ECON 605: Macroeconomic Theory I: Lecture Notes

February 11, 2026

1 Introduction

Detrending, Stationarity, and Filters
Why we detrend
The business cycle is about fluctuations around a trend. A convenient working decomposition is

Yt = Tt + Ty,

where y; is the observed series (e.g., real GDP or employment), 7; is a smooth “trend” (growth, demo-
graphics, technology, seasonality if unadjusted), and x; is the cyclical/stationary component we want to
study. The goal of detrending is to construct x; so that its distribution does not drift over time, making

correlation, impulse responses, and model fitting meaningful.

Intuition. Think of 73 as the escalator and x; as your steps on it. If you want to study how you walk

(accelerations, pauses), you first subtract the escalator’s steady motion.

1.1 Trends: deterministic vs. stochastic
Deterministic trends

A deterministic trend is a known (or well-approximated) function of time, e.g.,
Tt = ag + a1t (linear), Ty = ao + ait + agt®  (quadratic).
Regressing y; on time polynomials and using the residuals yields a detrended x;.

Stochastic trends (unit roots)

A unit root process has a persistent, random drift:
Y¢ = Yp_1 + &4, et 1.1.d. (or weakly dependent).

First-differencing removes the unit root: Ay, = e; becomes stationary (up to short memory). This

motivates using differences (or log-differences for growth rates).

Slide tie-in. Your slides explicitly write y; = 7 +; and list polynomial forms for 7; on separate bullets;

they also emphasize differencing when 7; is stochastic and note unit-root testing (ADF) for stationarity



diagnostics.

1.2 Difference vs. log-difference
What each does
e Difference Ay; = y; — y;_1 removes a unit root in levels.
e Log-difference Alny; ~ % growth. If y; has a stochastic trend in logs, A Iny; is stationary under

standard conditions.

Intuition. If the variable grows roughly exponentially (GDP, employment), taking logs makes the
trend roughly linear; differencing logs then measures growth rates. For unit-root removal per se, both
differences and log-differences purge the random walk part; choose logs when you want elasticities/growth

interpretation.

1.3 Testing for stationarity in practice

Augmented Dickey—Fuller (ADF) tests and their variants assess whether a series has a unit root. In

applied work:
1. Plot y; and Ay; (or Alny,).
2. Start with an ADF on y; with a trend if plots suggest a trend.

3. If you fail to reject a unit root in levels, difference and re-test; usually you will then reject (i.e.,

differences are stationary).

Caution. Power is limited in small samples; combine tests with economic reasoning and visuals.

1.4 The Hodrick—Prescott (HP) filter
The HP trend {7;}]_; solves

T T-1
. 2
min (ye —)* + A Z (A%7)7, A’ry = (Ti1 — ) — (T — Te—1)s

T
[t =2

i.e., it trades off fit against the curvature of the trend (penalizing changes in the slope). The cycle is

x4 = Yy — T¢; the smoothing parameter A controls how smooth the trend is (larger A = smoother trend).

Intuition. HP says: “Fit the data closely, but prefer a trend with nearly constant growth.” Think of
bending a thin metal ruler to trace y;: the bending cost corresponds to the second-difference penalty.

Endpoints are fragile (the endpoint problem); be cautious interpreting the last few observations.

Practice tips. Common conventions are: quarterly data A = 1600, annual A\ =~ 6.25, monthly A\ =

129,600. Treat these as useful defaults, not laws; always check robustness.

I Notes from slides: yi = 7t + = and polynomial 7, variants are presented; unit-root tests (“Dickey—Fuller tests”) are
mentioned as tools to assess stationarity; the rule of thumb that differencing targets the stochastic trend appears alongside
examples for GDP and employment.
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Figure 1: HP filter limit. As A grows, the trend converges to the OLS linear trend.

Limit cases.
e )\ — 0: the penalty vanishes and v — y; (virtually no smoothing).

e )\ — oo: the curvature penalty dominates and the trend becomes affine in t, i.e. a straight line
7+ = a + bt—specifically the OLS linear trend.

The case where A — oo is interesting to understand the logic. The HP objective is a tradeoff: fit the data
(small > (y; — 7¢)?) but avoid bending (small Y (A27;)?). When ) is huge, bending becomes infinitely
costly, so we must have

A’y =741 — 21+ 71 =0 for all interior ¢,

which implies a constant slope and therefore a straight line:
T = a + bt.
Proof. Set dy :== 7y — 7t_1. From A%, = 7441 — 27y + 7t_1 = 0 we get dyy1 — dy = 0, hence
diy1 = dy = bVt
Summing, 7, — 71 = Y.4_y di = (t — 1)b, 0
=1+ —1)b=(r —b)+bt:=a+bt.

To pin down a, b, choose the least-squares fit to {(¢,y:)}:
T

(a,b) = argmin (4, — (a+bt))%,
t=1

a/7

whose solution is the usual OLS line with b = %, a=7y—bt. O

1.5 Linear filters: time and frequency
Definition (time-domain view)

A linear time-invariant (LTI) filter transforms a series {y;} as

K
Y = Z Ak Yt—k,
k=—K

where {ay} are the weights (the impulse response) and K is the window half-width.



e Two-sided (non-causal): uses lags and leads (k < 0 and &k > 0); best for retrospective analysis.

e One-sided (causal / “real time”): uses only lags (K > 0); avoids looking ahead but typically
adds delay and ripple.

e Level preservation: if ), a; = 1, a constant mean passes through undistorted (unit gain at zero

frequency).

This operation is a convolution: § = a xy. The filter’s response to a unit impulse is exactly {a}.

Definition (frequency-domain view)

Represent the series as a superposition of angular frequencies w € [—7, 7] (w = 27/ P for period P). Any

LTT filter has a frequency response

K
o) = 3w
k=—K

whose magnitude |p(w)| is the gain (how much each frequency passes) and whose argument arg p(w) is
the phase (horizontal shift). If z; has spectral density f,(w), then
N [ 2 .
var(Zy) = p |p(w)|* fo(w)dw (standard convention).
™ —Tr
Mental rule: set |p(w)| = 1 where you care (the “pass band”), and near 0 where you want attenuation

(very low-frequency trend or very high-frequency noise).

Symmetry and phase. If the filter is symmetric (a_r = ay), then p(w) is real and the phase is 0 or 7
(zero phase): the filter does not shift timing; it only rescales frequencies. Causal filters typically induce

nonzero phase (delay).

Core examples

(i) M-term moving average (MA).

1/M, k=0,...,M —1 (one-sided)
ar =
1/M, k=-(M-1)/2,...,(M —1)/2 (two-sided, M odd)

M—1 .
_ b —iwk _ —iw(M—1)/2 sin(Mw/2)
plw) = kz:% ¢ - M sin(w/2)"

Quick read: a low-pass smoother. It attenuates rapid wiggles (high frequencies) and preserves slow

drift. The symmetric version avoids phase delay.
(ii) First difference (high-pass).
Ut =Yt — Y1, ap =1, a1 = -1

plw)=1—e"™ =e /2. 2isin(w/2), |p(w)| =2]sin(w/2)|.

Quick read: kills zero frequency (the level/trend) and passes cycle; within [0, 7], higher w gets larger

gain.



(iii) Band-pass filter (ideal vs. approximations). The ideal keeps |p(w)| =1 for w € [wp,wr| and

0 outside; it is not finitely implementable. Two popular approximations:

e Baxter—King (BK): two-sided, symmetric, finite window (removes frequencies outside a chosen

range; sacrifices endpoints).

e Christiano—Fitzgerald (CF): band-pass approximation that can be implemented almost one-

sided (better for real time, at the cost of phase and border behavior).

Business-cycle convention (quarterly): pass periods P € [6, 32] quarters, i.e. wy = 27/6 and wy, = 27/32.

Useful connections

e HP as a (near) linear filter: HP acts like a low-pass LTI filter in the interior of the sample; it
attenuates very low frequencies (trend) and passes cycle. At the endpoints it is no longer strictly
LTI (the endpoint issue).

e Sum of weights: )", a; = 1 preserves the mean; ), ar, = 0 (e.g., the difference) removes it.

e Effect on second moments: filtering z; by {a)} multiplies its spectrum by |p(w)|?>. For ARMA

data, you can combine the filter polynomial with the process polynomial.

