two doors

(call it C), showing it is empty. You may switch to the remaining closed door B.

Goal. Compute P(A has prize | C open).

Unconditional probabilities.

P(A has prize) = P(B has prize) = P(C has prize) = 1
3 .

Key conditionals.

P(C open | A has prize) = 1
2 , P(C open | B has prize) = 1, P(C open | C has prize) = 0.

Bayes.

P(A has prize | C open) =
1
2 ·

1
3

1
2 ·

1
3 + 1 · 1

3 + 0 · 1
3

=
1
3

,

P(B has prize | C open) =
1 · 1

3
1
2 ·

1
3 + 1 · 1

3 + 0 · 1
3

=
2
3

.

Conclusion. Switch.

Law of Total Probability

Theorem 13 (Law of Total Probability). If {B1, B2, . . .} is a partition of S and P(Bi) > 0 for all i,

then for any event A,

P(A) =
∞

∑
i=1

P(A | Bi)P(Bi).

Proof. Since (Bi) is a partition, the sets (A ∩ Bi) are pairwise disjoint and A =
⋃∞

i=1(A ∩ Bi). By

countable additivity,

P(A) =
∞

∑
i=1

P(A ∩ Bi) =
∞

∑
i=1

P(A | Bi)P(Bi),

where the last equality uses P(A | Bi) = P(A ∩ Bi)/P(Bi).

Independence

Sometimes an event A may not be affected by event B, i.e. P(A | B) = P(A). By the definition

of conditional probability, this implies

P(A ∩ B) = P(A)P(B).
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Definition (Independence). Two events A and B are statistically independent if

P(A ∩ B) = P(A)P(B).

Equivalences for Independence

Proposition (Equivalent characterizations of independence). Let A, B ∈ F be events with P(A), P(B) >

0. The following are equivalent:

1. P(A ∩ B) = P(A)P(B) (definition).

2. P(A | B) = P(A).

3. P(B | A) = P(B).

Remark. If P(B) = 0, the conditional probability P(A | B) is undefined, so items 2–3 do not

apply. The definition in item 1 remains valid.

Remark (Disjointness vs. independence). If A and B are disjoint with P(A) > 0 and P(B) > 0,

then they are not independent because P(A ∩ B) = 0 ̸= P(A)P(B).

Example. Independence in a Deck of Cards

Setup. A standard deck has 52 cards, 4 suits (spades, hearts, diamonds, clubs), each with 13

cards.

Events.

A = {“the card is an ace (1)”}, B = {“the card is a spade ♠”}.

Computations.

P(A) =
4
52

=
1
13

, P(B) =
13
52

=
1
4

, P(A ∩ B) = P(“ace of spades”) =
1
52

.

Hence

P(A | B) =
P(A ∩ B)

P(B)
=

1
52
13
52

=
1

13
= P(A),

so A and B are independent because P(A ∩ B) = P(A)P(B).

Interpretation. Knowing that the card is a spade reduces the sample space from 52 to 13

equally likely outcomes; exactly one of those is an ace, so the chance remains 1/13. Learning

B provides no information about A, which is precisely independence.
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S
A

BA ∩ B
P(A ∩ B) = P(A)P(B)

P(A)

P(B)

Figure 7: Independence: the intersection area factors as P(A)P(B).

S
A

B

A ∩ B
P(A ∩ B) = 0.35 · 0.70 > P(A)P(B)

P(A)

P(B) = 0.35 0.70 + (1 − 0.35) 0.23846 = 0.40

Figure 8: Dependence: B is concentrated inside A, so P(A ∩ B) > P(A)P(B).

Independence: complements and collections

Theorem 14 (Closure under complements). If A and B are independent events, then the following

pairs are also independent:

1. A and Bc,

2. Ac and B,

3. Ac and Bc.

Proof of (a). By additivity, P(A ∩ Bc) = P(A) − P(A ∩ B). Independence of A and B gives

P(A ∩ B) = P(A)P(B), hence

P(A ∩ Bc) = P(A)
(
1 − P(B)

)
= P(A)P(Bc),

which is the required factorization. Parts (b)–(c) are analogous.

Reminder: collections and subcollections. A collection (family) of events is any set A ⊆
P(Ω). A subcollection is any subset A′ ⊆ A (i.e., a selection of some of the events in A).

Definition (Mutual independence of a collection). Events A1, . . . , An are mutually independent if

for every nonempty index set I ⊆ {1, . . . , n} (equivalently, for every subcollection {Ai : i ∈ I})
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we have

P

(⋂
i∈I

Ai

)
= ∏

i∈I
P(Ai).

It is common to check this for all I with |I| ≥ 2 (the case |I| = 1 is tautological).

Remark (Pairwise vs. mutual independence). Pairwise independence does not imply mutual

independence. For instance, let Ω = {1, 2, 3, 4} with the uniform probability and define

A = {1, 2}, B = {1, 3}, C = {1, 4}.

Then P(A) = P(B) = P(C) = 1
2 and each pair intersects with probability 1/4 = 1

2 ·
1
2 , so pairs

are independent; but

P(A ∩ B ∩ C) = P({1}) = 1
4 ̸= 1

8 = 1
2 ·

1
2 ·

1
2 ,

so A, B, C are not mutually independent.

Conversely, having only P(A ∩ B ∩ C) = P(A)P(B)P(C) is not sufficient for mutual inde-

pendence, because pairwise factorizations may fail. For example, with Ω = {1, . . . , 8} uniform,

take

A = {1, 2, 3, 4}, B = {1, 2, 3, 5}, C = {1, 5, 6, 7}.

Then P(A) = P(B) = P(C) = 1
2 , P(A ∩ B ∩ C) = 1

8 (so the triple product holds), but P(A ∩
B) = 3

8 ̸= 1
4 and P(A ∩ C) = 1

8 ̸= 1
4 , hence not mutually independent.
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Week 2 — Class 4

Random Variables

Double-Check and re-do this subsection.

Definition and basic construction

Definition (Random variable). Let (Ω,F , P) be a probability space. A (real-valued) random

variable is a measurable function

X : (Ω,F ) −→ (R,B),

i.e., for every Borel set A ∈ B we have X−1(A) ∈ F .

Remark (Why measurability?). Measurability guarantees that preimages X−1(A) are events, so

we can assign probabilities to statements about X. Equivalently, X lets us push the probability

from (Ω,F , P) to the real line. The condition of measurability requires that these preimages

belong to F so that P can assign probabilities to them. Without that condition, you could

have a set of outcomes Ω to which you don’t know how to assign probabilities.

Definition (Induced (pushforward) distribution of X). The distribution of X is the probability

measure PX on (R,B) defined by

PX(A) := P
(
X ∈ A

)
= P

(
X−1(A)

)
, A ∈ B.

Equivalently, PX = P ◦ X−1.

Proposition. PX is a probability measure on (R,B) (nonnegativity, normalization PX(R) = 1, and

countable additivity).

Remark (Sample space for X). Sometimes one restricts to the range X := X(Ω) ⊆ R and

equips it with the σ-algebra B ∩ X ; then (X ,B ∩ X , PX) is the “new” probability space on

which X lives.

(Ω,F , P) (R,B, PX)
X

PX = P ◦ X−1

6Intuition for future me. An outcome ω ∈ Ω is the physical result of the experiment. A random variable is a
question about ω whose answer is a real number. Different questions (e.g., parity of a die vs. the square of the face)
are different random variables on the same underlying outcome. Probabilities about X are computed by looking at
preimages in Ω.
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Finite sample space: induced law on the range

Setup. Let Ω = {s1, . . . , sn} with probability function P on 2Ω, and let X : Ω → R be a

random variable with (finite) range

X := X(Ω) = {x1, . . . , xm} ⊂ R.

Each xi is a distinct value of the random variable X. Therefore, the events

{ω ∈ Ω : X(ω) = xi}

are pairwise disjoint subsets of Ω.

The intuition is clear:

• A single ω cannot make X take two different values simultaneously.

• Hence, the sets defining each xi are incompatible.

• Their union is Ω (since X always takes one of these values).

Induced probability on the range. Define the probability of each value in the range by

pX(xi) := PX({xi}) = P
(
{ω ∈ Ω : X(ω) = xi}

)
, i = 1, . . . , m.

Then pX : X → [0, 1] is a probability mass function (pmf): (i) pX(xi) ≥ 0 and (ii) ∑m
i=1 pX(xi) =

1. For any A ⊆ X ,

PX(A) = ∑
xi∈A

pX(xi).

Key takeaway. A random variable does not bring “new” probabilities; it inherits them via

preimages: PX = P ◦ X−1 on X .

Example. Parity of a die Let Ω = {1, 2, 3, 4, 5, 6} with P({ω}) = 1/6 and define

X(ω) =

0, if ω is even,

1, if ω is odd.

Then X = {0, 1} and

pX(0) = P({2, 4, 6}) = 3
6 = 1

2 , pX(1) = P({1, 3, 5}) = 3
6 = 1

2 .

Hence X ∼ Bernoulli(1/2) (induced by the die roll).

Remark. Different questions on the same experiment
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From the same outcome ω we can define other r.v.’s, e.g.

Y(ω) = 1{ω is prime}, Z(ω) = ω2.

For Z, the range is {1, 4, 9, 16, 25, 36} and, by preimages,

P(Z = 36) = P({ω = 6}) = 1
6 , P(Z ∈ {1, 4, 9}) = P({1, 2, 3}) = 3

6 = 1
2 , etc.

Even if Z is not one-to-one, probabilities are always computed via sets of the form {ω : Z(ω) ∈
A} in Ω.

S X Z

s1

s2

s3

s4

s5

x1

x2

x3

z1 = g(x1)

z2 = g(x2)

z3 = g(x3)

X

g

X : S → X g : X → Z , Z = g ◦ X

Intuition: On the left sits the sample space S = {s1, . . . , sn} (the physical outcomes). On the

right sits the range X = X(S) = {x1, . . . , xℓ} (the numerical values). Arrows represent the

function X : S → R: each outcome sj is sent to exactly one value xi. Several outcomes may

land on the same xi (a many-to-one map). The set

Fi := X−1({xi}) = { s ∈ S : X(s) = xi }

is the preimage of xi. Intuition for Z TDB.

Uncountable range: pushforward via sets

When the range X = X(Ω) is uncountable, we define the induced law on Borel sets. For any

A ∈ B ∩ X ,

PX(A) = P(X ∈ A) = P
(
{ω ∈ Ω : X(ω) ∈ A}

)
= P

(
X−1(A)

)
.

Remark (Why sets instead of points?). For continuous distributions one typically has P(X =

x) = 0 for all x, so probabilities are assigned to sets (intervals, unions of intervals, etc.), not to

singletons.
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Example (Uniform). Let Ω = [0, 1] with Lebesgue measure P and define X(ω) = ω. Then

for any interval A = [a, b] ⊂ [0, 1],

PX(A) = P(X ∈ [a, b]) = P({ω : ω ∈ [a, b]}) = b − a, while P(X = x) = 0 ∀x.

Distribution function (cdf)

Definition (Cumulative distribution function). For a random variable X, the cdf is the function

FX : R → [0, 1] given by

FX(x) := P(X ≤ x), x ∈ R.

Proposition (Basic properties). Every cdf FX satisfies:

• FX is nondecreasing;

• FX is right–continuous;

• limx→−∞ FX(x) = 0 and limx→∞ FX(x) = 1.

This properties are not only necessary but sufficient, i.e. every function FX : R → [0, 1] that holds

those three properties is also the cdf of some random variable. If X is discrete, FX has jumps and

P(X = x) = FX(x)− FX(x−).

Proof. TBD.

Example. Discrete cdf (fair die). Let X be the outcome of a fair die, P(X = k) = 1/6 for

k = 1, . . . , 6. Then

FX(x) =


0, x < 1,

k
6 , k ≤ x < k + 1, k = 1, . . . , 5,

1, x ≥ 6.

Intuition 1. Each step adds the mass P(X = k) = 1/6; the graph is right–continuous (closed

dot at the right end of each step). Remember that we are choosing an x and asking how many

values are less or equal to x.

Intuition 2. The cdf is a running total of probability mass: as x moves to the right, FX(x)

increases only when x passes a value that X can actually take (an atom). For the fair die,

on each interval [k, k + 1) the cdf is constant FX(x) = k/6, and at the integer k it jumps by

exactly P(X = k) = 1/6. Right–continuity means FX(k) = k/6 while the left limit is FX(k−) =

(k − 1)/6.
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Example. Continous cdf. Let X ∼ Exp(λ) with λ = 1. Then

FX(x) = P(X ≤ x) =


0, x < 0,

1 − exp−x, x ≥ 0.

Add plots?

Equality in distribution

Definition (Identically distributed). Let X and Y be real-valued random variables (possibly on

different probability spaces). We say that X and Y are identically distributed, written X d
= Y, if

P(X ∈ A) = P(Y ∈ A) for every A ∈ B.

Equivalently, their pushforward laws coincide: PX = PY on (R,B).

Remark. Equality in distribution is not equality as random variables: X and Y need not be

equal almost surely, nor defined on the same sample space. They may also be dependent or

independent; independence is unrelated to equality in distribution.

Theorem 15 (Characterizations). For real random variables X and Y, the following are equivalent:

1. X d
= Y.

2. FX(x) = FY(x) for every x ∈ R.

Proof sketch. (1)⇒(2): If PX = PY, then for each x, FX(x) = PX((−∞, x]) = PY((−∞, x]) =

FY(x). (2)⇒(1): The family {(−∞, x] : x ∈ R} is a π-system generating B. If two probability

measures agree on this generator (the cdfs are equal), they agree on B. TBD.

Remark (Useful corollaries). If X and Y are discrete, then X d
= Y iff pX(x) = pY(x) for all x. If

they admit densities, then X d
= Y iff fX = fY almost everywhere.

Example. Let X be the number of heads in n fair tosses and Y := n − X the number of tails.

Then X ∼ Bin(n, 1
2 ) and Y ∼ Bin(n, 1

2 ), hence X d
= Y, but generally X ̸= Y.
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Week 2 – Discussion

Problem 1. If P is a probability on B and A, B ∈ B, then:

a) P(B ∩ Ac) = P(B)− P(A ∩ B).

b) P(A ∪ B) = P(A) + P(B)− P(A ∩ B).

c) If A ⊆ B, then P(A) ≤ P(B).