Design and diagnostics

How to choose a filter (quick checklist).
1. Goal: growth (log-differences), cycle (band-pass), or smooth trend (low-pass)?
2. Causality: for real time, use one-sided; for historical analysis, use symmetric (zero phase).
3. Frequency band: set [wr,wy] using periods of interest (e.g., 6-32 quarters).

4. Robustness: compare at least two methods (e.g., log-diffs vs. HP /BK/CF).

Common pitfalls and fixes.

e Leakage: finite filters don’t separate bands perfectly; avoid claims driven by razor-thin peaks;

inspect |p(w)].

e Gibbs ripples: sharper band edges create more ringing; smoother windows reduce ripples at the

cost of gentler transitions.

e Endpoints: two-sided filters lose data at the borders or become biased; document how many

points you drop or use extensions/nowcasts.
e Phase delay: causal filters shift timing; report and, if needed, correct the delay when comparing
peaks/troughs.
Mini-propositions (handy in class)

e Symmetry = zero phase: if a_; = aj, then p(w) € R and the filter does not shift time (it only

rescales each frequency).

e Difference removes the mean: with ay = 1, a; = —1, we have ), a; = 0 and |p(0)| = 0; hence

it eliminates the level trend.



e Moving average preserves the mean: ), a; = 1 and |p(0)| = 1; thus it does not remove a

perfectly constant level.

Definition (VAR). Suppose we have n stationary time series variables and we want to track their

relationships over time. An order-p vector autoregression (VAR(p)) is a statistical model of the form

p
Yy = C+Z@sytfs te (1.1)

s=1
where
e y, € R"*! is a vector giving the observations of our n variables at time t;
e c ¢ R"*! is a constant;

e &, ¢ R" "™ captures the relationships between our time series variables at different lags, in the

sense that @gi’j ) captures the impact of the variable j from s periods ago on variable ¢ today; and

n

e ¢ € R"*! is vector white noise: E [e;] = 0, E [e;€f | = 2 € R™*" for all ¢, where Q = 05— i

the variance-covariance matrix for €, and E [€;€;] = 0, for all i # j.

Remark (Estimating a VAR using OLS). If a set of n variables follow a VAR(p), and we have data
Y _pi1:Y_pias Y0, Y15+ Y7}, then we can estimate Equation (1.1) using equation-by-equation OLS.

In particular, for each ¢ = 1, ..., n, row i of Equation (1.1) gives the value of variable i at time ¢ as
Yo = ¢ + Z Z @gi"j)ytfs,j + € (1.2)

with E [e;;] = 0 and E [ef’i] = aiz)i. We can use the sample {y1 i, y2,,...,yr,i} to estimate this equation,
obtaining OLS estimates ¢;, and ®{") for each s = 1,...,p and j = 1, ..., n:

P n
yt,i = él + Z Z (I)gz’])ytfs,j + €t,i (13)

s=1j=1

After doing this for each variable, we can concatenate the intercept estimates to get ¢, and the

n

coefficient, estimates to get matrices ®, for each s = 1,...,p. We can estimate € = [[71'7]']”:1 by setting

A1 T 2 s P | T . 5 . .
Gii =72 4 € foreachi=1,...n,and &;j = 7>, €€ ; for i # j.

Remark (Presenting a VAR without a constant). Any VAR can be presented without a constant term
by demeaning. Thus, without loss of generality, we can present any VAR without the constant term c.

To see this, suppose we have a VAR(p) as in Equation (1.1):

p
Yy, =c+ Z(I)sytfs T €.

s=1

Since each of the n underlying variables are assumed stationary, we can define p := E [y,], which does

not depend on time. Taking the expectation of both sides Equation (1.1), we then get

p
uzc—kZ@su. (1.4)
s=1



Thus,

p p
c=p-Y d.p =<In—z<ﬁs>u
s=1
and so
» -1
n= (In — Z <I>S> c.
s=1

Now subtract p from both sides of Equation 1.1, and add and subtract (3>_7_, ®,) p from the right-hand

side:

p p p
Yy —m=c—p+ <Z<I>s>u+z'l>syt_s— (Z'Ps)wret
s=1 s=1

s=1

» P
—c— <1n2§g>ﬂ+zée(yt—su>+et
s=1

s=1

- Zfl)s (Yi—s — 1) + €.

s=1

Thus, defining ; = y, — p, we have
P
Lt :Zq)swt75+€t, (15)
s=1

which is a VAR(p) with no constant term that has the same innovations and coeflicient matrices as the
VAR(p) we began with.

Remark (Representing VAR(p) as VAR(1)). Any VAR(p) (for finite p) can be represented as a VAR(1).
Consider the VAR(p) on n variables (sin constante):

p
Yy = Z Py, + € (1.6)
s=1

Para cada t, defini

Y €t

ét — Yi-1 c Ranl’ vy = OnX1 c Rnpxl7
yt—p+1 O’I’L><1

y defini la matriz companera:

(®, @, ®,, P,

I, O 0 0
F = 0 I, --- 0 0 c RPX1P,
0 0 I, 0 |




Noté que v; es ruido blanco vectorial: para todo t,

Q0 0
]E[’Ut} = 0ppx1, E [vtvt ] = 1. .. o
0 O 0

y para t # T,
E [vtv;r] = Oppxnp-

Entonces, el VAR(1) en np variables
&=F& +v

representa esencialmente el mismo proceso que el VAR(p) original.

Remark (Representing a VAR(p) as a MA(c0). Under certain conditions, we can give a VAR(p) a
representation as an MA (co) process. Without loss of generality, we consider a VAR(1) on n variables

with no constant term:
Yy = Py, + €. (1.7)

We can make recursive substitutions in Equation (1.7) to get

y = (q’yt_z + Et—l) + €
= @zyt—2 +®Pe; 1+ €
= 2 ((I’yt_3 + et,g) + Pe; 1+ €
=Py, 3+ P’ 2+ Pe1 + e

k
= @k+1yt_k_1 + €t —|— Z Qjet,j.
j=1

If all the eigenvalues of ® lie strictly within the unit circle, then klim &5 = 0,,,, the process is
— 00

stationary, and we can take the limit of the recursion to get the following representation as an MA (c0):

(o)
Y =€+ Z P (1.8)

j=1

This expresses today’s observation as an infinite sum of all past innovations, with the influence of past

innovations decreasing as we go further and further back in the past).

Remark (Impulse response functions using the MA(co) representation). Suppose we have the following

VAR(p) on n variables (w.l.o.g. no constant):
P
Yy = Z Py, .+ € (1.9)
s=1
Assume it admits an MA (co) representation

Y=+ Tie . (1.10)

J=1



Define the matrix polynomial ¥(z) := I, + 372, Wz, Then (1.10) is
Yy, =¥(L)e, (1.11)

where L is the lag operator, Lx; = ;_1. Likewise, defining ®(z) := I,, — >."_, ®,2%, we can rewrite
(1.9) as
€ =®(L)y,. (1.12)

Combining (1.11) and (1.12),

hence ¥(L) ®(L) = I,,. Expanding,
o'} P
U(L)®(L) = (In +3 \I:jLJ‘) (In -3 <I>SLS)
j=1 s=1

p o0 o P
=1,-) ®L+> WL - > ¥;d, L7
s=1 j=1 j=1s=1

oo

=I,+) (lIlj — i ‘I’jfiq%‘)Lja
=1 i=1

where we set Wg = I,, and ¥y = 0,,«x, for £ < 0. Since the product equals I,,, the coefficient of each

power of L7 (j > 1) must be 0,4, yielding the recursion

qu:Z‘I’jfi(I)zﬁ j=1,2,...

i=1

(equivalent a escribir la suma hasta ¢ < min{p, j}).
Why is this useful? From y, = €; +Z;i1 W€, ;, the moving-average matrices {¥;} describen como
shocks reducidos se transmiten en el tiempo. En particular, el efecto contemporaneo en la variable ¢ de

un shock unitario en la componente j ocurrido s perfodos atras es la entrada (4, j) de ¥s:

8yi,t+s
8€j7t

~ (v.),..
Graficar estos coeficientes en distintos leads/lags da la impulse response function (IRF). La informa-
cion de {®:} y la de {¥;} es equivalente (via la relacion anterior). Importante: la IRF de forma
reducida no tiene interpretacion causal sin una identificacion estructural adicional (p.ej., restricciones

contemporaneas, long-run, signos, etc.).

Definition. (Granger causality) Consider the following bivariate VAR(p):

{yt,lyt,Z} = Z { CORIACLCE ¢g2,2)} {yt_s@yt—s,z} + {Gt,lftﬂ} , (1.13)
s=1
We say that yo does not Granger cause y; if each matrix ¢, is lower triangular; that is, ¢§1’2) =0

for all s = 1,...,p, implying that past values of y play no role in determining today’s value of y;. We

test for Granger causility as follows. First, we estimate the following unrestricted equation using OLS (a



direct reading off of the first line of Equation (1.13)):

p p

Yi1 = Za’él’”ytim + Z Py o+ e (1.14)

s=1 s=1

Save the sum of squares of the residuals from estimating Equation (1.14) as SSR;. Next, estimate
with OLS the following “restricted equation" postulating that past values of y, have no impact on

contemporary i:
P

Yt,1 = Z ¢§1’1)yt78,1 + €,1- (1.15)

s=1

Save the sum of squares of the residuals from estimate Equation (1.15) as SSRy. It will always be the
case that SSR; > SSRy, since are adding more covariates to otherwise the same equation. The question
is whether the difference is significant enough for us to reject lack of Granger causality. We conduct
statistical tests on the difference SSR; — SSRy (either p or F tests).

Remark. (Limitations of reduced-form VARs) Without a minimum amount of theory, we cannot make
causal statements using VARs. The innovations €; cannot be interpreted as shocks with economic mean-
ing, because they are all correlated with each other. As an example, consider the following structural

model:

Y1, = b1yos + k1 b1 1y1e—1 +b12Y2,0—1 + w1y,
Y2, = bay1s + ka2 +b21y16—1 + b22Y2 -1 + Uy,

where [U1,2 u27t} ! is vector white noise. (This is not yet a VAR, because the variables are in terms of
each others’ contemporaneous values). Concretely, thing of y; as GDP and ys as governmetn spending.
If 1 — b1by # 0, we can use substitution to obtain the following representation of the model as a VAR
(let’s take it on faith):

_ k1 +bika  big + biboy bi2 + b1b22 Ut + biuo s
YLt T by T —biby M T bk 2T T by
_ ko +baky  bar + baboy bao + b2b12 Ug,p + bty g
VRO by T T —biby M T by 2T T b,
or
Yy, —c+®y,_ +e (1.16)
where
c = |:k1+b1k2 k2+bzk1:|
171)162 17b1b2 ?
P = {b11+b1521 bi12+b1b22 ba1+boboy 522+b2b12}
1—b1bs 1=biby 1—b1bs 1—biby |’
and

€ — wy i +bius ¢ us 5+bauy ¢
t T—b1 by T—b1 by :

We can estimate these VAR parameters using OLS. But we are not able to recover the structural pa-

rameters by and by. Note that if we knew by and by, we could use our OLS estimates to estimate

the other structural parameters by just solving some simple linear systems of equations. What if we
2 2 _2 2 2 _2

don’t know b; and by? We know that Var (€1 ;) = %, Var (e24) = %, and Cov (€14, €24) =

(1_£fb2)2 o + (1—5111;2)2 o2. This is three equations in four unknowns (o1, o9, b1, and by). Without some

10



more assumptions, we're screwed in terms of recovering structural parameters. If we assume that today’s
GDP has no contemporaneous effect on government spending (so b; = 0), we can make progress on

estimating the other parameters. Indeed, our equations reduce to
_ 2 _ 2 _ 2,322
Var (€14) = o7, Cov (€14, €2,1) = byo7, Var (€24) = 05 + b307
from we can estimate structural parameters, utilizing our OLS estimates:
2 ~
61 = Var (é1,),

IA) _ COV (él,h ég,t) _ COV (€17t, €2,t)
2 52 Var (é1.¢)

(Cov (614, 2,4))°

63 = Var (é2,) = 0367 = Var (é14) =~ (é11)

Remark. Let’s more formally exhibit the identification problem inherent in structural VARs. Suppose

the true, underlying linear structural model is given by

P
By, = ZBsytfs + . (1.17)

s=1
where
e y, € R"*! is our collection of n variables at time t,

o u; € R™*! is the vector of structural shocks at time t. This is vector white noise, and by definition
its components are uncorrelated. By rescaling, we may assume Var(u; ) = 1 for each i. Thus, for
all ¢,

E[u] =0, Eluu, ] = I,,

and for all ¢ # j,

E[ulu;—] = Opxn-

e B, € R"™" s =0,1,...,p, are coefficient matrices. For s > 1, the (i,J) entry of By gives the
impact of variable j lagged s periods on variable i today. By is the contemporaneous effects matriz.

(Note: after rescaling u;, the diagonal of By need not be 1.)

If By is not invertible, the model cannot be inverted. Suppose instead B is invertible. Then
multiplying (1.17) by Bal yields the VAR(p) representation:

p
y, =Y By'By, ,+ Bylu

'
—

[
M=

q)sytfs + €¢,

s=1

where ®, := By !B, and € := By Lu; are the reduced-form VAR innovations.

11



Note that for all ¢,

Ele)] = E[By 'y
= By 'E[uy]
= Balonxl

= 0n><17
and

Elee/ ] =E [(By 'w)(Bg uy) "]
= By ' Elusu, | By "
=B,'I,B;"

_ Bo—lBaT
= Q.

For i # j,

Elee) ] = E[(By 'u)(By 'u;) ]
= By 'E[uu] ] By”
= B;' 0, By ©

= 0,xn-

So from {y,} we can estimate </I\>S7 €;, and Q. Ideally we would like to recover u; and By, but absent
additional assumptions, this is impossible: € = By lBa T does not uniquely pin down By. In fact,
infinitely many A € R™*" satisfy @ = A~1A™T,

Indeed, let R be any orthogonal matrix (RRT = I,,). Define fake shocks u; := Ru;. Then

Efti,a, | = E[(Ruy)(Ruy) "]
= E[Ru,u R']
= RE[u,u/ | R"
=RI,R'
=1,

Thus,
Q= (RB,) '(RBo)™".
So RBy is observationally equivalent to By, and w; indistinguishable from the true structural shocks.

Remark (Recursive Cholesky decomposition). Pick up where we left off in the last remark. Recall that
a Cholesky decomposition matrix of a real matrix A is an equation A = LLT where L is a real, lower-
triangular matrix with nonnegative diagonal. It is a fact that every positive semidefinite matrix has a
unique Cholesky decomposition. Also, we should know that the inverse of a lower triangular matrix is
also a lower triangular matrix. Returning to 2 = By 1Ba T Note that € and Q are positive semidefinite.
If we assume the assumption that Bg (and hence By') is lower diagonal, then & = By By " is the

unique Cholesky decomposition of 2. Hence we can uniquely identify B under the assumption it is lower

12



diagonal (amounting to an economic reordering of variables). With By in hand, we can compute impulse

response functions to structural shocks. Practically, given our data, we estimate Q. Using MATLAB,
~ 1

find the Cholesky decomposition of €2, which will turn out to be By . Then, if we want to simulate

—~—1

the response to a structural shock to €;, we can use our VAR via the innovation u; = By €.

Remark (Other canonical identification ideas). We present an alternative identification assumption to

assuming that By is lower triangular. Recall the MA(oo) representation of the reduced-form VAR:

Y, =€+ Z\Ilset_s =W (L)€,

s=1

where W (L) is the infinite polynomial ¥ (z) = I,, + > .-, ¥,x*. Plugging in that €, = Balut, we get
that

Y, =Bo 'ui+» W.Blus, = U (L) (By'u) = A(L) uy,

s=1

where A (L) is the infinite polynomial A (z) = By' + 3.2, ¥,B; 'z®. Note that A (0) = By . So,
the Cholesky identification strategy amounts to placing restrictions on A (0). Consider instead A (1):

s=1

A(1)=B;'+)> w.B;' = <1n+2@5> B;!' =% (1)B;.
s=1

Note that A (1) gives the cumulative sum of all responses of VAR variables to a structural shock w;.
Hence if our variables are in differences to begin with, then A (1) gives the sum of the total response
of differences to the shock—ie, the long-run change in the level. Therefore, by making assumptions on
A (1), such as assuming certain long-run relationships between variables hold, or saying we don’t want
certain structural shocks to effect certain variables, etc, we can aid identification. Eg, assume A (1) is
lower triangular, etc.