Proof.

a) Partition B as a disjoint union: B = (B ∩ A) ∪̇ (B ∩ Ac). Hence

P(B) = P(B ∩ A) + P(B ∩ Ac) ⇒ P(B ∩ Ac) = P(B)− P(A ∩ B).

b) Note A ∪ B = A ∪̇ (B ∩ Ac), so

P(A ∪ B) = P(A) + P(B ∩ Ac) = P(A) + P(B)− P(A ∩ B),

using part (a).

c) From A ⊆ B we have B = A ∪̇ (B ∩ Ac), hence

P(B) = P(A) + P(B ∩ Ac) ≥ P(A).

Thus P(A) ≤ P(B).

Problem 2. Prove that if A and B are independent, then Ac and Bc are independent.

Proof. Independence gives P(A ∩ B) = P(A)P(B). Then

P(Ac ∩ Bc) = 1 − P(A ∪ B) = 1 −
(

P(A) + P(B)− P(A ∩ B)
)

= 1 − P(A)− P(B) + P(A)P(B) = (1 − P(A))(1 − P(B))

= P(Ac) P(Bc),

so Ac and Bc are independent.

Problem 3. Provide an alternative proof of Fatou’s Lemma using the Dominated Conver-

gence Theorem (DCT). Make any assumptions necessary to apply DCT.

Proof (via DCT). Let (S,S , µ) be a measure space and let ( fn)n≥1 be measurable with 0 ≤ fn ≤ h

a.e. for some h ∈ L1(µ). Define for each n the running lower envelope

gn(x) := inf
k≥n

fk(x), x ∈ S.
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Then (gn) is nondecreasing and gn(x) ↑ g(x) := lim infn→∞ fn(x) for a.e. x. Moreover 0 ≤
gn ≤ h a.e., so by DCT, ∫

g dµ = lim
n→∞

∫
gn dµ.

For each fixed n we have gn ≤ fk for all k ≥ n, hence∫
gn dµ ≤ inf

k≥n

∫
fk dµ.

Taking n → ∞ yields∫
lim inf

n→∞
fn dµ = lim

n

∫
gn dµ ≤ lim

n
inf
k≥n

∫
fk dµ = lim inf

n→∞

∫
fn dµ.

This is Fatou’s inequality under the stated domination.

Remark. If fn ↑ f a.e. (monotone increase), then
∫

f = limn
∫

fn by the Monotone Convergence

Theorem, so Fatou’s inequality holds with equality. If fn → f a.e. and 0 ≤ fn ≤ h ∈ L1, then∫
f = limn

∫
fn by DCT, again giving equality.

h

fn lim inf fn

gN ↑

x

Orange curves are fn; thin blue curves are the increasing lower envelopes gN = infk≥N fk; the
thick blue curve is lim inf fn = limN↑∞ gN . A dominating h ∈ L1 (dashed) ensures DCT applies.
Early terms fn may lie below lim inf fn; the key property is that, for every fixed x and every
ε > 0, there exists N such that fn(x) ≥ lim infk→∞ fk(x)− ε for all n ≥ N.

Problem 4. Let X have the standard Cauchy density fX(x) =
1

π(1 + x2)
, x ∈ R.

(a) Show that Y =
1
X

also has the standard Cauchy distribution.

(b) What is the expected value of X?

Solution. TBW.

(a) Y = 1/X is Cauchy. Since P(X = 0) = 0, the map g(x) = 1/x is invertible a.s. with inverse

g−1(y) = 1/y and
∣∣∣∣ d
dy

g−1(y)
∣∣∣∣ = 1

y2 . By the change-of-variables formula,

fY(y) = fX
(

g−1(y)
) ∣∣∣ d

dy g−1(y)
∣∣∣ = 1

π
(
1 + (1/y)2

) · 1
y2 =

1
π(1 + y2)

, y ∈ R.
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Hence Y ∼ Cauchy(0, 1).

(CDF check, piecewise). With FX(x) = 1
2 +

1
π arctan x: for y > 0,

FY(y) = P(1/X ≤ y) = P(X ≥ 1/y, X > 0)+ P(X < 0) = 1
2 +

[
1− FX(1/y)

]
= 1

2 +
1
π arctan y.

For y < 0,

FY(y) = P(1/y ≤ X < 0) = FX(0)− FX(1/y) = − 1
π arctan(1/y) = 1

2 +
1
π arctan y.

Thus FY(y) = 1
2 +

1
π arctan y for all y, the Cauchy CDF.

(b) E[X] does not exist.

∫
R
|x| fX(x) dx =

2
π

∫ ∞

1

x
1 + x2 dx =

1
π

[
ln(1 + x2)

]∞

1
= ∞.

Since X /∈ L1, the (Lebesgue) expectation E[X] is undefined (the improper symmetric integral

yields 0 as a principal value, but this is not a finite expectation).
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Week 3 — Class 5

Quantiles, PMFs, and a Geometric Example

Definition (Quantile function). Let F(x) = P(X ≤ x) be a cdf on R. The (generalized) α–

quantile is

q(α) := inf{x ∈ R : F(x) ≥ α}, α ∈ [0, 1].

Equivalently, F(q(α)) ≥ α and F(x) < α for all x < q(α). The mapping q : [0, 1] → R sends

probability levels to values of X.

Remark (Why the infimum?). If F is strictly increasing and continuous, then q(α) = F−1(α)

in the usual sense. When F has flat regions or jumps (discrete or mixed distributions), a strict

inverse need not exist; the infimum definition always works and returns the leftmost value

hitting level α.

Example (Named quantiles). Median = q(0.5). The pth percentile is 100p and equals q(p).

Quintiles are q(0.2), q(0.4), q(0.6), q(0.8); deciles are q(0.1), . . . , q(0.9). Quantiles compactly

summarize the distribution’s location and spread.

Definition (Probability mass function (pmf)). A random variable X is discrete if it takes values

in a countable set X ⊂ R. Its probability mass function is

fX(x) := P(X = x), x ∈ X ,

with fX(x) ≥ 0 and ∑x∈X fX(x) = 1. For any A ⊆ X , P(X ∈ A) = ∑x∈A fX(x) and F(x) =

∑y∈X : y≤x fX(y).

Example (Geometric distribution: “number of tosses until first head”). Let independent tosses

have P(head) = p ∈ (0, 1). Define X = min{n ≥ 1 : the nth toss is head}. Then X takes values in

{1, 2, . . . } and

fX(x) = P(X = x) = (1 − p)x−1 p, x = 1, 2, . . .

(the first x − 1 are tails, then a head). Its cdf is

FX(x) = P(X ≤ x) =
⌊x⌋

∑
i=1

(1 − p)i−1 p = p
1 − (1 − p)⌊x⌋

1 − (1 − p)
= 1 − (1 − p)⌊x⌋,

so for integer x ≥ 1, FX(x) = 1 − (1 − p)x.

Remark (Parameterizations and support). We can also define X on {0, 1, 2, . . . } (“number of

failures before the first success”), with pmf f̃ (k) = (1 − p)k p and cdf F̃(k) = 1 − (1 − p)k+1.

We just need to be clear on the interpretation.
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Continuous r.v.s: pmf vs. pdf and the cdf link

Proposition (Point probabilities for continuous X). If X has a continuous cdf FX, then for every

x ∈ R, P(X = x) = 0.

Proof. For any ε > 0,

{X = x} ⊂ (x − ε < X ≤ x) ⇒ P(X = x) ≤ P(x − ε < X ≤ x) = FX(x)− FX(x − ε).

By continuity of FX, FX(x − ε) → FX(x) as ε ↓ 0, so 0 ≤ P(X = x) ≤ 0, hence P(X = x) =

0.

Definition (Probability density function (pdf)). A function fX : R → [0, ∞) is a pdf of X if

FX(x) = P(X ≤ x) =
∫ x

−∞
fX(t) dt for all x ∈ R,

equivalently, for any Borel A, P(X ∈ A) =
∫

A fX(t) dt.

Remark (Fundamental link). If fX is (Lebesgue) integrable and continuous at x, then

d
dx

FX(x) = fX(x).

In discrete cases FX is a step function and the derivative is not a useful notion; there we work

with the pmf pX(x) = P(X = x) and FX(x) = ∑y≤x pX(y).

Example (Exponential(λ)). For λ > 0, the pdf and cdf are

fX(x) = λe−λx1{x≥0}, FX(x) = P(X ≤ x) =


0, x < 0,

1 − e−λx, x ≥ 0.

Indeed, FX(x) =
∫ x

0 λe−λt dt = 1 − e−λx for x ≥ 0 and d
dx FX(x) = λe−λx = fX(x) for x > 0.

fX(x) = e−x 1{x≥0}

0

x

fX(x)

FX(x) = 1 − e−x (x ≥ 0)FX(x) = 0 (x < 0)

0

x

FX(x)

Theorem 16 (Characterization of pmf/pdf). Let X be a random variable.

(i) (Discrete) A function p : X → [0, ∞) is a pmf of X iff ∑x∈X p(x) = 1. Then FX(x) =
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∑y≤x p(y).

(ii) (Continuous) A function f : R → [0, ∞) with
∫

R
f (t) dt = 1 is a pdf of X in the sense that

FX(x) = P(X ≤ x) =
∫ x

−∞
f (t) dt, x ∈ R.

Conversely, if FX is a cdf that admits such a representation, then f ≥ 0 a.e. and
∫

R
f = 1.

Sketch for the continous case (ii) TBW. Each side of the if and only if: (⇒) If FX(x) =
∫ x
−∞ f (t) dt,

then for a < b, 0 ≤ FX(b)− FX(a) =
∫ b

a f (t) dt, hence f ≥ 0 a.e. (Lebesgue lemma). Also, by

monotone convergence,
∫

R
f = limx→∞

∫ x
−∞ f = limx→∞ FX(x) = 1.

(⇐) If f ≥ 0 and
∫

R
f = 1, define F(x) =

∫ x
−∞ f (t) dt. Then F is nondecreasing since

F(b) − F(a) =
∫ b

a f ≥ 0. Moreover, limx→−∞ F(x) = 0 and limx→∞ F(x) = 1. Finally, F is

right–continuous: if xn ↓ x, then F(xn) − F(x) =
∫
(x,xn]

f → 0 by absolute continuity of the

Lebesgue integral. Thus F is a cdf and f is a pdf.

Uniform. If X ∼ U[a, b] with a < b, then

fX(x) =
1

b − a
1[a,b](x), FX(x) =


0, x < a,
x − a
b − a

, a ≤ x ≤ b,

1, x > b.

Basic facts: E[X] = a+b
2 , Var(X) = (b−a)2

12 .

Normal. If X ∼ N (µ, σ2) with σ > 0, then

fX(x) =
1√

2π σ
exp

(
− (x − µ)2

2σ2

)
, FX(x) = Φ

( x − µ

σ

)
,

where Φ is the standard normal cdf and ϕ(x) = 1√
2π

e−x2/2 its pdf. When µ = 0, σ = 1 we

write X ∼ N (0, 1), with pdf ϕ and cdf Φ.

Transformations of random variables

Pushforward definition (general measurable mapping). Let X : (Ω,F , P) → (X ,BX ) be a

r.v., and let g : X → Y be measurable. Define Y = g(X). For any A ∈ BY ,

P(Y ∈ A) = P(g(X) ∈ A) = P
(
X ∈ g−1(A)

)
,

so the law of Y is the pushforward measure PY = PX ◦ g−1.
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Discrete case (countable support). If X is discrete with pmf pX, then Y = g(X) is discrete

with

pY(y) = P(Y = y) = ∑
x∈g−1({y})

pX(x), and pY(y) = 0 if y /∈ g(X ).

Recipe: enumerate the preimage g−1(y) and sum the appropriate masses.

Continuous case: cdf method. For any y ∈ R,

FY(y) = P(Y ≤ y) = P
(
X ∈ g−1((−∞, y])

)
.

When g is strictly increasing and continuous, g−1 exists and FY(y) = FX
(

g−1(y)
)

for all y; if g

is strictly decreasing, FY(y) = 1 − FX
(

g−1(y)
)

(right-limits understood when needed).

Example (Discrete transformation via preimages). Let X take values {−2,−1, 0, 1, 2} with pmf

fX(−2) = 0.10, fX(−1) = 0.20, fX(0) = 0.40, fX(1) = 0.20, fX(2) = 0.10.

Define Y = g(X) = |X|. Then Y = {0, 1, 2} and

g−1(0) = {0}, g−1(1) = {−1, 1}, g−1(2) = {−2, 2}.

By fY(y) = ∑x∈g−1(y) fX(x),

fY(0) = fX(0) = 0.40,

fY(1) = fX(−1) + fX(1) = 0.20 + 0.20 = 0.40,

fY(2) = fX(−2) + fX(2) = 0.10 + 0.10 = 0.20,

and ∑y∈Y fY(y) = 1. Recipe: find Y = g(X ), compute each preimage g−1(y), and sum fX over

it.

Continuous r.v.s: cdf method. If X has pdf fX and Y = g(X), then for any y ∈ R,

FY(y) = P(Y ≤ y) = P(g(X) ≤ y) = P
(
{x ∈ X : g(x) ≤ y}

)
=
∫
{x∈X :g(x)≤y}

fX(x) dx.

Note. Identifying the region {x : g(x) ≤ y} may be hard when g is not monotone.

Monotone g: explicit cdf. If g is monotone so that g−1 is single-valued:

• If g is increasing,

{x : g(x) ≤ y} = {x : x ≤ g−1(y)} ⇒ FY(y) =
∫ g−1(y)

−∞
fX(x) dx = FX

(
g−1(y)

)
.
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• If g is decreasing,

{x : g(x) ≤ y} = {x : x ≥ g−1(y)} ⇒ FY(y) =
∫ ∞

g−1(y)
fX(x) dx = 1 − FX

(
g−1(y)

)
.

Theorem 17 (Change of variables for a monotone g). Let X have pdf fX(x) and let Y = g(X)

where g is monotone. Let X = {x : fX(x) > 0} and Y = g(X ). Assume fX is continuous and g−1

has a continuous derivative on Y . Then the pdf of Y is

fY(y) =


fX
(

g−1(y)
) ∣∣∣ d

dy
g−1(y)

∣∣∣, y ∈ Y ,

0, otherwise.
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Week 3 – Class 6

Transformations (Continuation)

Theorem 18. (Piecewise Monotone) Theorem 2.1.8 in Casella & Berger deals with the case when g is

monotone over certain intervals. In particular, suppose there are partitions {Ai}k
i=1 of X and functions

gi defined on those partitions for which g(x) = gi(x) for x ∈ Ai, where gi(x) is monotone on Ai, and

g−1
i has a continuous derivative. Then we can still derive the pdf:

fY(y) =


k

∑
i=1

fX
(

g−1
i (y)

) ∣∣∣∣ d
dy

g−1
i (y)

∣∣∣∣, y ∈ Y ,

0, otherwise,

where Y =
⋃k

i=1 g(Ai). This can be useful, for example, if we have a squared transformation.

Example. (Casella & Berger, Ex. 2.1.9) Let X ∼ N(0, 1), i.e., “standard normal distribution,”

fX(x) =
1√
2π

e−x2/2, −∞ < x < ∞.

Consider the transformation Y = X2. g(x) = x2 is monotone on (−∞, 0) and (0, ∞). We use

sets:

A0 = {0}, A1 = (−∞, 0), g1(x) = x2, g−1
1 (y) = −√

y, A2 = (0, ∞), g2(x) = x2, g−1
2 (y) =

√
y.

This gives the pdf:

fY(y) =
1√
2π

e−(−√
y)2/2

∣∣∣∣− 1
2
√

y

∣∣∣∣ + 1√
2π

e−(
√

y)2/2
∣∣∣∣ 1
2
√

y

∣∣∣∣
⇒ fY(y) =

1√
2π

1
√

y
e−y/2, 0 < y < ∞ “Chi-squared r.v. with 1 degree of freedom”.

Theorem 19. (A second transformation: inverse transform sampling)

• If X ∼ FX(x) and Y = FX(X), then Y ∼ U(0, 1), i.e., P(Y ≤ y) = y, 0 < y < 1.

• This tells us that if we want to generate (simulate) an observation X from a population with cdf

FX(x), we can simulate a uniform random number V ∼ U(0, 1) with realization u and solve for

x in the equation FX(x) = u.

Proof. (Quick proof omitting some of the details about end-points and such.) We define F−1
X (y) =

inf{x : FX(x) ≥ y} to deal with FX potentially being constant on some intervals and not being

strictly increasing.

P(Y ≤ y) = P(FX(X) ≤ y) = P
(

F−1
X (FX(X)) ≤ F−1

X (y)
)
= P

(
X ≤ F−1

X (y)
)
= FX

(
F−1

X (y)
)
= y.
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Expected value

Definition. The expected value or mean of a random variable g(X), denoted by E(g(X)), is

E(g(X)) =


∫ ∞

−∞
g(x) fX(x) dx, if X is continuous,

∑
x∈X

g(x) fX(x) = ∑
x∈X

g(x) P(X = x), if X is discrete,

provided that the integral or sum exists. If E(g(X)) = ∞, we say E(g(X)) does not exist.

Theorem 20. Let X be a random variable, and let a, b, c be constants. Then for any functions g1(x)

and g2(x) whose expectations exist,

a. E
(
ag1(X) + bg2(X) + c

)
= a E(g1(X)) + b E(g2(X)) + c.

b. If g1(x) ≥ 0 for all x, then E(g1(X)) ≥ 0.

c. If g1(x) ≥ g2(x) for all x then E(g1(X)) ≥ E(g2(X)).

d. If a ≤ g1(x) ≤ b for all x, then a ≤ E(g1(X)) ≤ b.

These are useful when computing expectations.

Proof. (discrete case) Let p(x) = P(X = x) and X = {x : p(x) > 0}.

(a)
E
(
ag1(X) + bg2(X) + c

)
= ∑

x∈X

(
ag1(x) + bg2(x) + c

)
p(x)

= a ∑
x

g1(x)p(x) + b ∑
x

g2(x)p(x) + c ∑
x

p(x)

= a E(g1(X)) + b E(g2(X)) + c,

since ∑x p(x) = 1.

(b) If g1(x) ≥ 0 and p(x) ≥ 0 for all x, then each term g1(x)p(x) ≥ 0, hence E(g1(X)) =

∑x g1(x)p(x) ≥ 0.

(Continuous case: replace ∑x g(x)p(x) by
∫

g(x) fX(x) dx; the same algebra holds.)

(c) If g1(x) ≥ g2(x) for all x, then g1(x)− g2(x) ≥ 0 for all x, so by (b)

E
(

g1(X)− g2(X)
)
≥ 0 ⇒ E(g1(X))− E(g2(X)) ≥ 0,

using (a).

(d) If a ≤ g1(x) ≤ b for all x, multiply by p(x) ≥ 0 and sum over x:

a ∑
x

p(x) ≤ ∑
x

g1(x)p(x) ≤ b ∑
x

p(x).
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Since ∑x p(x) = 1, this gives a ≤ E(g1(X)) ≤ b.

(Continuous case: a ≤ g1(x) ≤ b a.e. ⇒ a
∫

fX = a ≤
∫

g1 fX = E[g1(X)] ≤ b
∫

fX = b.)

Nonlinear transformations and expectations. When working with nonlinear functions g(x),

one can either try to compute

E(g(X)) =
∫ ∞

−∞
g(x) fX(x) dx

directly, or do a transformation and find fY(y) of Y = g(X) and have

E(g(X)) = E(Y) =
∫ ∞

−∞
y fY(y) dy.

Example (Uniform-to-exponential via transformation). Let X ∼ Unif(0, 1) and g(x) = − ln(1−
x). We want E[g(X)].

Transformation. Define Y = g(X) = − ln(1 − X). Then g : (0, 1) → (0, ∞) is strictly

increasing with

g−1(y) = 1 − e−y,
d

dy
g−1(y) = e−y.

Since fX(x) = 1 on (0, 1),

fY(y) = fX
(

g−1(y)
) ∣∣∣ d

dy
g−1(y)

∣∣∣ = e−y 1{y≥0},

so Y ∼ Exp(1) and

E[g(X)] = E[Y] =
∫ ∞

0
ye−y dy = 1.

Direct computation.

E[g(X)] =
∫ 1

0
− ln(1 − x) dx =

∫ 1

0
− ln u du (u = 1 − x) =

[
− u ln u + u

]1
0 = 1.

Definition (Convexity/concavity). A function g(x) is convex if for any λ ∈ [0, 1] and all x, y,

g
(
λx + (1 − λ)y

)
≤ λg(x) + (1 − λ)g(y).

The function g(x) is concave if

g
(
λx + (1 − λ)y

)
≥ λg(x) + (1 − λ)g(y).

Theorem 21 (Jensen’s Inequality). For any random variable X, if g is convex then

g
(
E(X)

)
≤ E

(
g(X)

)
.
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If g is concave, then

E
(

g(X)
)
≤ g

(
E(X)

)
.

Example (Consequences via Jensen). • exp(EX) ≤ E
(

exp X
)
.

•
(
EX
)2 ≤ E

(
X2).

• If X > 0, then E(log X) ≤ log E(X).

• If X ≥ 0, then E
(
X1/2) ≤

(
EX
)1/2.

•
∣∣EX

∣∣ ≤ E|X|.

g(x)

tangent at x = E[X]

E[X]

g(E[X])

E[g(X)] ≥ g(E[X])

x

y

Proof. Sketch: Compute the tangent (supporting) line at m = E(X). We know that g(x) ≥
a + b ∗ x (by convexity). Taking expectations on both sides, E(g(X)) ≥ a + b ∗ E(X). By

construction of the tangent line at E(X), we have a + bE(X) = g(E(X)). It follows that

E(g(X)) ≥ g(E(X)).

Theorem 22 (Markov; basis for Chebyshev). Let X be a random variable and let g(x) be a nonneg-

ative function. Then, for any r > 0,

Pr
(

g(X) ≥ r
)
≤ E[g(X)]

r
.

Proof. Using g ≥ 0 and splitting the integral over the sets {x : g(x) < r} and {x : g(x) ≥ r},

E[g(X)] =
∫

g(x) fX(x) dx

=
∫
{g(x)<r}

g(x) fX(x) dx +
∫
{g(x)≥r}

g(x) fX(x) dx

≥ r
∫
{g(x)≥r}

fX(x) dx

= r Pr(g(X) ≥ r)
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Remark. Equivalently, 1{g(X)≥r} ≤ g(X)/r (since g ≥ 0); taking expectations yields Markov.

This inequality is often used to obtain conservative probability bounds.

Corollary (Chebyshev). For any t > 0,

Pr( |X − EX| ≥ t ) ≤ Var(X)

t2 .

Proof. Apply Theorem 22 with g(x) = (x − EX)2 (nonnegative) and r = t2.

Moment Generating Functions

Definition (Moments). The expected value (the mean) is the first moment of X:

µ = E(X).

For each integer n ≥ 1, the nth (raw) moment of X is

µ′
n = E(Xn) .

The nth central moment of X is

µn = E[(X − µ)n] , where µ = µ′
1 = E(X).

Remark. For n > 1 these are often called higher-order moments.

Definition (Variance and standard deviation). The variance of a random variable X is its second

central moment,

Var(X) = E
[
(X − EX)2] .

The positive square root of Var(X) is the standard deviation of X.

Remark (Interpretation). Small variance (and hence small standard deviation) means X is very

likely to be close to its mean E(X). The standard deviation has the same units as X, which aids

interpretation.

Theorem 23 (Variance of an affine transformation). If X is a random variable with finite variance,

then for any constants a, b,

Var(aX + b) = a2 Var(X).
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Proof.
Var(aX + b) = E

[(
(aX + b)− E(aX + b)

)2
]

= E
[(

aX + b − a E(X)− b
)2
]

= E
[(

a(X − EX)
)2
]

= a2 E
[(

X − EX
)2
]
= a2 Var(X).

Proposition (Useful relationship).

Var(X) = E
[
(X − EX)2] = E(X2)− 2 E(X)E(X) + (EX)2 = E(X2)− (EX)2.

Definition (Symmetry about 0). A distribution is symmetric about 0 if its cdf satisfies

F(x) = 1 − F(−x) for all x.

If X has a density f , then this is equivalent to f (x) = f (−x) (an even density).

Proposition (Odd moments vanish under symmetry). If a random variable X is symmetric about

0 and E|X|m < ∞ for an odd integer m, then

E
[
Xm] = 0.

Proof (continuous case). Write

E
[
Xm] = ∫ ∞

−∞
xm f (x) dx =

∫ ∞

0
xm f (x) dx +

∫ 0

−∞
xm f (x) dx.

In the second integral substitute x = −t (so t ≥ 0 and dx = −dt):

∫ 0

−∞
xm f (x) dx =

∫ 0

∞
(−t)m f (−t) (−dt) = −

∫ ∞

0
(−t)m f (−t) dt.

Since m is odd, (−t)m = −tm, and by symmetry f (−t) = f (t). Hence

∫ 0

−∞
xm f (x) dx = −

∫ ∞

0

(
− tm) f (t) dt =

∫ ∞

0
tm f (t) dt.

Therefore the two halves cancel:

E
[
Xm] = ∫ ∞

0
xm f (x) dx −

∫ ∞

0
xm f (x) dx = 0.

One-line viewpoint (your “easier road”): when f is even and m is odd, the integrand xm f (x)

is an odd function, so its integral over the symmetric domain (−∞, ∞) is 0 (provided E|X|m <

∞).
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Remark (Higher-order moments). Traditionally, most focus is on the first and second moments.

One reason is that the normal distribution can be fully characterized by its first two moments.

Higher-order moments are increasingly used in economics/finance, particularly:

• Skewness: third central moment — measures the asymmetry of a distribution. The nor-

mal distribution has skewness 0; it is symmetric.

• Kurtosis: fourth central moment — measures the thickness of the tails of a distribution.

For the normal distribution, the kurtosis is 3.

We often talk about excess kurtosis, which is kurtosis − 3, i.e., the excess relative to the normal

distribution.

Figure 9: MHigher Order Moments

Definition (Moment generating function (mgf)). Let X be a random variable with cdf FX. The

moment generating function (mgf) of X, denoted MX(t), is

MX(t) = E
(
etX),

provided the expectation exists for some real t in a neighborhood of 0. That is, there exists

h > 0 such that for all t ∈ (−h, h), E(etX) exists. (Here t is a real parameter/argument of the

mgf.)

Given the expected value definition, we can also write

MX(t) =
∫ ∞

−∞
etx fX(x) dx if X is continuous,

and

MX(t) = ∑
x

etx P(X = x) if X is discrete.

If the expectation does not exist in a neighborhood of 0, we say the mgf does not exist.
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Example (MGF of a Bernoulli(p)). Let X ∼ Bernoulli(p), so P(X = 1) = p and P(X = 0) =

1 − p. By the discrete mgf definition,

MX(t) = ∑
x

etx P(X = x) = (1 − p)et·0 + p et·1 = 1 − p + p et.

Theorem 24 (MGF and moments). If X has moment generating function MX(t), then for any integer

n ≥ 1,

E
[
Xn] = M(n)

X (0),

where

M(n)
X (0) =

dn

dtn MX(t)
∣∣∣∣
t=0

.

That is, the nth moment of X is the nth derivative of its mgf, evaluated at t = 0.

Example (Bernoulli(p) via Theorem 24). Recall that for X ∼ Bernoulli(p) we obtained

MX(t) = 1 − p + pet.

Applying Theorem 24:

• First derivative at t = 0:

M′
X(0) = p = E[X].

• Second derivative at t = 0:

M′′
X(0) = p, ⇒ Var(X) = M′′

X(0)−
(

M′
X(0)

)2
= p − p2 = p(1 − p).

Thus, the mgf reproduces the mean and variance of the Bernoulli distribution.

Proof of Theorem 24. Consider the continuous case (the discrete case is analogous).

MX(t) =
∫ ∞

−∞
etx fX(x) dx.

Differentiate under the integral (justified if MX exists in a neighborhood of 0):

d
dt

MX(t) =
∫ ∞

−∞
xetx fX(x) dx = E

[
XetX

]
.

Evaluating at t = 0 gives E[X].