In practice, we estimate the variance-covariance matrix Q from our data for the reduced-form VAR.
We estimate a candidate B\O as the inverse of the Cholesky decomposition A of Q. Then, we draw
orthogonal matrices R and consider a new contemporaneous effects matrix RBy. We continue searching
until the matrix A (1) = ¥ (1) (RB,)™ ' = ¥ (1) (ARfl) is zero in the elements for which we want to

assume zero long-run effects.

13



2 Consumption

Remark. (Simple Model of Consumption Smoothing) We consider a simple model of consumption

smoothing.
e Time is discrete, indexed by t. We begin at time ¢ = 1.

e Each period t, agents choose consumption C; > 0 and saving/borrowing.. The agent’s current
stock of wealth is denoted by A;.

e Agents possess perfect foresight and certainty about:

— End of life: finite and known. The agent dies at time 7.

— Labor income/endowment stream (Y7,Y3, ..., Y7) received each period, with ¥; > 0 for all
t=1,..T.
— Interest rates are constant across time, and zero: r; =r =0 forall ¢t = 1,...,T. This is a “pure

storage technology."
e No government.

e Perfect capital markets (same interest rate for borrowing and lending). The resources placed in

the capital markets are non-perishable.
e Default is forbidden: the agent must end life with positive wealth. Ap > 0.

The agent derives present utility from consumption through a per-period felicity (or flow-utility) function,

u: Ry — R. We assume u to be:
e Strictly increasing.
e Strictly concave.

e We assume u to be (once or twice) differentiable as needed. If it is once differentiable, then the
assumption that v is strictly increasing implies /' (C) > 0 for all C € R. If it is twice differentiable,
then the strict concavity assumption implies v”(C) < 0 for all C' € R,.

e Also, we assume that the felicity functions are such that zero consumption will never be chosen in

any period. If it is differentiable, this is accomplished by requiring Clim+u’ (C) = +o0.
-0

The consumption good C} is non-durable—it disappears after giving flow utility to the consumer.

Intertemporal (or lifetime) utility is given by a discounted sum of per-period flow utilities. Specifi-
cally, for a discount factor § € Ry, lifetime utility is given by the function U : ]Rz — R defined by
U(Cy,Cs,....,Cr) = Ethl Bt=1u(Cy). Note that this form of intertemporal utility implies that more or
less consumption yesterday or tomorrow has no impact on the marginal utility of more consumption
today: utility is additively separable in consumption from different periods. From the corresponding

assumptions on u, we see that U is strictly increasing in each argument and strictly concave. The dis-
1

I

Then, v = 0-the agent discounts the future subjectively at the same rate as the capital market does

count rate 7y is derived implicitly from the discount factor g8 via g := For now, assume 8 = 1.
(interest rate of zero). (Note that in infinite horizon models, we need 8 < 1 so that intertemporal utility
is finite). The agent is born with resources Ay. Each period, she enters with wealth A;_;, obtains
income A; and chooses her consumption Cy, implicitly defining saving/borrowing A; as the difference
Ay = Ay 1 + Y — Cy. Recall that agents must die with nonnegative networth: Ar > 0. Moreover, we

assume there is no bequest motive, so agents will never want to die with nonnegative wealth, as they
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can get flow utility from consuming whatever is left with no future consequences: A7 < 0. Together,
these conditions imply Ar = 0. The agent’s choices for (C;)7_, must satisfy the intertemporal budget
constraint (IBC):

T T
Y CGi<A+) Ve
t=1 t=1

In words, her lifetime consumption cannot exceed her lifetime wealth. (We assume that the exogenous
variables Ag and Y; are such that Ag + Zthl Y; > 0, or else the problem is not sensible). Since intertem-
poral utility U is strictly increasing, it is clear that the IBC will always hold with equality. Where does
the IBC come from? In fact, the IBC is derived from the institutional per-period flow-budget constraints
(FBC), which say that each period’s consumption, minus borrowing or plus saving, cannot exceed the

resources available to the consumer at the beginning of the period:

Ci+A <Ay +Y1,C0+ Ay <A +Ye, :Cr+ Ay < Ayq + V4,07 < Ar_1+Yp.

(For the period-T' FBC, recall that the agent always chooses A = 0). Rearrange each flow budget

constraint to get a bound on each period’s consumption:

Ci <Ay - A1+ 11,0 <A — Ay + Y2, :C <Ay g — A+ Y3, :0p < Ar_1+Yp.

These constrainst state that each period’s consumption cannot exceed that period’s income less the

change in wealth. Summing these T' equations gives the IBC:

T T—1
th < Z((At—l —AN+Y)+Ar1+Yr
=1 =1
T
= Ag + Z}/t
=1

Alternatively, we could start with the IBC and derive the flow-budget constraints: TODOTDO
We proceed to formally state the agent’s decision problem: given initial endowment Ag € R and a
sequence of labor endowments (Y7,Ys, ..., Y7) € RY satisfying Ag + Zthl Y3,

T T T
max U(Cy,....Cy) = C s.t. C, < Ay + Y,.
(Ch...,CT)eR{ ( 1 t) ; t ; t 0 ; t

We see that the seemingly dynamic problem of choosing consumption each period is mathematically
equivalent to a static decision. We solve the problem. Recall that zero consumption will never be chosen
in any period. Moreover, recall that the IBC will always be satisfied with equality. Thus we can write

define the Lagrangian L : RI 4+ xRy =R via

T T
L(C1,Cy,..; O, N) = > u(Cr) =AY Cr— Ao = Y Vi,
=1 =1

t=1

and solve the unconstrained maximization problem

max - ,C(ChCQ,...,CT,A).
(C’1,C'z,...,C'T)E]R_*_,)\EJRJr

Since U is concave, any critical points of £ will solve this problem. For each ¢t = 1, ..., T, the first-order
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condition yields

W(CF) =N =0=d(C}) = \".
In particular, this tells us that «/(CY) = v/ (C3) = ... = W/ (C7%). Since u”(C) < 0 for all C, then v’ is
strictly monotone, and hence it is invertible. Therefore, we have that C} = C5 = ... = C'}.. Denote by
C the value Cf for all t = 1,...,T. The first-order conditions have told us about the growth path of C;
(namely, that it stays constant), but we still do not know the level. To find this, we take the first-order

condition for \:

T T T T
;c:—AO—;Yt:o:» Z€:A0+ZY}:>5:%[AO+ZY;].

Thus, we see that the agent chooses the same consumption every period, equal to the average of total
lifetime income. The marginal propensity to consume out of current income is the same each period,
at % What does this result imply about saving? Defining per-period saving as S; = Y; — Cy = for
t=1,..,T, we find

T
1
S =Y, —Cy =Y — Ao+ ) Vi

t=1

As an alternative frame for saving, note

A — A=A+ —C) — A
—Yi-C
= St

so saving/dissaving is the transitory change in net asset position. So, S; > 0 precisely when the period’s
transitory income is greater than average lifetime income, and S; < 0 when transitory income is less
than average lifetime income. Punchline: even under total certainty and no risk, the agent will save and

borrow to smooth consumption!

Cookie-Cutter: FBC — IBC (telescoping trick)

Consider the flow budget constraint (no labor income):
At+1 = (At — Ct)(l SIS 7') = (1 Sl T)At e (1 P T)Ct~

Divide by (1 +)!*! to obtain the discounted-assets form:

At+1 o At . Ct
I+t (1+r)f 1+t (%)

Sum (%) from ¢ = 0 to T'; the A-terms telescope:

Aﬂ1<¥@:_§5 Cy
(14r)TH+l 1 — (1+r)t

Rearranging,
T

Zizf‘—ﬂ
A+rt 0 Q+rTH

t=0

16



.