By induction, differentiating n times yields

dn

dtn MX(t) = E
[

XnetX
]

.

Evaluating at t = 0 gives

M(n)
X (0) = E[Xn] ,
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which establishes the result.

Moment–Generating Function: interchange and uniqueness

Remark (Flipping differentiation and integration). From the Leibniz rule,

d
dθ

∫ b

a
f (x, θ) dx =

∫ b

a

∂

∂θ
f (x, θ) dx.

When the range of integration may be infinite, it is safer to rewrite the derivative as a limit,

∂

∂θ
f (x, θ) = lim

δ→0

f (x, θ + δ)− f (x, θ)

δ
,

so that
d
dθ

∫ ∞

−∞
f (x, θ) dx = lim

δ→0

∫ ∞

−∞

f (x, θ + δ)− f (x, θ)

δ
dx.

Thus, the question reduces to interchanging an integral and a limit; this is where one tries to

apply Lebesgue’s Dominated Convergence Theorem (from the previous lecture).

Lemma (A DCT-ready bound (Lipschitz condition near θ0)). Suppose there exist a function g(x, θ0)

and a constant δ0 > 0 such that∣∣∣∣ f (x, θ0 + δ)− f (x, θ0)

δ

∣∣∣∣ ≤ g(x, θ0), for all x and |δ| ≤ δ0.

Then the difference quotients are dominated and one may apply the Dominated Convergence Theorem

to justify interchanging the limit and the integral near θ0.

Note (for Theorem 2.3.7): in our mgf setting we require the integrand etx fX(x) to satisfy such a

domination near t = 0. The book treats the discrete and continuous cases separately (via Theorem 2.4.8

for sums and differentiation), but a discrete pmf can also be viewed as a simple function so that the same

DCT logic applies.

Remark (Do moments determine the distribution?). If the mgf exists, it can generate (infinitely

many) moments. Do moments uniquely determine the cdf?

• Not in general: two distinct random variables can share all moments.

• Yes, with bounded support: moments determine the distribution.

• Yes, with an mgf near 0: existence of MX(t) in a neighborhood of 0 pins down the dis-

tribution.

Theorem 25 (2.3.11). Let FX(x) and FY(y) be two cdfs for which all moments exist.

a) If X and Y have bounded support, then FX(u) = FY(u) for all u if and only if EXr = EYr for all

r = 0, 1, 2, . . .
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b) If the moment generating functions exist and MX(t) = MY(t) for all t in some neighborhood of

0, then FX(u) = FY(u) for all u.

Theorem 26 (Convergence of mgfs). Suppose {Xi}i≥1 is a sequence of random variables with mgfs

MXi(t). Assume that for some h > 0,

lim
i→∞

MXi(t) = MX(t) for all t ∈ (−h, h),

and that the pointwise limit MX(t) is itself an mgf. Then there exists a unique cdf FX whose moments

are determined by MX, and for every continuity point x of FX,

lim
i→∞

FXi(x) = FX(x).

Equivalently, Xi
d
=⇒ X.

Idea of proof. By assumption, MX exists on a neighborhood of 0, so it uniquely determines a

distribution FX. For any bounded, continuous f , approximate f by polynomials and then by

exponentials etx for small t—objects controlled by mgfs. The pointwise convergence MXi(t) →
MX(t) on (−h, h) transfers to convergence of integrals against these approximants, which

yields convergence of cdfs at continuity points of FX.

Remark. Convergence of mgfs on a neighborhood of 0 is sufficient (but not necessary) for con-

vergence in distribution of a sequence of random variables.

Example (Binomial→Poisson via mgfs). Let Xn ∼ Binomial
(
n, λ

n

)
with fixed λ > 0. Then

E[Xn] = λ for all n, and the mgf of Xn is

MXn(t) = E
[
etXn

]
=

n

∑
k=0

etk
(

n
k

)(
λ
n

)k(
1 − λ

n

)n−k
.

Recognize a binomial expansion with

a = 1 − λ

n
, b =

λ

n
et.

Therefore,

MXn(t) =
n

∑
k=0

(
n
k

)
a n−kb k = (a + b)n =

(
1 − λ

n
+

λ

n
et
)n

=

(
1 +

λ(et − 1)
n

)n

.

Using the classical limit

lim
n→∞

(
1 +

y
n

)n
= ey (fixed y ∈ R),

54



with y = λ(et − 1), we obtain

lim
n→∞

MXn(t) = exp
(
λ(et − 1)

)
=: M(t).

But M(t) = exp
(
λ(et − 1)

)
is the mgf of Poisson(λ). Since M exists in a neighborhood of 0, by

Theorem 26 we conclude

Xn
d
=⇒ Poisson(λ).

Lemma. For any fixed y ∈ R, lim
n→∞

(
1 +

y
n

)n
= ey.

Proof. Take logs: n log
(
1 + y

n

)
→ y by log(1 + u) = u + o(u) as u → 0; exponentiate.

Remark (What to watch for in this example). 1. The binomial theorem step is purely alge-

braic; it packages the sum defining the mgf into (a + b)n.

2. The limit uses Lemma with y = λ(et − 1), which is valid for all t.

3. The limit function is an actual mgf (Poisson), so the hypothesis of Theorem 26 is satisfied.

Characteristic Functions and the Normal Distribution

Definition (Characteristic Function). For a random variable X, the characteristic function is

ϕX(t) = E
(

eitX
)

, i =
√
−1.

Characteristic functions always exist (the integrand has modulus 1), they completely deter-

mine the distribution, and each cdf has a unique characteristic function.

Remark. Unlike mgfs, ϕX(t) exists even when moments (or the mgf) do not. This is why char-

acteristic functions are especially useful for convergence results.

Theorem 27 (Lévy continuity theorem: convergence via c.f.’s). Let Xk, k = 1, 2, . . . be random

variables with characteristic functions ϕXk(t). Suppose that for all t in a neighborhood of 0,

lim
k→∞

ϕXk(t) = ϕX(t),

and that ϕX(t) is a characteristic function. Then, for every x at which FX is continuous,

lim
k→∞

FXk(x) = FX(x).

Remark. In words: convergence of characteristic functions (near 0) implies convergence of cdfs

(i.e., convergence in distribution).

Definition (Normal (Gaussian) distribution). A random variable X is said to have a normal
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distribution with mean µ and variance σ2, written X ∼ N (µ, σ2), if its pdf is

f (x | µ, σ2) =
1√

2π σ
exp

(
− (x − µ)2

2σ2

)
, −∞ < x < ∞.

Remark. The normal plays a central role in statistics and economics: it is tractable, has the

familiar bell shape, and can well-approximate many distributions in large samples.

Proposition (Standardization and tractability). If X ∼ N (µ, σ2), then the standardized variable

Z =
X − µ

σ

has the standard normal distribution, Z ∼ N (0, 1).

Remark. This is convenient: probabilities and expectations can be computed for Z and then

transformed back to X ∼ N (µ, σ2). Variances transform analogously. The two parameters

(µ, σ) fully describe the location and scale (shape and location) of the distribution, making the

normal part of the location–scale family.

Proposition (Empirical 68–95–99.7 rule). For X ∼ N (µ, σ2),

P(|X − µ| ≤ σ) ≈ 0.68, P(|X − µ| ≤ 2σ) ≈ 0.95, P(|X − µ| ≤ 3σ) ≈ 0.997.

Equivalently, for Z ∼ N (0, 1), P(|Z| ≤ 1) ≈ 0.68, P(|Z| ≤ 2) ≈ 0.95, and P(|Z| ≤ 3) ≈ 0.997.

Location and Scale Families

Theorem 28 (Location and scale transformation). Let f (x) be any pdf and let µ ∈ R and σ > 0 be

constants. Define

g(x | µ, σ) =
1
σ

f
(

x − µ

σ

)
.

Then g(x | µ, σ) is a pdf.

Proof. Since f is a pdf, f (x) ≥ 0 for all x. Hence g(x | µ, σ) ≥ 0. Next, check normalization:

∫ ∞

−∞

1
σ

f
(

x − µ

σ

)
dx =

∫ ∞

−∞
f (y) dy = 1,

where the change of variable y = (x − µ)/σ was used. Thus g is a valid pdf.

Remark (Families of distributions).

• Location family: If f (x) is a pdf, then { f (x − µ) : µ ∈ R} is the location family with

standard pdf f (x). The parameter µ shifts the distribution left/right.

• Scale family: If f (x) is a pdf, then
{ 1

σ f
( x

σ

)
: σ > 0

}
is the scale family with standard pdf

f (x). The parameter σ stretches (σ > 1) or contracts (σ < 1) the distribution.
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• Location–scale family: If f (x) is a pdf, then{
1
σ

f
(

x − µ

σ

)
: µ ∈ R, σ > 0

}
is the location–scale family. Here µ is the location parameter and σ is the scale parameter.

Remark. As with the normal distribution, calculations can often be carried out using the stan-

dard pdf f (x) and then transferred to the whole family via the location and scale transforma-

tion.
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Week 3 – Discussion

Transformations of random variables: Theorems 2.1.5 and 2.1.8

Let X be a real-valued r.v. with continuous pdf fX supported on X = {x ∈ R : fX(x) > 0},

and let Y = g(X). Write Y = {y ∈ R : y = g(x) for some x ∈ X}.

Theorem 29 (Monotone transformation (2.1.5)). Suppose g : X → Y is strictly monotone and

differentiable with g−1 differentiable on Y . Then Y has pdf

fY(y) =


fX
(

g−1(y)
) ∣∣ d

dy
g−1(y)

∣∣, y ∈ Y ,

0, otherwise.

Equivalently, writing x = g−1(y), fY(y) =
fX(x)
|g′(x)| for y ∈ Y .

Sketch. If g is strictly increasing, then FY(y) = P(Y ≤ y) = P(X ≤ g−1(y)) = FX
(

g−1(y)
)
.

Differentiate and use the chain rule to obtain fY(y) = fX
(

g−1(y)
)
(g−1)′(y). Since (g−1)′(y) =

1/g′(x) > 0, this equals fX(x)/g′(x). If g is strictly decreasing, the inequality reverses, FY(y) =

P(X ≥ g−1(y)) = 1− FX
(

g−1(y)
)
, and differentiation introduces a minus sign; taking absolute

values gives the stated formula in both cases.

Theorem 30 (Non–monotone transformation (2.1.8)). Suppose g is differentiable on X and there

exist disjoint intervals X1, . . . ,Xm that cover X such that each restriction g|Xj is strictly monotone

with a differentiable inverse xj(·) onto its image. Then Y = g(X) has pdf, for y ∈ Y ,

fY(y) =
m

∑
j=1

fX
(
xj(y)

) ∣∣∣ d
dy

xj(y)
∣∣∣ = ∑

x∈g−1({y})

fX(x)
|g′(x)| ,

and fY(y) = 0 for y /∈ Y .

Remark (Why monotonicity matters). If g is not one-to-one globally, g−1(y) is multi-valued.

Theorem 30 says: split the domain into monotone branches, invert on each branch, and sum

the Jacobian-adjusted contributions. The absolute value accounts for the sign of g′ (increasing

vs. decreasing branch).

Cookbook procedure for Theorem 29.

1. Verify that g(·) is strictly monotone on X (hence invertible onto Y).

2. Compute the inverse x = g−1(y) and its derivative (g−1)′(y) = 1/g′(x).

3. Evaluate fX at the inverse: fX
(

g−1(y)
)
.

4. Multiply by the Jacobian factor: fY(y) = fX
(

g−1(y)
) ∣∣(g−1)′(y)

∣∣.
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5. Set fY(y) = 0 for y /∈ Y and check that
∫
Y fY(y) dy = 1.

Cookbook for non–monotone g (Theorem 30).

1. Partition X into disjoint intervals where g is strictly monotone.

2. For a given y, solve g(x) = y on each branch to get the preimages xj(y).

3. Sum the branchwise contributions: fY(y) = ∑j fX
(
xj(y)

) ∣∣1/g′(xj(y))
∣∣.

4. Declare fY(y) = 0 when no preimage exists (i.e. y /∈ Y).

Theorem 31 (Monotone transformation; cf. Thm. 2.1.5). Let X have pdf fX with support X = {x :

fX(x) > 0} and let Y = g(X), where g : X → R is monotone (either increasing or decreasing) and

invertible on X . Assume fX is continuous on X and g−1 is continuously differentiable on Y := g(X ).

Then the pdf of Y is

fY(y) =


fX
(

g−1(y)
) ∣∣∣∣ d

dy
g−1(y)

∣∣∣∣ , y ∈ Y ,

0, otherwise.

Proof sketch. If g is increasing, FY(y) = P(g(X) ≤ y) = P(X ≤ g−1(y)) = FX(g−1(y)); if

decreasing, FY(y) = P(X ≥ g−1(y)) = 1 − FX(g−1(y)). Differentiating and using the chain

rule yields the stated density with the absolute derivative.

Cookbook for Thm. 2.1.5

• Inputs: pdf fX and a monotone g.

• Goal: derive fY of Y = g(X).

• Steps:

1. Verify g is monotone and invertible on X ; set Y = g(X ).

2. Compute g−1(y) for y ∈ Y .

3. Compute
d

dy
g−1(y).

4. Plug into fY(y) = fX
(

g−1(y)
) ∣∣∣∣ d

dy
g−1(y)

∣∣∣∣ and restrict to Y .

Remark (Why monotonicity matters). If g is not monotone on X , it is not globally invertible on

X . You must partition X into regions where g is monotone and sum the branch contributions

(Theorem 32 below).

Theorem 32 (Piecewise monotone transformation; cf. Thm. 2.1.8). Let X have pdf fX with support

X . Suppose there is a finite partition {A0, A1, . . . , Ak} of X with P(X ∈ A0) = 0 and, for i = 1, . . . , k,

functions gi : Ai → R such that:
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(i) g(x) = gi(x) for x ∈ Ai (so g agrees with gi on Ai);

(ii) gi is monotone on Ai;

(iii) The image set Y := {y : ∃x ∈ Ai s.t. y = gi(x)} is the same for all i;

(iv) g−1
i exists on Y and is continuously differentiable there.

Then the pdf of Y = g(X) is

fY(y) =


k

∑
i=1

fX
(

g−1
i (y)

) ∣∣∣∣ d
dy

g−1
i (y)

∣∣∣∣ , y ∈ Y ,

0, otherwise.

Cookbook for Thm. 2.1.8

• Inputs: pdf fX and g(·) satisfying the piecewise conditions.

• Typical classroom setting: k = 2, A0 = {0}, A1 ⊂ R−−, A2 ⊂ R++, often with A1 =

−A2 (e.g., even g).

• Goal: derive fY for Y = g(X).

• Steps:

1. Determine the partition A0, . . . , Ak and Y .

2. Check (i)–(iv) hold.

3. For each branch i, compute g−1
i (y) on Y .

4. Evaluate fX
(

g−1
i (y)

)
for each i.

5. Compute
d

dy
g−1

i (y) for each i.

6. Sum the branch contributions to obtain fY(y) on Y .

Example (Even transform; k = 2). If Y = X2 and P(X = 0) = 0, then with A1 = (−∞, 0),

A2 = (0, ∞), g−1
1 (y) = −√

y, g−1
2 (y) =

√
y, and

fY(y) =
fX(

√
y) + fX(−

√
y)

2
√

y
1{y>0}.

Problem 1. In each of the following, find the pdf of Y and show that it integrates to 1.

(a) fX(x) =
1
2

e−|x| for x ∈ R (Laplace), and Y = |X|3.

Solution. TBW Partition A0 = {0}, A1 = (−∞, 0), A2 = (0, ∞), with g1(x) = −x3 on

A1 and g2(x) = x3 on A2. Then g−1
1 (y) = −y1/3 and g−1

2 (y) = y1/3, with
∣∣∣∣ d
dy

g−1
i (y)

∣∣∣∣ =
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1
3

y−2/3. Hence, for y > 0,

fY(y) =
2

∑
i=1

fX
(

g−1
i (y)

) ∣∣∣∣ d
dy

g−1
i (y)

∣∣∣∣ = ( 1
2 e−y1/3

+ 1
2 e−y1/3

)
· 1

3
y−2/3 =

1
3

e−y1/3
y−2/3.

Otherwise fY(y) = 0.

Check
∫

fY = 1. With t = y1/3, dy = 3t2 dt:

∫ ∞

0

1
3

e−y1/3
y−2/3 dy =

∫ ∞

0
e−t dt = 1.

(b) fX(x) =
3
8
(x + 1)2 for −1 < x < 1, and Y = 1 − X2.

Solution. TBW Partition A1 = (−1, 0) and A2 = (0, 1) with g1(x) = 1 − x2 (increasing on

A1), g2(x) = 1 − x2 (decreasing on A2). For y ∈ (0, 1),

g−1
1 (y) = −

√
1 − y, g−1

2 (y) = +
√

1 − y,
∣∣∣∣ d
dy

g−1
i (y)

∣∣∣∣ = 1
2
√

1 − y
.

Thus

fY(y) =
3
8
(1 −

√
1 − y)2

2
√

1 − y
+

3
8
(1 +

√
1 − y)2

2
√

1 − y

=
3
8

(
(1 − y)−1/2 + (1 − y)1/2

)
, 0 < y < 1,

and fY(y) = 0 otherwise.

Check
∫

fY = 1.

∫ 1

0

3
8
(1 − y)−1/2 dy =

3
8
· 2 =

3
4

,
∫ 1

0

3
8
(1 − y)1/2 dy =

3
8
· 2

3
=

1
4

.

Sum = 1.

(c) fX(x) =
3
8
(x + 1)2 for −1 < x < 1, and

Y =

1 − X2, X ≤ 0,

1 − X, X > 0.

Solution. TBW. Take A1 = (−1, 0] with g1(x) = 1 − x2 (increasing), and A2 = (0, 1) with

g2(x) = 1 − x (decreasing). For y ∈ (0, 1),

g−1
1 (y) = −

√
1 − y,

∣∣∣∣ d
dy

g−1
1 (y)

∣∣∣∣ = 1
2
√

1 − y
, g−1

2 (y) = 1 − y,
∣∣∣∣ d
dy

g−1
2 (y)

∣∣∣∣ = 1.
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Therefore

fY(y) =
3
16

(
1√

1 − y
− 2 +

√
1 − y

)
+

3
8
(2 − y)2, 0 < y < 1,

(and fY(y) = 0 otherwise). Equivalently,

fY(y) =
3

16
(1 −

√
1 − y)2√

1 − y
+

3
8
(2 − y)2.

Check
∫

fY = 1. Let s =
√

1 − y, dy = −2s ds:

∫ 1

0

3
16

(
1√

1 − y
− 2 +

√
1 − y

)
dy =

3
8

∫ 1

0
(1 − s)2 ds =

1
8

.

Also, ∫ 1

0

3
8
(2 − y)2 dy =

3
8

[
4y − 2y2 +

y3

3

]1

0
=

7
8

.

Sum = 1.

Problem 2. Show the following (a) Let X be a continuous, nonnegative random variable with

cdf FX. Show that

E[X] =
∫ ∞

0

(
1 − FX(x)

)
dx.

(b) Let X be a nonnegative, integer–valued random variable with cdf FX(k) = P(X ≤ k). Show

that

E[X] =
∞

∑
k=0

(
1 − FX(k)

)
=

∞

∑
k=0

P(X > k).

Solution. TBW.

(a) Continuous case. Since X ≥ 0 and fX is its pdf,∫ ∞

0
(1 − FX(x)) dx =

∫ ∞

0
P(X > x) dx

=
∫ ∞

0

∫ ∞

x
fX(y) dy dx

=
∫ ∞

0

∫ y

0
dx fX(y) dy

=
∫ ∞

0
y fX(y) dy

= E[X],

where the change in the order of integration is justified by Tonelli/Fubini (since the integrand

is nonnegative).
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(b) Discrete case. For X ∈ {0, 1, 2, . . . } and X ≥ 0,

X =
∞

∑
k=0

1{X > k} a.s.

Taking expectations and using Monotone Convergence,

E[X] = E

[
∞

∑
k=0

1{X > k}
]
=

∞

∑
k=0

P(X > k) =
∞

∑
k=0

(
1 − FX(k)

)
.

This matches the continuous formula with integrals replaced by sums.

Problem 3. Let X have pdf fX(x) = 1
2 (1 + x) for −1 < x < 1 and 0 otherwise.

(a) Find the pdf of Y = X2.

(b) Compute E[Y] and Var(Y).

Solution. TBW.

(a) Pdf of Y = X2. Partition X = (−1, 1) as A0 = {0}, A1 = (−1, 0), A2 = (0, 1). On A1 and

A2 the map g(x) = x2 is monotone with

g−1
1 (y) = −√

y, g−1
2 (y) = +

√
y,

∣∣∣∣ d
dy

g−1
i (y)

∣∣∣∣ = 1
2
√

y
.

By Theorem 2.1.8, for 0 < y < 1,

fY(y) =
2

∑
i=1

fX
(

g−1
i (y)

) ∣∣∣∣ d
dy

g−1
i (y)

∣∣∣∣
=

[
1
2
(
1 −√

y
)
+

1
2
(
1 +

√
y
)]

· 1
2
√

y
=

1
2

y−1/2,

and fY(y) = 0 otherwise. (Note that
∫ 1

0
1
2 y−1/2dy = 1.)

(b) Mean and variance.

E[Y] =
∫ 1

0
y fY(y) dy =

1
2

∫ 1

0
y1/2dy =

1
2
· 2

3
=

1
3

.

E[Y2] =
∫ 1

0
y2 fY(y) dy =

1
2

∫ 1

0
y3/2dy =

1
2
· 2

5
=

1
5

.

Hence

Var(Y) = E[Y2]−
(
E[Y]

)2
=

1
5
−
(

1
3

)2

=
4

45
.

Problem 4. Suppose X has geometric pmf P(X = x) =
1
3

(
2
3

)x

for x = 0, 1, 2, . . .. Define

Y =
X

X + 1
. Determine the pmf of Y.
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Solution. TBW. The mapping x 7→ y =
x

x + 1
is strictly increasing on {0, 1, 2, . . .} and takes

values

SY =

{
0,

1
2

,
2
3

,
3
4

, . . . ,
x

x + 1
, . . .

}
⊂ [0, 1).

It is one-to-one, with inverse on SY given by x =
y

1 − y
. Therefore, for y ∈ SY,

P(Y = y) = P
(

X =
y

1 − y

)
=

1
3

(
2
3

) y
1−y

, and P(Y = y) = 0 for y /∈ SY.

Equivalently, writing yx =
x

x + 1
,

P
(
Y = yx

)
= P(X = x) =

1
3

(
2
3

)x

, x = 0, 1, 2, . . .

and the probabilities sum to 1 since ∑x≥0 P(Y = yx) = ∑x≥0 P(X = x) = 1.

Problem 5. (a) Let X ∼ N (m, σ2) with σ =
√

σ2 > 0. Show that Z =
X − m

σ
∼ N (0, 1).

(b) Let Z ∼ N (0, 1) and m ∈ R, σ ̸= 0. Show that X = m + σZ ∼ N (m, σ2).

(c) Let X ∼ N (m, σ2) and a ∈ R, b ̸= 0. Prove that Y = a + bX is normal and find its

parameters.

Solution. TBW.

(a) Standardization. For z ∈ R,

FZ(z) = P

(
X − m

σ
≤ z
)
= P(X ≤ m + σz) = FX(m + σz).

Differentiating (chain rule) gives the pdf of Z:

fZ(z) = σ fX(m + σz) = σ · 1
σ
√

2π
exp

(
− (m + σz − m)2

2σ2

)
=

1√
2π

e−z2/2,

the N (0, 1) density. (Equivalently, E[Z] = (E[X]− m)/σ = 0 and Var(Z) = Var(X)/σ2 = 1.)

(b) Affine build-up from a standard normal. Let X = m + σZ. For any x ∈ R,

FX(x) = P(m + σZ ≤ x) = P

(
Z ≤ x − m

σ

)
= Φ

(
x − m

σ

)
,

so X has cdf of N (m, σ2) and hence X ∼ N (m, σ2). Differentiating yields the familiar pdf

fX(x) =
1

σ
√

2π
exp
(
− (x−m)2

2σ2

)
.

(c) Closure under affine maps. Define Y = a + bX. Using the change-of-variables formula

(with monotone linear y 7→ x = (y − a)/b), for y ∈ R,

fY(y) =
1
|b| fX

(
y − a

b

)
=

1
|b| ·

1
σ
√

2π
exp

(
−
( y−a

b − m
)2

2σ2

)
=

1
(|b|σ)

√
2π

exp
(
− (y − (a + bm))2

2(bσ)2

)
.
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Hence Y ∼ N
(
a + bm, (bσ)2) (note the variance b2σ2; the standard deviation is |b|σ). In

particular, E[Y] = a + bm and Var(Y) = b2σ2.

Problem 6. Let Bn ∼ Bin(n, pn) with pn = λ/n for some fixed λ > 0. Show that for each

fixed k = 0, 1, 2, . . .,

lim
n→∞

P(Bn = k) = e−λ λk

k!
.

Proof. TBW. For k ∈ {0, 1, . . . , n},

P(Bn = k) =
(

n
k

)
p k

n(1 − pn)
n−k.

With pn = λ/n,

P(Bn = k) =
n(n − 1) · · · (n − k + 1)

k!

(
λ

n

)k (
1 − λ

n

)n−k

=
n(n − 1) · · · (n − k + 1)

nk︸ ︷︷ ︸
−→ 1

λk

k!

(
1 − λ

n

)n

︸ ︷︷ ︸
−→ e−λ

(
1 − λ

n

)−k

︸ ︷︷ ︸
−→ 1

.

Taking limits as n → ∞ and using the standard limits
(
1−λ/n

)n → e−λ and
(
1−λ/n

)−k → 1,

we obtain

lim
n→∞

P(Bn = k) = e−λ λk

k!
.

Remark (More general hypothesis). The same conclusion holds under the weaker assumption

n pn → λ and pn → 0:

P(Bn = k) =
(

n
k

)
p k

n(1 − pn)
n−k =

[k−1

∏
j=0

(
1 − j

n

)] (npn)k

k!
(1 − pn)

n (1 − pn)
−k −→ e−λ λk

k!
.

Problem 7. In a production line, a device is defective with probability 0.2 (it fails imme-

diately), while a non–defective device has failure–free time T that is exponential with rate

λ = 0.05 hour−1.

(a) Find the distribution function of the device’s failure–free operation time.

(b) Find the mean and variance of the device’s uptime.

Solution. TBW. Let τ denote the failure–free time of a randomly chosen device. Then P(τ =

0) = 0.2 and, conditional on {τ > 0}, τ ∼ Exp(λ). Hence the law of τ is a mixed distribution:

an atom at 0 and a continuous exponential component of weight 0.8.

(a) Distribution function. For x < 0, Fτ(x) = 0. For x ≥ 0, by total probability,

Fτ(x) = P(τ ≤ x) = P(τ = 0) + P(τ ≤ x | τ > 0)P(τ > 0) = 0.2 + 0.8
(
1 − e−λx).
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Equivalently, the density has an atom P(τ = 0) = 0.2 and for x > 0,

fτ(x) = 0.8 λe−λx.

(b) Mean and variance. Using the mixture structure (or integrating with fτ),

E[τ] = 0 · 0.2 +
∫ ∞

0
x (0.8 λe−λx) dx = 0.8 · 1

λ
=

0.8
0.05

= 16 hours.

Since for an exponential variable X ∼ Exp(λ) we have E[X2] = 2/λ2, here

E[τ2] = 0.8 · 2
λ2 = 0.8 · 2

0.052 = 640, Var(τ) = E[τ2]−
(
E[τ]

)2
= 640 − 162 = 384 hours2.

Problem 8. Let X have the standard Cauchy density fX(x) =
1

π(1 + x2)
, x ∈ R.

(a) Show that Y =
1
X

is also standard Cauchy.

(b) What is the expected value of X?

Solution. TBW.

(a) Y = 1/X is Cauchy. Because P(X = 0) = 0, the map g(x) = 1/x is invertible a.s. with

inverse g−1(y) = 1/y and
∣∣∣∣ d
dy

g−1(y)
∣∣∣∣ = 1

y2 . By change of variables,

fY(y) = fX
(

g−1(y)
)∣∣∣ d

dy g−1(y)
∣∣∣ = 1

π(1 + (1/y)2)
· 1

y2 =
1

π(1 + y2)
, y ∈ R,

so Y ∼ Cauchy(0, 1).