Impose the No-Ponzi / transversality condition Tlim

A7

_)OOW = 0 to get the intertemporal

budget constraint (IBC):

) Ct B
Z (1+r)t Ao-

t=0

Mnemonic for exams: D—S—S—L = Discount by (1+r)'"!  Shift indices, Sum (telescopes), take the
Limit. ¢

®Useful variants:

With income Yz: Ayp1 = (Ae +Y: = Ce)(L+1) = 3,5, (pcr‘itﬂt = Ao+ >0 Y"T

(+n)t-
Time-varying safe rate r¢: discount by Rg : = ;;(1)(1 +7;); IBC becomes Y, % =Ao+> ;50 % with
. Apg1 ' '
iy Ro, 141

Using 8 = ﬁ: App1 Bt = A8t — OBt = Ztgo BtCy = Ao (and similarly with Y3).

Risky/uncertain returns: use the stochastic discount factor M4 1; discounted assets are Mo :A; and the IBC
is Eo [ZQO Mo,tct] = Ap +Eo [tho Mo,tyt] with limy_, o Eo[Mo 741 A7 41] = 0.

Gross return notation R=1+ r: replace (1 + )¢ by R throughout.

Growing measurement units (inflation or population growth g): work in real/per-capita terms or discount
additionally by the growth factor so the transversality condition holds.

g g 4_gn. g A
Finite horizon T no limit; instead ZtT:O % = Ap + ZtT:o Ryott = ROT;L .

J

Remark (Two timing conventions yield the same intertemporal budget). Notation: R =1+r, ¢ = 1/R.

(A) Pay—-tomorrow (payoff units).

A1 =R(A+Y, - Cy) = Ci+qAi1 = A + Y5

Divide by R‘T!, sum, and impose No—Ponzi:

C, Y;
Zé:Aw—Zﬁt.

t>0 t>0

(B) Buy—today (present—value units).

=W:+Y,; <= Wt+1:R(Wt+K*Ct).

Divide by R?, sum, and impose No—Ponzi:

Cy Y,
§ —_° — M/O + .
t t

t>0 R t>0 R

Dictionary. At each date ¢, W; = A; (same “today—pesos”’). The difference is whether R multiplies

savings (A¢+1 = R(-)) or appears in the purchase price of assets (W;11/R).

Remark. (Simple model of retirement savings) Let us make Model into a very basic life cycle model.
Let T; be the (known) retirement date, and set ¥; = Y fort =1, ..., T} for fixed Y >0and Y; =0 for
t > T+ 1. Assume Ay = 0 for simplicity. Application of the formula C; = C = % [Ao + Zle Y;| for

all t € {1, ..., T} to our specific circumstances yields

N

C,=C=2LY.

~|
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Thus, savings S; = Y; — C is given by

T\
<1]>Y, t=1,...,Tj,
Sp = T

Y, t=T;+1,...,T.

So during the working life, S; > 0, and during retirement, S; < 0. So, the lifecycle paths of the variables

are as follows:
e Consumption stays constant every period at C = %?.
o Income: constant at Y for ¢t = 1, ..., T}, then constant at zero for t =1 +1,...,T.
e Savings: the difference between income and consumption.

o Assets: triangular shape: increase until 7}, then declining to zero until T'.

_ Ar
Y Y,
2Y Cy
(1-%)7 s
T;+1 T
S

Remark. (Relative risk aversion) For a twice differentiable, strictly increasing, strictly concave felicity
function v : Ry — R, we define the relative risk aversion at C € Ry, by —";E(Cg,)c’ (Recall v (C) >0

for all C, so relative risk aversion is positive). Intuitively, —u”(C) governs the degree of concavity in

the consumer’s preferences, thereby governing their risk aversion-how much they prefer a sure bet in the
middle versus a risky bet with the same expected utility. To get this into a form that is invariant across
affine transformations of a utility function (which do not affect preferences), divide by «/(C). (Indeed, if

v : Ry — R is another utility function given by v(C) = au(C) + b, then —Zl,/((g)) =— ‘ZZ/,/((g)) = —Z/,/((g)) )

1"

Finally, note that the expression — Z,((g)) is currently in units of inverse consumption; to make it unitless,

we multiply by C to obtain —":,((%)f , the coefficient of relative risk aversion. In general, the coefficient
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of relative risk aversion varies depending on C. But a special class of utility functions have a constant
relative risk aversion at all levels of consumption. For any o > 0, we define the CRRA (constant relative

risk aversion) utility function u : R14 — R by

u(C)=In(C), c =1

which has constant relative risk aversion of o at each level of consumption (stay tuned). In fact, this is
the only class of utility functions with constant relative risk aversion (prove). (Often, the minus 1 in the
numerator is omitted because it does not change preferences, but it is useful theoretically). Note that for
o = 0, we simply have u(C) = C — 1, so utility is simply linear. We will justify below that In(C') is the
limiting case of u(C) as ¢ — 1. For 1 # o > 0, we show that the CRRA utility function with parameter

o has constant coefficient of relative risk aversion . Indeed, for all C' € R, 4,

u'(C)=C77,4"(C) =—cC 7!

and so

17 _ —o—1
Relative risk aversion at C' = —uu,(cg)c = _% =

g

so relative risk aversion is the same at all consumption levels, and is the parameter . We show that
u(C) — In (C) as 0 — 1: using L'Hopital’s rule,
cl—o -1 —In(C)Ct=°
lim ——— = lim% =1In(C).

o—1 1—0 o—1 —

And the utility function u(C) = In (C) has constant relative risk aversion of o = 1:

u (C) = =, u" (C) =——

1
C
and so

"(C)C —=C
Relative risk aversion at C' = v ) =0~ 1.

u'(C)

Remark. (General model of consumption and saving under perfect foresight) We generalize Model as

follows:

1. Discount factor 8 < 1, implying a discount rate v = % > 0. The agent (subjectively) discounts

the future.
2. Strictly positive interest rate r > 0. Still constant over time and same for borrowing and saving.

3. Government levying proportional, time-varying consumption taxes 7¢ and 77, t = 1,...,T. Gov-

ernment revenues are thrown in the ocean.

Otherwise, we keep the same general setting. The intertemporal utility function is now
T

U(Cy,Cy,....Cr) = Y B u(Cy).

t=1
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The flow budget-constraints:

C1(1+Tf) +A1 = Yl(]. —Tiy) +A0(1+7’),
Co(1+75) + Ay = Yo(1 = 73) + Ay (L +7),

Co(1+1)+ A=Y (1 —7) + A1 (1 + 1),
CT(l + 7'701) = YT(l — 7’%) —|— AT,1(1 —|— ’I“).

(Recall that we assume Ap = 0—no bequest motive and no default). To derive the intertemporal budget

constraint, we multiply the period-t flow budget constraint by W for t =1,...,T, to obtain

1 1 1
—— [C 1+ 1)+ A= ———— Vo (1 -]+ ———= A4 1, t=1,...,T.
(1+r)t71[ t( r) t] (1+T)t—1[ 2 ( 2)] (L+7) 2 t—1
Rearrange to
Of(l‘i’TtC)_)/t(l*Tg) At—l At N
t—1 — t—1 t—2 t—1> t=1..T
(1+7) (1+7) (1+7r) (I+7r)
Finally, sum up these T equations to get the intertemporal budget constraint:
LG (14+7) Vi1 -~ A o4
Z 1 t—1_z 1 t—1+21 t—2_21 t—1
= (1+7) = (1+7) = (1+7) = (1+7)
T T—1 T
_Zn(l_Tg)_’_ Ay _Z A
= i—1 1 i—1
= (L+7) = AT )
T
_ Z }/t (1 —7'2) A() AT
— (1_’_,’1)1571 (1+T)071 (1+7’)T71
T
Y: (1
= i :El)+(1+r)A0
— (1+7r)
That is,
Lo+ K (1-1)
Do =Y e H (L) A,

— (1+T)t—1 — (1+T)t_1

that is, the present value of (consumption tax-inclusive) lifetime consumption equals the present value

of lifetime income. We now formally state the problem:

T
U C ,C B ...’O = t—1 C ,
Chczf.r.l.a,‘gTeRT ( 12 T) ZB u( t)

Ct 1+Tt &l
s.t. + (14 7)Ao
Z(l"—r - ; t 1 ( )

with Ay € R given, Ar =0, (Y1,...,Yr) € ]Rz given, 3 < 1 given, r > 0 given, and (7, 7/)L; given, with
T Yt(l—‘rZy)
t=1 Tt
be strictly positive, and the intertemporal budget constraint will hold with equality. Hence our decision

+ (14 r)Ap > 0. As before, our assumptions on felicity imply that each C; chosen will
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is equivalent to:

max L(Cq,....;Cr, N)

(C1yeess CT)€R$+,)\€R++

T T c
Z u(Cr) + A ZYt( t— 1)+( +7")A0_270t(1+7})

= (1+7) = 1+
This problem is concave, so it suffices to find the critical points. For each t = 1,...7' — 1, the FOC for C}
is
147f

B (G )—/\*W

and the FOC for Cy41 is

1+78,
Btul * — \* .
( t+1) (1 + T)t

Dividing these two conditions gives the consumption Euler equation:

u/ (C:+1) ].+th+1
- Jt=1,..,T 1.
b u (C}) 14+r)Q+7)

Notice that income Y; and labor income taxes 77 do not factor into this equation at all. Do a first-order

Taylor approximation of u' about C}, evaluated at C}, ;:

W (Cpy) =l (CF) + " (CF) (Cyy — c;)+o(( L c*)) t=1,..,T—1.