(Equivalent CDF check). With FX(x) = 1
2 +

1
π arctan x, one gets FY(y) = 1

2 +
1
π arctan y for all

y, the Cauchy CDF.

(b) Expectation.

∫
R
|x| fX(x) dx =

2
π

∫ ∞

1

x
1 + x2 dx =

1
π

[
ln(1 + x2)

]∞

1
= ∞.

Hence X /∈ L1 and the (Lebesgue) expectation E[X] does not exist (the symmetric improper

integral equals 0 as a principal value, but this is not a finite expectation).
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Week 4 – Class 7

Multiple Random Variables

So far, we only worked with univariate models. Now: multivariate.

Definition. An n-dimensional random vector is a function from a sample space S into Rn, n-

dimensional Euclidian space.

Discrete Bivariate

Definition. Let (X, Y) be a discrete bivariate random vector. Then the function

f (x, y) = P(X = x, Y = y), (x, y) ∈ R2,

is called the joint probability mass function, or joint pmf, of (X, Y).

The joint pmf can be used to compute the probability of any event defined in terms of

(X, Y). Let A be any subset of R2. Then

P
(
(X, Y) ∈ A

)
= ∑

(x,y)∈A
f (x, y).

Remark. Because (X, Y) is discrete, f (x, y) is nonzero at most at a countable number of points

(x, y). Hence, this is a countable sum.

Expectations

Expectations work the same as with univariate random variables. Let g(x, y) be a real-valued

function defined for all possible values (x, y) for (X, Y). Then g(X, Y) is also a random variable,

and

E[g(X, Y)] = ∑
(x,y)∈R2

g(x, y) f (x, y).

Properties of the Joint pmf

The joint pmf must satisfy certain properties:

• For any (x, y), f (x, y) ≥ 0 because it is a probability.

• Since (X, Y) certainly takes values in R2,

∑
(x,y)∈R2

f (x, y) = P
(
(X, Y) ∈ R2) = 1.

Remark. We do not need to work with the underlying fundamental sample space S, which can

be intractable. Instead, we work with the pmf.
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Discrete Bivariate: Marginals

The variable X of the random vector (X, Y) is itself a random variable, with a pmf fX(x) =

P(X = x) (same for Y); we call this the marginal pmf.

Theorem 33 (4.1.6). Let (X, Y) be a discrete bivariate random vector with joint pmf fX,Y(x, y). Then

the marginal pmfs of X and Y, fX(x) = P(X = x) and fY(y) = P(Y = y), are

fX(x) = ∑
y∈R

fX,Y(x, y) and fY(y) = ∑
x∈R

fX,Y(x, y).

Proof.

fX(x) = P(X = x) = P
(
X = x, −∞ < Y < ∞

)
.

Let

Ax = {(x′, y′) : x′ = x, −∞ < y′ < ∞}.

Then

P
(
(X, Y) ∈ Ax

)
= ∑

(x′,y′)∈Ax

fX,Y(x′, y′) = ∑
y∈R

fX,Y(x, y).

An identical argument gives the expression for fY(y).

Continuous Bivariate

Definition (Joint pdf). A function f (x, y) : R2 → R is called the joint probability density

function (joint pdf) of a continuous bivariate random vector (X, Y) if, for every A ⊂ R2,

P
(
(X, Y) ∈ A

)
=
∫∫

A
f (x, y) dx dy.

Remark. Same as the univariate case, but now with double integrals.

If g(x, y) is a real-valued function, then the expected value of g(X, Y) is

E
[
g(X, Y)

]
=
∫ ∞

−∞

∫ ∞

−∞
g(x, y) f (x, y) dx dy.

Continuous Bivariate: Marginals

The marginal probability densities of X and Y are given by

fX(x) =
∫ ∞

−∞
f (x, y) dy, −∞ < x < ∞,

fY(y) =
∫ ∞

−∞
f (x, y) dx, −∞ < y < ∞.

As in the discrete case, any function f (x, y) with f (x, y) ≥ 0 for all (x, y) ∈ R2 that inte-
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grates to 1, i.e. ∫ ∞

−∞

∫ ∞

−∞
f (x, y) dx dy = 1,

is the joint pdf of some continuous bivariate random vector (X, Y).

Continuous Bivariate: Joint CDF

The joint probability distribution of (X, Y) can be completely described with the joint cdf,

defined by

F(x, y) = P(X ≤ x, Y ≤ y), (x, y) ∈ R2.

We have

F(x, y) =
∫ x

−∞

∫ y

−∞
f (s, t) dt ds,

and moreover
∂2

∂x ∂y
F(x, y) = f (x, y).

Conditional Distributions

Definition (4.2.1 Discrete case). Let (X, Y) be a discrete bivariate random vector with joint pmf

f (x, y) and marginal pmfs fX(x) and fY(y). For any x such that P(X = x) = fX(x) > 0, the

conditional pmf of Y given X = x is the function of y denoted f (y|x), defined by

f (y|x) = P(Y = y | X = x) =
f (x, y)
fX(x)

.

(and similarly for x given y).

Definition (4.2.3 Continuous case). Let (X, Y) be a continuous bivariate random vector with

joint pdf f (x, y) and marginal pdfs fX(x) and fY(y). For any x such that fX(x) > 0, the condi-

tional pdf of Y given X = x is the function of y denoted f (y|x), defined by

f (y|x) = f (x, y)
fX(x)

.

(and similarly for x given y).

Conditional Expectations

When we have conditional pmfs or pdfs, we can compute conditional expected values:

E[g(Y) | X = x] = ∑
y

g(y) f (y|x) (discrete case),

E[g(Y) | X = x] =
∫ ∞

−∞
g(y) f (y|x) dy (continuous case).

69



Definition (4.2.5 Independence). Let (X, Y) be a bivariate random vector with joint pdf or pmf

f (x, y) and marginals fX(x) and fY(y). Then X and Y are called independent if, for every x ∈ R

and y ∈ R,

f (x, y) = fX(x) fY(y).

If X and Y are independent, then the conditional distribution of Y given X = x is

f (y|x) = f (x, y)
fX(x)

=
fX(x) fY(y)

fX(x)
= fY(y).

Lemma (4.2.7). Let (X, Y) be a bivariate random vector with joint pdf or pmf f (x, y). Then X and Y

are independent random variables if and only if there exist functions g(x) and h(y) such that, for all

x, y ∈ R,

f (x, y) = g(x)h(y).

Proof. Revise Carefully

(⇒) Suppose X and Y are independent. By definition of independence,

f (x, y) = fX(x) fY(y).

Hence g(x) = fX(x) and h(y) = fY(y) satisfy the factorization.

(⇐) Suppose instead that the joint distribution factorizes as

f (x, y) = g(x)h(y).

At this point g(x) and h(y) are just nonnegative functions, not necessarily probability distri-

butions.

Compute the marginals:

fX(x) =
∫

R
f (x, y) dy =

∫
R

g(x)h(y) dy = g(x)
∫

R
h(y) dy.

Define

c =
∫

R
h(y) dy.

Then

fX(x) = g(x)c.

Similarly,

fY(y) =
∫

R
f (x, y) dx =

∫
R

g(x)h(y) dx = h(y)
∫

R
g(x) dx.

Define

d =
∫

R
g(x) dx.

Then

fY(y) = h(y)d.
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Now, because f (x, y) is a valid pdf/pmf, we must have

1 =
∫∫

R2
f (x, y) dxdy =

( ∫
R

g(x) dx
)( ∫

R
h(y) dy

)
= cd.

Therefore,

fX(x) fY(y) = (g(x)c)(h(y)d) = g(x)h(y) (cd).

But since cd = 1, we get

fX(x) fY(y) = g(x)h(y) = f (x, y).

Thus the joint distribution factorizes into the product of the marginals, which means X and

Y are independent.

Theorem 34 (4.2.10). Let X and Y be independent random variables.

(a) For any A ⊂ R and B ⊂ R,

P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B).

(b) If g is a function of x only and h a function of y only (with E|g(X)| < ∞, E|h(Y)| < ∞), then

E
[
g(X)h(Y)

]
= E[g(X)]E[h(Y)].

Proof. Revise Carefully

We write the proof for the continuous case (with joint pdf f , marginals fX, fY). The discrete

case is identical replacing integrals by sums.

Useful identity (for any Borel A ⊂ R):

E
[
1A(X)

]
=
∫

R
1A(x) fX(x) dx =

∫
A

fX(x) dx = P(X ∈ A). (1)

(a) Using indicator functions and independence ( f (x, y) = fX(x) fY(y)),

P(X ∈ A, Y ∈ B) = E
[
1A(X)1B(Y)

]
=
∫∫

R2
1A(x)1B(y) f (x, y) dx dy

=
( ∫

R
1A(x) fX(x) dx

)( ∫
R

1B(y) fY(y) dy
)

= P(X ∈ A)P(Y ∈ B) by (1) (and its Y-analogue).
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(b) By Fubini and independence,

E
[
g(X)h(Y)

]
=
∫∫

R2
g(x)h(y) f (x, y) dx dy

=
( ∫

R
g(x) fX(x) dx

)( ∫
R

h(y) fY(y) dy
)

= E[g(X)]E[h(Y)].

Equivalently (and this is the missing step in the slide): by the Law of Iterated Expectations and

independence,

E
[
g(X)h(Y)

]
= E

[
g(X)E[h(Y) | X]

]
= E

[
g(X)E[h(Y)]

]
= E[g(X)]E[h(Y)],

since Y⊥X implies E[h(Y) | X] = E[h(Y)] a.s.

Example (4.1.12 and 4.2.4). Let f (x, y) = e−y for 0 < x < y < ∞. We want to compute

P(X + Y ≥ 1).

Instead of integrating directly over the region {(x, y) : x + y ≥ 1, 0 < x < y}, it is easier to

use the complement:

P(X + Y ≥ 1) = 1 − P(X + Y < 1).

The event {X + Y < 1} corresponds to 0 < x < 1/2 and x < y < 1 − x. Thus

P(X + Y < 1) =
∫ 1/2

0

∫ 1−x

x
e−y dy dx.

Evaluating the inner integral:

∫ 1−x

x
e−y dy = e−x − e−(1−x).

So

P(X + Y < 1) =
∫ 1/2

0

(
e−x − e−(1−x)

)
dx.

Therefore,

P(X + Y ≥ 1) = 1 −
∫ 1/2

0

(
e−x − e−(1−x)

)
dx = 2e−1/2 − e−1.

Now, let us compute the conditional distribution of Y given X = x. The marginal of X is

fX(x) =
∫ ∞

x
e−y dy = e−x, x > 0.

Hence X ∼ Exponential(1).
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The conditional pdf is

f (y|x) = f (x, y)
fX(x)

=


e−y

e−x = e−(y−x), y > x,

0, y ≤ x.

Thus Y|X = x ∼ x + Exponential(1).

Finally, let us compute conditional expectation and variance.

E[Y|X = x] =
∫ ∞

x
y e−(y−x) dy.

Substitute z = y − x, dz = dy, y = z + x, lower limit z = 0:

E[Y|X = x] =
∫ ∞

0
(z + x)e−z dz =

∫ ∞

0
ze−z dz + x

∫ ∞

0
e−z dz = 1 + x.

For the variance, use

Var(Y|X = x) = E[Y2|X = x]− (E[Y|X = x])2.

We compute

E[Y2|X = x] =
∫ ∞

x
y2e−(y−x) dy =

∫ ∞

0
(z + x)2e−z dz.

Expanding:

E[Y2|X = x] =
∫ ∞

0
(z2 + 2xz + x2)e−z dz = 2 + 2x + x2.

Thus

Var(Y|X = x) = (x2 + 2x + 2)− (1 + x)2 = 1.

Conclusion: The conditional distribution of Y|X = x is exponential with mean 1 + x and

variance 1, i.e. a shifted exponential.

Bivariate Transformations

Definition (Set-up). Let (X, Y) be a bivariate random vector with known joint distribution.

Define a transformed pair (U, V) by

U = g1(X, Y), V = g2(X, Y),

for given functions g1, g2. For any B ⊂ R2, write

A = {(x, y) ∈ R2 : (g1(x, y), g2(x, y)) ∈ B}.
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Then (U, V) ∈ B ⇐⇒ (X, Y) ∈ A, hence

P
(
(U, V) ∈ B

)
= P

(
(X, Y) ∈ A

)
.

Remark (What this means). All distributional information about (U, V) is inherited from (X, Y)

via preimages of sets: probabilities for (U, V) over B equal probabilities for (X, Y) over the cor-

responding preimage A. This principle underlies both the discrete and continuous formulas

below.

Discrete random vectors

Let A = {(x, y) : fX,Y(x, y) > 0} be the (countable) support of (X, Y) and

B = {(u, v) : ∃(x, y) ∈ A s.t. u = g1(x, y), v = g2(x, y)}

the attainable set of (U, V). For (u, v) ∈ B define the preimage slice

Auv = {(x, y) ∈ A : g1(x, y) = u, g2(x, y) = v}.

Proposition (Joint pmf under a transformation). The joint pmf of (U, V) is

fU,V(u, v) = P(U = u, V = v) = ∑
(x,y)∈Auv

fX,Y(x, y), (u, v) ∈ B,

and fU,V(u, v) = 0 for (u, v) /∈ B.

Proof. The sets {(X, Y) = (x, y)} with (x, y) ∈ Auv are disjoint and their union is {U = u, V =

v}. Add probabilities.

Continuous random vectors

Let A = {(x, y) : fX,Y(x, y) > 0} and B = {(u, v) : ∃(x, y) ∈ A with (u, v) = (g1(x, y), g2(x, y))}.

Assume:

(i) g = (g1, g2) : A → B is one-to-one and onto B;

(ii) g is continuously differentiable on A with nonzero Jacobian determinant everywhere;

(iii) its inverse h = (h1, h2) : B → A is continuously differentiable.

Proposition (Change of variables for bivariate densities). On B the joint pdf of (U, V) is

fU,V(u, v) = fX,Y
(
h1(u, v), h2(u, v)

) ∣∣J(u, v)
∣∣, (u, v) ∈ B,
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and fU,V(u, v) = 0 for (u, v) /∈ B, where

J(u, v) = det


∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

 with x = h1(u, v), y = h2(u, v).

Equivalently,

fU,V(u, v) =
fX,Y(x, y)∣∣∣det
(

∂(u,v)
∂(x,y)

)∣∣∣
∣∣∣∣∣
(x,y)=h(u,v)

.

Intuition/derivation. Fix (u0, v0) ∈ B and let (x0, y0) = h(u0, v0). For a small rectangle Ruv =

[u0, u0 + ∆u]× [v0, v0 + ∆v], its preimage under h is a small parallelogram Rxy around (x0, y0)

whose area is approximately
∣∣J(u0, v0)

∣∣∆u ∆v (by the linear approximation of h). Hence

P
(
(U, V) ∈ Ruv

)
= P

(
(X, Y) ∈ Rxy

)
≈ fX,Y(x0, y0)

∣∣J(u0, v0)
∣∣∆u ∆v.

Divide by ∆u ∆v and let ∆u, ∆v → 0 to obtain the stated density.

Remark (Support and zero density outside B). By construction fU,V is supported on B = g(A);

if (u, v) /∈ B, then no (x, y) maps to (u, v) and fU,V(u, v) = 0.

Recall (Jacobian entries). With x = h1(u, v) and y = h2(u, v),

∂x
∂u

=
∂h1(u, v)

∂u
,

∂x
∂v

=
∂h1(u, v)

∂v
,

∂y
∂u

=
∂h2(u, v)

∂u
,

∂y
∂v

=
∂h2(u, v)

∂v
.

Take the absolute value of the determinant.

Remark (Why inverse-Jacobian?). The area element transforms as dx dy =
∣∣det(∂(x, y)/∂(u, v))

∣∣ du dv.

Therefore we multiply by the inverse Jacobian (from (u, v) back to (x, y)). Using the forward

Jacobian det(∂(u, v)/∂(x, y)) is equivalent after inversion.

Remark. Checklist to apply the theorem:

1. Identify the support A of (X, Y) and define B = g(A).

2. Verify one-to-one on A (otherwise, split into one-to-one branches).

3. Find the inverse map h(u, v) = (x, y) explicitly.

4. Compute J(u, v) = det
(
∂(x, y)/∂(u, v)

)
.

5. Write fU,V(u, v) = fX,Y(h(u, v)) |J(u, v)| on B and 0 otherwise.

6. (Sanity check) Verify
∫∫

B fU,V(u, v) du dv = 1.
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Example: Transformation to Polar Coordinates

Example (Uniform on the unit disk ⇒ polar coordinates). Setup. Let (X, Y) be uniform on the

unit disk:

fX,Y(x, y) =


1
π

, x2 + y2 ≤ 1,

0, otherwise.

Transformation. Define

R =
√

X2 + Y2, Θ = arctan
(Y

X

)
,

and note the inverse map

x = h1(r, θ) = r cos θ, y = h2(r, θ) = r sin θ.

Jacobian. Using x = r cos θ, y = r sin θ,

∂(x, y)
∂(r, θ)

=

 ∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

 =

(
cos θ −r sin θ

sin θ r cos θ

)
, J = det

(
∂(x, y)
∂(r, θ)

)
= r.

Support. Since x2 + y2 ≤ 1 iff 0 ≤ r ≤ 1 and every point on the disk has a unique polar

angle modulo 2π, we take

0 ≤ r ≤ 1, 0 ≤ θ < 2π.

Joint pdf. By the change-of-variables formula,

fR,Θ(r, θ) = fX,Y
(
h1(r, θ), h2(r, θ)

) ∣∣J∣∣ =


1
π

r, 0 ≤ r ≤ 1, 0 ≤ θ < 2π,

0, otherwise.

Example. Let U = X + Y and V = X for a generic pair (X, Y) with joint pdf fX,Y. The inverse

map is x = h1(u, v) = v, y = h2(u, v) = u − v, with

∂(x, y)
∂(u, v)

=

(
0 1

1 −1

)
⇒

∣∣det(∂(x, y)/∂(u, v))
∣∣ = 1.

Hence

fU,V(u, v) = fX,Y
(
v, u − v

)
× 1 = fX,Y

(
v, u − v

)
,

with support obtained by mapping the support of (X, Y) through (u, v) = (x + y, x).
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Bivariate Transformations and Mixtures

Theorem 35 (4.3.5 Independence under separate transformations). Let X and Y be independent

random variables. Let g1(x) depend only on x and g2(y) only on y. Then the transformed variables

U = g1(X), V = g2(Y)

are independent.

Continuous case. Let M, N ⊂ R and define

AM = {x : g1(x) ∈ M}, BN = {y : g2(y) ∈ N}.

Then

FU,V(M, N) = P(U ∈ M, V ∈ N) = P
(
X ∈ AM, Y ∈ BN

)
.

Since X ⊥ Y, this factorizes as

P(X ∈ AM)P(Y ∈ BN) = FU(M) FV(N).

Differentiating gives fU,V(u, v) = fU(u) fV(v), hence U ⊥ V.

Remark. This result says that applying independent (measurable) transformations to indepen-

dent variables preserves independence.

Non one-to-one transformations

Sometimes one is interested in a single transformed variable, say U = g1(X, Y) (e.g. XY or X +

Y). To derive its distribution, we often introduce a convenient second variable V = g2(X, Y)

such that the map (X, Y) 7→ (U, V) is one-to-one. We then compute the joint distribution of

(U, V) and obtain the marginal of U.

If the transformation is not globally one-to-one, partition the support

A = {(x, y) : fX,Y(x, y) > 0}

into subsets {Ai} where (g1, g2) is one-to-one. For each i there is an inverse (h1i(u, v), h2i(u, v))

and a Jacobian Ji. Then

fU,V(u, v) =
k

∑
i=1

fX,Y
(
h1i(u, v), h2i(u, v)

)
|Ji|.

Remark. This is the multivariate analogue of handling non-monotone transformations in the

univariate case.
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Hierarchical Models and Mixtures

Definition (Mixture distribution). A random variable X is said to have a mixture distribution if

its distribution depends on another random quantity Y which itself has a distribution. Equiv-

alently, the parameter of X is random.

Example (Hierarchical model). Let

X | Y ∼ Binomial(Y, p), Y ∼ Poisson(λ).

Here the distribution of X depends on the random parameter Y. The marginal distribution of

X is therefore a mixture: averaging the binomial distribution over the Poisson distribution of

Y.

Theorem 36 (4.4.3 Law of Iterated Expectations). If X and Y are two random variables (with the

relevant expectations finite), then

E[X] = E
(
E[X | Y]

)
.

Proof. Start with the definition:

E[X] =
∫∫

x fX,Y(x, y) dx dy.

Factor the joint density as fX,Y(x, y) = fX|Y(x|y) fY(y):

E[X] =
∫ ( ∫

x fX|Y(x|y) dx

)
fY(y) dy.

The inner integral is by definition E[X | Y = y]. Therefore

E[X] =
∫

E[X | Y = y] fY(y) dy = E
(
E[X | Y]

)
.

Example (Binomial–Poisson mixture). Let

X | Y ∼ Binomial(Y, p), Y ∼ Poisson(λ).

By the law of iterated expectations,

E[X] = E
(
E[X | Y]

)
= E[pY] = p E[Y] = pλ.
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Week 4 – Class 8

Theorem 37 (4.4.7 Law of Total Variance). For any random variables X, Y (with finite variances),

Var(X) = E
[
Var(X | Y)

]
+ Var

(
E[X | Y]

)
.

Proof. Improve explanation (slide 28 with proofs) Recall

Var(X) = E
[
(X − E[X])2].

Add and subtract E[X | Y] inside the square:

X − E[X] = X − E[X | Y]︸ ︷︷ ︸
α

+E[X | Y]− E[X]︸ ︷︷ ︸
β

.

Then

(X − E[X])2 = α2 + 2αβ + β2.

Take expectations:

Var(X) = E[α2] + 2E[αβ] + E[β2].

Now:

• E[α2] = E[Var(X | Y)] by definition.

• E[αβ] = E
(
E[αβ | Y]

)
= E

(
β E[α | Y]

)
= 0 since E[α | Y] = E[X − E[X | Y] | Y] = 0.

• E[β2] = Var(E[X | Y]).

Thus

Var(X) = E[Var(X | Y)] + Var(E[X | Y]).

Covariance and Correlation

Definition (Covariance). The covariance between two random variables X and Y is defined as

Cov(X, Y) = E
[
(X − µX)(Y − µY)

]
,

where µX = E[X] and µY = E[Y]. Intuitively, covariance measures whether large (or small)

values of X tend to be associated with large (or small) values of Y.

• If Cov(X, Y) > 0, then X and Y tend to move together.

• If Cov(X, Y) < 0, then X and Y move in opposite directions.

• If Cov(X, Y) = 0, there is no linear association.
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Definition (Correlation). The correlation coefficient between X and Y is defined as

ρXY =
Cov(X, Y)

σXσY
.

Unlike covariance, correlation is scale–free: it is always bounded between −1 and 1.

• ρXY = 1: perfect positive linear relation.

• ρXY = −1: perfect negative linear relation.

• ρXY = 0: no linear relationship (but possibly nonlinear dependence).

Theorem 38. For any random variables X and Y,

Cov(X, Y) = E[XY]− µXµY.

Theorem 39. If X and Y are independent, then

Cov(X, Y) = 0 and ρXY = 0.

Remark. Independence implies zero correlation, but the converse is not true: zero covariance

(or correlation) does not imply independence. Covariance only captures linear dependence.

For instance, two variables can have a strong nonlinear relationship (e.g. Y = X2) but still

satisfy ρXY = 0.

Geometric Interpretation

We can view covariance as an inner product in the Hilbert space of square–integrable random

variables. If we define the centered variables

X̃ = X − µX, Ỹ = Y − µY,

then

ρXY =
⟨X̃, Ỹ⟩
∥X̃∥∥Ỹ∥

= cos θ.

Thus, correlation is literally the cosine of the angle between the two “vectors” X̃ and Ỹ.

• A small (acute) angle means strong positive correlation.

• An obtuse angle means negative correlation.

• A right angle (θ = π/2) means orthogonality: no linear dependence.

This explains the geometric view: two random variables are uncorrelated if their centered ver-

sions are orthogonal in this vector space. However, orthogonality does not preclude nonlinear

dependence.
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X̃

Ỹ

X̃

Ỹ

θ
projX̃ Ỹ

ρXY = cos θ > 0

(a) Acute angle: positive covariance/correlation.

X̃

Ỹ

X̃

Ỹ

θ = π
2

ρXY = 0 (orthogonality,
not necessarily independence).

(b) Right angle: zero covariance (no linear rela-
tion).

Figure 10: Geometric view in L2: ρXY = cos θ.

Theorem 40 (Variance of Linear Combinations). If X and Y are any two random variables and a

and b are any two constants, then

Var(aX + bY) = a2Var(X) + b2Var(Y) + 2abCov(X, Y).

If X and Y are independent random variables, then

Var(aX + bY) = a2Var(X) + b2Var(Y).

Proof. By definition,

Var(aX + bY) = E

[(
(aX + bY)− (aµX + bµY)

)2
]

= E
[
(a(X − µX) + b(Y − µY))

2]
= E

[
a2(X − µX)

2 + b2(Y − µY)
2 + 2ab(X − µX)(Y − µY)

]
= a2E[(X − µX)

2] + b2E[(Y − µY)
2] + 2abE[(X − µX)(Y − µY)]

= a2Var(X) + b2Var(Y) + 2abCov(X, Y).

If X and Y are independent, then Cov(X, Y) = 0 and the simplified formula follows.

Definition (Bivariate Normal Distribution). Let −∞ < µX < ∞, −∞ < µY < ∞, 0 < σX,

0 < σY, and −1 < ρ < 1. The bivariate normal distribution with means µX and µY, variances σ2
X

and σ2
Y, and correlation ρ has joint density

f (x, y) =
1

2πσXσY
√

1 − ρ2
exp

(
− 1

2(1 − ρ2)

[(
x−µX

σX

)2
− 2ρ

(
x−µX

σX

)(
y−µY

σY

)
+
(

y−µY
σY

)2
])

,

for −∞ < x < ∞ and −∞ < y < ∞.
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Proposition (Properties of the Bivariate Normal). Some useful properties of the bivariate normal

distribution are:

(a) The marginal distribution of X is N(µX, σ2
X).

(b) The marginal distribution of Y is N(µY, σ2
Y).

(c) The correlation between X and Y is ρXY = ρ.

(d) For any constants a and b, the linear combination aX + bY is normally distributed:

aX + bY ∼ N
(
aµX + bµY, a2σ2

X + b2σ2
Y + 2abρσXσY

)
.

(e) All conditional distributions are also normal. For example,

Y | X = x ∼ N
(

µY + ρ
σY

σX
(x − µX), σ2

Y(1 − ρ2)
)

.

Theorem 41 (Variance of Linear Combinations). If X and Y are any two random variables and a

and b are any two constants, then

Var(aX + bY) = a2Var(X) + b2Var(Y) + 2abCov(X, Y).

If X and Y are independent random variables, then

Var(aX + bY) = a2Var(X) + b2Var(Y).

Proof. By definition,

Var(aX + bY) = E

[(
(aX + bY)− (aµX + bµY)

)2
]

= E
[
(a(X − µX) + b(Y − µY))

2]
= E

[
a2(X − µX)

2 + b2(Y − µY)
2 + 2ab(X − µX)(Y − µY)

]
= a2E[(X − µX)

2] + b2E[(Y − µY)
2] + 2abE[(X − µX)(Y − µY)]

= a2Var(X) + b2Var(Y) + 2abCov(X, Y).

If X and Y are independent, then Cov(X, Y) = 0 and the simplified formula follows.

Definition (Bivariate Normal Distribution). Let −∞ < µX < ∞, −∞ < µY < ∞, 0 < σX,

0 < σY, and −1 < ρ < 1. The bivariate normal distribution with means µX and µY, variances σ2
X

and σ2
Y, and correlation ρ has joint density

f (x, y) =
1

2πσXσY
√

1 − ρ2
exp

(
− 1

2(1 − ρ2)

[(
x−µX

σX

)2
− 2ρ

(
x−µX

σX

)(
y−µY

σY

)
+
(

y−µY
σY

)2
])

,
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for −∞ < x < ∞ and −∞ < y < ∞.