Divide each of these equations through by «' (C}) to get

W (Cha) . W(C)-CF Ci —Cf .
won S wien e oG -a).

(Drop stars from now on). We then see that to a first-order,

u' (Cei1)
u (Ch)

=1 — coefficient of relative risk aversion % growth rate of consumption

SO “;(,?(’;tf)l) is inversely related to the growth rate of consumption.

Recall that the elasticity of intertemporal substitution at time t is given by

Cttr u' (Cyt1)
i(%) o

W (Ciy))  Cetr
i(5E)

This captures the degree to which the growth rate of consumption is sensitive to changes in the marginal

rate of substitution (u'(Cyy1)/u/(Cy)). If it is high, then a small increase in the intertemporal rate of

substitution is associated with a large decrease in the growth rate of consumption. Note we can write
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the elasticity of intertemporal substitution as
Ce
¢ (%))
uw (Ciy1)
a(m (555E3))

If our utility function is CRRA with parameter —o, then this further reduces to

4(n (%)) () o
B ) )

So under CRRA utility, the elasticity of intertemporal substitution is equal to the inverse of the coefficient

Q|
Q|

of relative risk aversion. That is weird! Back to the model. Denote by o; = —% the coefficient

of relative risk aversion at time ¢. (If utility is CRRA, then o, = ¢ for all t). Then, we found that for
t=1,..1,
u' (Ci11) L+780

u(C) () (+7)

and up to the first order,
u' (Ciy1)
u (Cy)

Equating these expressions gives that, up to a first order, for each t = 1,...,7 — 1, we have the following

ACuy

:1—0't C
t

approximation for the growth rate of consumption:

u' (Cpi1) L+ 7, AC ACu1 _ 1 [ L+ 78

W(C) BAina+m e, T o ol Bainarm

This is called a Keynes-Ramsey formula: the Euler equation has been transformed from an expression
involving marginal utilities into an expression about the growth rate of consumption. Some remarks on

the above Keynes-Ramsey formula:
e Income Y;, income taxes 77, and initial wealth Ag are all irrelevant for consumption growth.

e Suppose consumption taxes will icnrease tomorrow: 77 < 77, ;. This will cause a decrease in the
growth rate of consumption (and if (1 + ) = 1, it will certainly cause negative consumption
growth rate). The level of consumption today depends on the balance between the intertemporal
substitution effect and the intertemporal wealth effect from future tax increases. Could potentially

cause a consumption boom this period depending.

From now on, we assume all consumption taxes are constant: 77 = 7 for all . We made our point about

unconventional fiscal policy. Then, the Keynes-Ramsey formula reduces to

A0t+1_i_1_ 1 ]
Cy ot | B(l+7)
:i _ﬁ(l—kr)—l]
o | B(1+r)
_L[een - en)
o | B(l+r)
WY RIS
ot | B(+r)
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where, recall that « is the discount rate defined such that g = ﬁ Finally, we see that, again up to a
first order, and assuming o, is roughly constant at some o (literally true if felicity is CRRA),

ACt+1 o =7

Cy o(1+7r)

From this new Keynes-Ramsey formula, we get some more insights:

1. If relative risk aversion o is high, so that é is low, then any change in interest or discount rates

translates into less change on the consumption growth rate than would a lower o.

2. If r = ~, implying r = % = pfr=1—= B(1+7r) =1, then the market interest rate equals
the discount rate, and consumption growth is zero. Intuitively, the market compensates the agent

just enough for her impatience that she does not tilt consumption.

3. If r > ~, then the market discounts the future more than the agent does. The agent is patient and

defers consumption—consumption growth is positive.

4. If r < =y, then the market discounts the future less than does the agent. The agent is too impatient

to reap the rewards of waiting, and consumption growth is negative.
We can do some comparitive statics on what happens if expogenous parameters change:

1. Suppose that the discount rate - rises, that is, 8 increases. We see that consumption growth will
fall. Intuitively, the agent discounts the future more, is more impatient, and shifts relatively more

ocnsumption to today.
2. The derivative of the Keynes-Ramsey formula with respect to r is

c(l+r)—(r—y)o 14y

o2 (1+7)° o2 (1+7r)°

implying that an increase in the interest rate will cause consumption growth to increase.
3. Again, none of this has to do with levels.

Punchline: up to a first order, we have that consumption will be constant over time (as in Model ) if
consumption taxes are constant over time and the consumers are as patient as the market. In general,
however, consumption will not be constant, but grows and shrinks over time. Even in this perfect
foresight world, there is consumption tilting when consumption taxes are changing or consumers have
differing patience from the market.

In continuous time (need 8 < 1), the annoying 1+ in the denominator of the Keynes-Ramsey formula
drops out. Assuming consumption taxes are constant over time, and that discounting is proportional to

time. We can write (some of this math is a little iffy)

u' (Ceyr) 1 u' (Cer1) 147y
= = =
u' (Cy) 1+7r u' (Cy) 1+r

so for small increments of time At,

u (Crpar)  14+7AL
u' (Cy) 1+ rAt

We can approximate Cipar as Cy + AtC’t, where C; = %—? is the instantaneous rate of change of C.

Then we use a Taylor expansion of u’ about C; to get the approximation u’ (Ct + AtC’t> =u' (Cy) +
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u" (Cy) AtCy. Thus,

u’ (Ct) + u” (Ot) AtC’t 1+ ’}/At

u' (Cy)  1+rAt
UH (Ct) AtCt 1 + "}/At
1 =
- u (Ch) 1+rAt
N u’ (Cy) AtCy  1+~yAL—1—1rAt  At(y—7)
u (Cy) 1+ rAt 14rAt

u” (Cy) C, _ -
u (Cy) 14+ rAt

Multiply the left-hand side by %Z Assume the elasticity of intertemporal substitution is is roughly

constant at - = _uv’l’,((CC))C' Then,
u” (Cy) Cy Q, SN Y gi T gil r—
U/(Ct) Ct_1+TAt Ct_1+TAt Ct_O' 1+TAt

Taking At — 0:

G _r—nv
th g

saying that the rate of change of consumption is the difference between the market and subjective interest
rates, modulated by the intertemporal elasticity of substitution. Return now to the case of discrete time.

Assume that consumption taxes are constant. Then, the Euler equation reads
BA+7r)u (Copr) = ' (Cy).

We can interpret this intuitively with a marginal benefit-marginal cost analysis. If the consumer is
behaving optimally, then any infinitesimal change should not result in a change in utility. So suppose
she saves an infinitesimal amount dC' more today and consumes it tomorrow. How does that impact
her utility? She loses approximately u’ (Cy)dC' utils from the loss of consumption today, but gains
B+ 7r)u (Cry1)dC tomorrow. Thus these quantities should be the same if she is at the optimum.
We can solve the model in closed-form in the case of 5(1 4 r) = 1, that is, ¥ = r. Assume also that

consumption taxes are zero. In all periods. Then the Euler equation reads
u (Cry1) = u' (Cy)

so since u’ is invertible, we have C; = Cy = ... = Cr = C. Denote lifetime income by W = Aq (1 +r) +
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Zthl %Y} Plug these into the intertemporal budget constraint to get

t=1
a 1
=C =W
tz:; (1+T)t_1

(1+7) (1 - (1iT)T> "

As T — oo, then each period’s consumption approaches the “annuity value" of lifetime wealth (with the

pesky 1+ r in the denominator, an artifact of discrete time):

— r
C =
1+7r
Note that the marginal propensity to consume out of current income is 7“1_1” = (%) 8 =1— . Since

[ is thought of as close to one, this means the marginal propensity to consume is small. In the general
case of B (1 + 1) # 1 (that is, r # «), we solve numerically using a shooting algorithm. We only need to
solve for one thing, C7, since perfect foresight and the Euler equations imply everything else. We guess
a value for C7, use the Euler equations to compute the implied Cs, Cs, ..., Cr, and check how close the
present value of lifetime consumption is to W. Iterate until you are arbitrarily close to equality in the
IBC. This type of algorithm can accommodate all sorts of time-varying stuff (interest rates, discount

factors, taxes, etc.) so long as it is deterministic and known.

Remark. (Model of consumption and savings under income risk, with quadratic felicity) We now present
a model of consumption and savings where we drop the perfect foresight assumption. Specifically, we

allow per-period income to be random. We utilize the quadratic felicity function

a
’U,l (Ct) = Ct - 50,52
for a constant @ > 0. Note that marginal utility is linear: u'(Cy) = 1 — aC}. This is convenient

analytically, but quadratic felicity has some drawbacks:

1. Since ' (0) = 1, the condition that Clieru’ (C) = oo does not hold. Thus we could get stuck at a
—0
boundary solution where someone finds it optimal to starve to death.

2. Note that marginal utility is negative for C' > % This means that quadratic felicity violates the
assumption of strictly increasing marginal utility. In practice, we can often get around this issue

by setting a to be as small as we need.

For simplicity, assume that all taxes are zero: 7F = 7/ = 0 for all . Assume as well that v = r = 0, so
B = 1. None of these assumptions are fundamental, but just for expositional clarity so we can abstract
away from consumption tilting. The income stream {Y;}7_, is a stochastic process. At t = 1, the

consumer only knows Y7, and can only immediately control C;. The consumer’s problem is to choose
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decision rules C; (Y1), Cy (Y1,Y2), ..., Cr (Y1, ..., YT), where C; (Y7, ...,Y:) is a mapping from the set of
all possible histories Y7, ..., Y; into a nonnegative consumption level, subject to the intertemporal budget

constraint. Formally, the problem is

T

(0560

t=1

Eq

T T
s s.t. ZCtSAo—FZYt
t=1 t=1

max
C12>0,...,Cr>0

where again, C; > 0 is not a single number, but rather a mapping from the space of histories (Y7, ...,Y;)
into Ry. The budget constraint must hold with in every state of the world, not just in expectation.
We require that Ay + 2321 Y; > 0 in every state of the world, so that A7 < 0 does not happen from
now fault of the consumer. We solve for now using a variational argument. We assume equality in
the intertemporal budget constraint (even though inequality could occur with quadratic felicity, since
agents don’t always want to consume everything.). Suppose we are at a solution, and that we defer an
infinitesimal amount of consumption from period 1 to period ¢. Note that the utility cost of giving up
an infinitesimal amount of consumption today is w’ (C1)dC = (1 — aC7) dC. The expected utility gain
from the future consumption is Eq [u’ (C) dC| = Eq [(1 — aCy) dC] = (1 — aE; (Ct)) dC. Equating the
benefit and cost gives (1 — aCy)dC = (1 — aE4 (C})) dC, which yields the Euler equation

Cy = Eq [Cy] for all ¢.

So consumption is constant in expectation. Hence we will smooth consumption in expectation. Now,

assuming equality in the IBC, we take the expectation of both sides:

T T
Y Ci=A+) Y,
t=1 t=1

T T
=B |Y G| =Ei |4+ ) Y,
=1 =1
T T
=C1+ ZEl [Ci] = Ao + Z]Ei (V3]
=2 =1
T

= TC, = A +ZE1 Y]

t=1

T
=C) = % (Ao +ZE1 [K‘J)

t=1
so period-1 consumption is the time average of expected lifetime income, given the knowledge we
have at period 1. This behavior is called certainty equivalence: the consumer behaves almost as under
certainty, just with the known income stream being replaced by the expected income stream. There is no
precautionary savings present. It turns out that certainty equivalence is unique to the quadratic felicity
function. The result ultimately stems from the fact that for quadratic felicity, E [v’ (Cy)] = o’ (E [Cy]),
which does not hold in general due to Jensen’s inequality. Under quadratic felicity, the derivation of
E; [Cy] = Cy for all ¢ can clearly be generalized: E;[Ciys] = C; for all t < s < T, using an identical

variational argument. In particular, we have that random walk result:
Et [CtJr]] = Ct for all t.

This says that individual consumption follows a martingale: today’s consumption is the best predictor of

tomorrow’s consumption. We reformulate the random-walk result in terms of changes in consumption.
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By the definition of the expectation operator, we can write
Cy =E1[Ci] + ey,
where e; is a random variable satisfying E [E;] = 0. Using the random walk result, we can rewrite this as
Cir=Ci_1+e = AC; = e4.

Therefore, the random walk result implies that changes in individual consumption are unpredictable from
information in the previous period. We discuss two tests of the random walk result in the literature.
Using aggregate consumption data, Hall (1978) regressed aggregate consumption change AC} on variables
known at time ¢t — 1, such as C;_1, Y;_1, and a stock market index. Aside from the stock market index,
none of them were predictive. Some issues: how do we know we are capturing the whole information
set at t — 1?7 There could be other relevant variables there that we don’t observe. Moreover, since we
are using aggregate data but the result was derived at an individual level, Hall is implicitly invoking a
representative agent assumption. Campbell and Mankiw (1989) tested the random walk result against a
specific alternative. Namely, the assume that a fraction 1 — A of the population follows the random walk
in their consumption, while a fraction A is hand-to-mouth: AC; = AY;. Then, aggregate consumption
is ACy = AAY; + (1 — X) e Since (1 — ) e is a regression error term, they estimated this equation
to estimate A. One issue with OLS is that AY; and e; are likely correlated, since they represent news
about current income and news about changes in permanent income. As an IV for AY;, they use lagged
AY; and lagged AC}, and estimate A ~ 0.5, a significant departure from the random walk result, which
implies A = 0. Still, there is the issue that they are using aggregate consumption data, and things are in
partial equilibrium. Newer papers try to microfound things more rigorously. Back to the model. Recall
that

Cy = % (Ao +) B [Yt]> -

t=1

T

AOJFZY]‘,

Let us find period 2 consumption. Taking the expectation of the IBC in period 2, we have
t=1

T
DG
t=1

T T

=>C1+02+ZE2 [Cy]=A0+ Y1 +ZE2 [Yy]
t=3 t=2
T
=>Ci+(T-1)C, =A0+Y1+ZE2 [Y7]
t=2
T
= (T-1)Cy=(Ag+ M1 —Cl)+Z]E2 [Yi]
t=2

:>ng% <A1+ZE2 [Yt]>

t=2

Ey =E,

So Cs is the average of the expected remaining lifetime resources. We can further massage this
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expression to

T T T
1
Cy = T (Ao +Y -C +ZE1 [Y7] +;E2 V3] _;El Dﬂ)

t=2
1 T T T
=71 (Ao —C1+ ZE1 [Yi] + ZEQ [Y:] — Z]El [Yt]>
- t=1 t=2 t=2
1 T T
== (Tc1 Ci+ ) Ea[Vy] - ZIEl[Yt]>
t=2 t=2

1 T T
=C + 71 (;E2 [Y3] *;El [Yt]> .

Therefore, the change in consumption is

1 T T
= T_-1 (ZEQ [Y}] - ZEl [Kﬁ]) )
t=2 t=2
that is, the change in consumption is the change in expected lifetime income that occurs between period

1 and period 2. So consumption will only change in response to previously unexpected changes in income.