Proposition (Properties of the Bivariate Normal). Some useful properties of the bivariate normal

distribution are:

(a) The marginal distribution of X is N(µX, σ2
X).

(b) The marginal distribution of Y is N(µY, σ2
Y).

(c) The correlation between X and Y is ρXY = ρ.

(d) For any constants a and b, the linear combination aX + bY is normally distributed:

aX + bY ∼ N
(
aµX + bµY, a2σ2

X + b2σ2
Y + 2abρσXσY

)
.

(e) All conditional distributions are also normal. For example,

Y | X = x ∼ N
(

µY + ρ
σY

σX
(x − µX), σ2

Y(1 − ρ2)
)

.

Bivariate Normal: marginal vs. joint normality

Revise this section.

Remark. Marginal normality does not imply joint normality.

Example. Let X, Y iid∼ N(0, 1) and define

Z =

X, XY > 0,

− X, XY < 0,
(ignore XY = 0, which has probability 0).

Then X ∼ N(0, 1) and Z ∼ N(0, 1) marginally, but (X, Z) is not jointly normal.

Why Z ∼ N(0, 1). Write S = sgn(Y) ∈ {−1,+1}. Since Y ∼ N(0, 1) is symmetric, P(S = 1) =

P(S = −1) = 1
2 , and S is independent of X. Note that

Z = X S.

Because S is an independent Rademacher variable, XS has the same distribution as X (a sym-

metric N(0, 1)), hence Z ∼ N(0, 1).

Proposition. The pair (X, Z) defined above is not jointly normal.

Proof. Observe Z = X on {Y > 0} and Z = −X on {Y < 0}. Therefore the support of (X, Z)

is concentrated on the two lines

{(x, z) : z = x} and {(x, z) : z = −x},
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a set of Lebesgue measure 0 in R2. A nondegenerate bivariate normal distribution has a strictly

positive density on R2 (elliptical level sets). The only way a bivariate normal can be singular

is when Z = aX almost surely for a fixed constant a (degenerate Gaussian). Here Z = X on

{Y > 0} and Z = −X on {Y < 0}, so no fixed a satisfies Z = aX a.s. Hence (X, Z) cannot be

jointly normal.

Multivariate Normal Distribution

Definition (Standard multivariate normal). Let Z = (Z1, . . . , Zm)⊤ have independent and

identically distributed components Zi ∼ N(0, 1). Then the joint pdf of Z is

fZ(x1, . . . , xm) =
m

∏
i=1

1√
2π

exp
(
−

x2
i

2

)
=

1
(2π)m/2 exp

(
− x⊤x

2

)
,

which is the pdf of the multivariate standard normal N(0, Im).

Proposition (Moments of the standard case). If Z ∼ N(0, Im), then E[Z] = 0 and Var(Z) = Im.

Theorem 42 (Affine transformations of the standard normal). Let Z ∼ N(0, Im), let µ ∈ Rq and

B be a q × m matrix. Define X = µ + BZ. Then X has a multivariate normal distribution

X ∼ N(µ, Σ), Σ = BB⊤.

Remark. Every N(µ, Σ) with Σ symmetric positive semidefinite can be written as in Theo-

rem 42 for some B (e.g. a Cholesky factor of Σ).

Multivariate Distributions: basic facts

Definition (Joint pmf/pdf). Let X = (X1, . . . , Xn) be a random vector.

• If X is discrete, its joint pmf is f (x) = P(X1 = x1, . . . , Xn = xn) for each x = (x1, . . . , xn) ∈
Rn, and for any A ⊂ Rn,

P(X ∈ A) = ∑
x∈A

f (x).

• If X is continuous, its joint pdf is a function f (x1, . . . , xn) such that for any Borel set

A ⊂ Rn,

P(X ∈ A) =
∫

A
· · ·

∫
f (x1, . . . , xn) dx1 · · · dxn.

Proposition (Expectation of a function). Let g(x) = g(x1, . . . , xn) be a real–valued function. Then

g(X) is a random variable and its expectation is

E[g(X)] =


∫

Rn
g(x) f (x) dx, continuous case,

∑
x∈Rn

g(x) f (x), discrete case.
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Proposition (Marginalization). The marginal pdf/pmf of any subset of coordinates is obtained by inte-

grating/summing over the remaining coordinates. In particular, for the first k coordinates (X1, . . . , Xk):

fX1,...,Xk(x1, . . . , xk) =


∫

R n−k
f (x1, . . . , xn) dxk+1 · · · dxn, continuous,

∑
(xk+1,...,xn)∈R n−k

f (x1, . . . , xn), discrete.

Definition (Conditional distribution). The conditional pdf or pmf of (Xk+1, . . . , Xn) given (X1 =

x1, . . . , Xk = xk) is defined by

f (xk+1, . . . , xn | x1, . . . , xk) =
f (x1, . . . , xn)

f (x1, . . . , xk)
.

That is, the joint density divided by the marginal of the conditioning variables.

Definition (Mutual independence). Let X1, . . . , Xn be random vectors with joint pdf or pmf

f (x1, . . . , xn). Let fXi(xi) denote the marginal pdf or pmf of Xi. Then X1, . . . , Xn are mutually

independent if for every (x1, . . . , xn),

f (x1, . . . , xn) = fX1(x1) · · · fXn(xn) =
n

∏
i=1

fXi(xi).

If the Xi’s are one-dimensional, they are called mutually independent random variables.

Theorem 43 (Expectation factorization under independence). Let X1, . . . , Xn be mutually inde-

pendent random variables. Let g1, . . . , gn be real-valued functions such that gi(xi) depends only on xi

for i = 1, . . . , n. Then

E[g1(X1) · · · gn(Xn)] = E[g1(X1)] · · ·E[gn(Xn)].

Remark. An intuitive way to see this result is to think of each Xi as an independent “obser-

vation”. The product ∏i gi(Xi) then separates cleanly into independent components, and ex-

pectations of products reduce to products of expectations. This mental picture can help when

proving properties of independent random variables.

MGFs and Sums of Independent Random Variables

Definition (Moment generating function). For a real r.v. X the mgf (when it exists on a neigh-

borhood of 0) is

MX(t) = E(etX), t ∈ R.

Theorem 44 (MGF of a sum). Let X1, . . . , Xn be mutually independent random variables with mgfs
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MX1(t), . . . , MXn(t). If Z = X1 + · · ·+ Xn, then

MZ(t) = MX1(t) · · · MXn(t).

In particular, if X1, . . . , Xn are i.i.d. with mgf MX(t), then

MZ(t) = [MX(t)] n.

Proof. By definition and independence,

MZ(t) = E
(

et(X1+···+Xn)
)
= E

(
n

∏
i=1

etXi

)
=

n

∏
i=1

E
(

etXi
)
=

n

∏
i=1

MXi(t).

The i.i.d. statement follows immediately.

Example (Sum of exponentials gives Gamma). Let X1, . . . , Xn
iid∼ Exp(λ), whose mgf is MX(t) =

λ

λ − t
for t < λ. By Theorem 44,

MZ(t) = [MX(t)] n =

(
λ

λ − t

)n

, t < λ.

This is the mgf of the Gamma distribution with shape n and rate λ; hence

Z =
n

∑
i=1

Xi ∼ Gamma(n, λ).

Corollary (Linear combinations of independent normals). Let X1, . . . , Xn be mutually indepen-

dent with Xi ∼ N(µi, σ2
i ). For fixed scalars a1, . . . , an and b1, . . . , bn, define

Z =
n

∑
i=1

(aiXi + bi).

Then

Z ∼ N

(
n

∑
i=1

(aiµi + bi),
n

∑
i=1

a2
i σ2

i

)
.

Proof. The mgf of Xi is MXi(t) = exp(µit + 1
2 σ2

i t2). Hence the mgf of aiXi + bi is MaiXi+bi(t) =

exp
(
(aiµi + bi)t + 1

2 a2
i σ2

i t2). By independence and Theorem 44,

MZ(t) =
n

∏
i=1

MaiXi+bi(t) = exp

(( n

∑
i=1

(aiµi + bi)
)

t +
1
2

( n

∑
i=1

a2
i σ2

i

)
t2

)
.

This is the mgf of N
(
∑i(aiµi + bi), ∑i a2

i σ2
i
)
.
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Week 4 – Discussion

Problem 1. Let X ∼ Poisson(θ) and Y ∼ Poisson(λ) be independent.

(a) Show that X + Y ∼ Poisson(θ + λ).

(b) Show that the conditional distribution of X given X + Y = n is Binomial
(
n, θ

θ+λ

)
. What

is the distribution of Y | X + Y = n?

Solution.

(a) Done by the MGF argument above (or directly by convolution).

(b) For n ∈ N0 and k = 0, . . . , n,

P(X = k | X+Y = n) =
P(X = k, Y = n − k)

P(X + Y = n)
=

e−θθk

k!
· e−λλ n−k

(n − k)!
e−(θ+λ)(θ + λ)n

n!

=

(
n
k

)(
θ

θ + λ

)k ( λ

θ + λ

)n−k

.

Thus

X | (X +Y = n) ∼ Binomial
(

n,
θ

θ + λ

)
, Y | (X +Y = n) ∼ Binomial

(
n,

λ

θ + λ

)
.

Remark (Poisson splitting). Equivalently, if N ∼ Poisson(θ + λ) and, conditional on N, each

of the N events is tagged “type X” with probability p = θ/(θ + λ) independently, then X ∼
Poisson(θ), Y ∼ Poisson(λ) and X ⊥ Y.

Problem 2.) Let X have the negative binomial distribution

P(X = k) =
(

r + k − 1
k

)
p r(1 − p)k, k = 0, 1, 2, . . . ,

where 0 < p < 1 and r ∈ N (“number of failures before the r-th success”).

(a) Compute the mgf MX(t).

(b) Define Y = 2p X. Show that, as p ↓ 0,

lim
p→0

MY(t) =
(

1 − 2t
)−r

, |t| < 1
2 ,

i.e. the mgf converges to that of a chi-squared random variable with 2r degrees of free-

dom.

Solution.
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(a) MGF of X. Write X = Y1 + · · · + Yr where Yi
iid∼ Geom(p) with P(Yi = k) = p(1 − p)k,

k ≥ 0 (number of failures before one success). For t in a neighborhood of 0,

MYi(t) = E[etYi ] = p
∞

∑
k=0

(
(1 − p)et)k

=
p

1 − (1 − p)et , whenever |(1 − p)et| < 1.

Independence then gives

MX(t) =
r

∏
i=1

MYi(t) =
(

p
1 − (1 − p)et

)r

, t < − log(1 − p) (in particular near 0).

(b) Scaling and limit to χ2
2r. For Y = 2p X,

MY(t) = E[et(2pX)] = MX(2pt) =
(

p
1 − (1 − p)e2pt

)r

.

As p ↓ 0, use e2pt = 1 + 2pt + o(p) to expand the denominator:

1 − (1 − p)e2pt = 1 −
(
1 − p

)(
1 + 2pt + o(p)

)
= p(1 − 2t) + o(p).

Hence
p

1 − (1 − p)e2pt =
p

p(1 − 2t) + o(p)
−→ 1

1 − 2t
for |t| < 1

2 ,

and therefore

lim
p→0

MY(t) =
(
1 − 2t

)−r, |t| < 1
2 .

This is precisely the mgf of a chi-squared distribution with 2r degrees of freedom, so Y ==⇒
p↓0

χ2
2r.
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Week 5 – Discussion

Problem 1. Let X ∼ Poisson(θ) and Y ∼ Poisson(λ) be independent.

(a) Show that X + Y ∼ Poisson(θ + λ).

(b) Show that the conditional distribution of X given X + Y = n is Binomial
(

n,
θ

θ + λ

)
.

What is the distribution of Y | X + Y = n?

Solution.

(a) Using MGFs, MX+Y(t) = MX(t)MY(t) = exp{θ(et − 1)} exp{λ(et − 1)} = exp{(θ +

λ)(et − 1)}, hence X + Y ∼ Poisson(θ + λ).

(b) For n ∈ N0 and k = 0, . . . , n,

P(X = k | X + Y = n) =
P(X = k, Y = n − k)

P(X + Y = n)
=

(
n
k

)(
θ

θ + λ

)k ( λ

θ + λ

)n−k

.

Thus X | (X + Y = n) ∼ Binomial
(
n, θ

θ+λ

)
, and symmetrically Y | (X + Y = n) ∼

Binomial
(
n, λ

θ+λ

)
.

Problem 2. Let X and Y be independent with X ∼ Gamma(r, 1), Y ∼ Gamma(s, 1) (shape

r, s > 0, unit scale). Define

Z1 = X + Y, Z2 =
X

X + Y
.

Show that Z1 and Z2 are independent, with Z1 ∼ Gamma(r + s, 1) and Z2 ∼ Beta(r, s).

Solution. Consider the bijection (x, y) 7→ (z1, z2) with inverse x = z1z2, y = z1(1 − z2),

where z1 > 0, 0 < z2 < 1. The Jacobian of the inverse is

J =

(
∂x/∂z1 ∂x/∂z2

∂y/∂z1 ∂y/∂z2

)
=

(
z2 z1

1 − z2 −z1

)
,

∣∣det J
∣∣ = z1.

The joint density of (X, Y) is fX,Y(x, y) =
1

Γ(r)Γ(s)
xr−1ys−1e−(x+y) for x, y > 0. Hence, for

z1 > 0, 0 < z2 < 1,

fZ1,Z2(z1, z2) = fX,Y
(
z1z2, z1(1 − z2)

)
|det J|

=
1

Γ(r)Γ(s)
(z1z2)

r−1(z1(1 − z2)
)s−1e−z1 z1

=
1

Γ(r + s)
zr+s−1

1 e−z1︸ ︷︷ ︸
Gamma(r + s, 1)

× Γ(r + s)
Γ(r)Γ(s)

zr−1
2 (1 − z2)

s−1︸ ︷︷ ︸
Beta(r, s)

.

The factorization shows Z1 ⊥ Z2, with the stated marginal laws.
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