Remark. (Model with income risk, generalized) We consider the same model of income risk with
quadratic felicity as in Model , but we drop the assumption of » = v = 0. Specifically, we still im-
pose that r = v, but we allow it to take values greater than zero: r = v > 0, so 8 < 1. The new

optimization problem is

S

s.t.z(c o(l+7) +Z tl’

1+ r) py

where as before, we are not choosing single values for Cy, but rather contingency plans (mappings
from the realized history up to period ¢ into C}), and the Y;’s are random variables, so the budget
constraint holds in every possible history. We use a variational argument to show that consumption
follows a martingale. The utility cost of giving up an infinitesimal amount of period-1 consumption is
u' (C1) =1 —aC;. If it is invested until period ¢ and then consumed, the expected utility gain as of
period 1 is [E; {ﬂtfl 1+t (C’t)} =1—aE; [Cy] (vecall that r = v,s0 8(1+7r) =B(1+v) = 1.
Equating the benefits and costs gives
E, [Cy] = Ch.
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Take the period-1 expectation of the IBC to obtain

T C T Y,
E — =B [+ Ap+ Y ——
' ;(HT)H ( ’ Z(H—) -
T T
Eq [CY] E, [Y3]
=) —— =144+ Y ——
e D e o
T T
1 Elyt
=TC, 1+ A +
;(1+7’) Z
r LR vy
=0 = = |(1+7) A0+217’i1
(1+7) (1_(1+r) > i)
As T — oo, this expression approaches
r —  E;[V}]
Ci = 1+7r)A —_—
1=y |0 °+Z(1+r)t !

This shows that we have certainty equivalence once again, where we behave almost as in the perfect
foresight case, but just replacing actual lifetime income with expected lifetime income. In general, we

have that as T" — oo

E; [Yits
A (1 +7) Jrz t [Yiro]

C, =
t = T+r)

1+

Let’s derive that. Fix t. We have the martingale result that E;[Y;] = Y; for s > ¢, by a variational
argument: v’ (Cy) = 8175 (14 )" ° B, [/ (Cs)]. With this in hand, take the period-t expectation of the
IBC to obtain

. c d Y,
E; s 5 E +7) A+ 7537
[;(MLT) ' ' §(1+T) L
t—1 T t—1 T
C, C, E; [Cs] ) E; [Ys]
= 1 1 T Y ey =AY — Y —
s=1 + ’I") (]‘ + T) s=t+1 (]' + 7‘) s=1 <]' + 'f’) s=t (]' + T)
T t—1 T
1 Y, - C; E; [Y]
= Gy ———a =(1+7) A+ + P
;(HW Z )s ' Z(Hr) !
T—s T—s
1 1 + T) A }/t-i-s
oY A = ;
Now, note that
(1 + r) A Gt oA,
+7“ A0+ (1+7“ A0+ =1 P
; 2; (147" g(lw) ’
t—1 t—2 A
SZ 1+r §(1+r)5*1
_ A1
(1 + r)t—Q
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Plugging this back into into our expression, we get

c — 1 A +7§ Ey; [Yits)
t Pl - P E—
~ (1+T) +t—1 (1+7")t 2 — (1+T) +t—1
T—t T—t
1 E, [Y;:Jrs]
=C s=1+r A+ Y
tg:o 1+ ( r) Ai1 2 0+
T—t
T ]Et [Ys+t]
=0y = L+r) A+ Yy —
. (1+7) A, ;) o)

(1+47) (1 — (1}rr)T+tl>

Taking T" — oo gives the desired result:

r

Ct:l—!—r

At 1(1+7’ +Z

s>0

73EYS
) ¢ [Yigs]

It can be then derived (todo on PS2) that the change in consumption depends only on updates in news.

This holds under certainty equivalence and without motives for consumption tilting (r = 7). Indeed, we
have

Ci= 1+ (At (1+7) +§) Et[YHs])
:1jrr (1+7) (Yie1 + (147) Apms — Coa +Zw+iﬁ[f:)]_i%l_fg]
- 1ir Q+7)? Ao+ (L+7)Yeor — (L +7) Cet + (l—l—r)i EE{?’;)*] +§; ](Ef[f:)] —iiEgl’ﬂﬁf]
= (L47) o |14 7) A 2+27Et§1:;5} —rChoy + 1—7017" iﬁt[ﬁf)j iEflﬁ)tq
s 1; >l -3 Sl
and so
aCr- i L il -y Bl

If we make assumptions on the process generating Y;, we can get nicer results for how consumption
changes in response to shocks. For instance, first suppose that Y; follows a process Y; = u + e;, where e;
is iid white noise. Then,

r [ EYis] <& Ea[Vess)
Ci—Cyq1 = —
S ;)(1+7')3 D (1+7)s
ro ] o~ Ee [+ eors] — Boor [+ ]
Ty |Brletel - B 1[M+et]+; (1+r)°
ro | pu+0—p—0
= —_— —O —
147 wt e — +z:: (1+T)S ‘|
j— T‘ e_
T 14 -

Therefore, we see that consumption barely changes in response to a transitory income shock e; (since
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T
147

is likely much less than one).
If Y, is a stationary AR(p) Y; = >7_, piVi—i + €y, with 37| p; <1, then (prove)
r 1

C,—Cy_y = :
R TIPSR R o)

Pi " Et-

i=1 (14r)?

In the case of an AR(1), this simplifies to (prove)

r
Ci—Cioy = ——ey.
t s P
So as p — 1, C; increasingly approaches following a random walk, where consumption changes one-for-one
with a transitory income shock:

Ct - thl = €¢.

Remark (Income risk with precautionary savings). We turn to the case of income risk where we move
away from quadratic felicity, so that certainty equivalence does not hold. Under CARA utility and
a normal income process, we will show that consumption now follows a random walk with drift. For
simplicity, assume that r =y = 0, so 8 = 1. We make use of the constant absolute risk aversion (CARA)
utility function

u(C) = —ée‘ac.

The CARA function, fittingly enough, has constant absolute risk aversion — Z/,/((g)) = «. We assume labor

income follows a process
Yi=Yi 1 +e,

with e, ~ N (O7 02) iid. As before, we state the consumer’s problem:

T

T T
max u(C s.t. C, < Ag+ Y;.
C1,...,Cr et ( t) t:zl e t:Zl t

We derive the FOC using a variational argument. If we give up one unit of consumption today, the

utility cost is u/ (Cy) = e~*Ct. If we save this amount to tomorrow and consume it then, the utility
benefit is 8 (1 +7) By [u' (Cy41)] = Ey [e7*C*+1]. Hence we have the first-order condition

efaCt — Et [e*actﬁ»l] .

We conjecture that consumption obeys the following random walk with drift, and then confirm that it
satisfies that first-order condition:
Ciy1 =Cr+ p+ ey

Note that the shocks to the consumption process are the same as the shocks to the income process. It is

(12 ar(x
aB[X] apHe) (prove). Plugging this

a fact that for a normal random variable X, we have F [e(’“X ] =e

into the right-hand side of the first-order condition gives

Et[e_act+1] =F, |:e_a(ct+ﬂ+et+l):|

_ Et [e*OtCt Ce ok, 6706614,1]

_ e—oth Lok, Et [e—aet+1]

2_2
—aCy  g—ap  oF

= e
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Equating this to the left-hand side of the first-order condition yields

_ a2o? a2o? ato ao
e Mo 2 = etr=e2 = au=

e—aCt _ e—aCt

Hence, the solution is
2

ao
Ciy1 =Cr + N +er11.

Therefore, consumption is a random walk with drift, where the drift is increasing in absolute risk aversion
and the variance of the income process.

Note that we can write

2 2
02101+%+62101+%+(Y27Y1)

and

OéO'2

03202—1—7—&-(1/3—1/2)

and so

2
03:01+2-O%+(1gfyl).

Iterating this forward, we get that for any ¢,

2

@
Cr=Ci+ (-1 4 (v, —-11).
Plug this into the IBC:
T ao? T
Z<01+(t—1)+Yt—Y1>=Ao+ZYt
2
t=1 t=1
ao? T2 T T
t=1 t=1 t=1
2.7 (T-1
= T01:A0+TY1—MT()
Ao ac? (T —1)
= Ci=—+Y1 - —m——.
1= th 4

Recall that in the certainty-equivalence case, with quadratic felicity and v = r = 0, we had Cy =
% + = Zthl E; [Y:]. If we made the random-walk hypothesis on labor income, then we would have
Cl = %qLYl. Hence, under CARA-normal assumptions, we have that Cy = C] *@- Consumption
is lower because of precautionary saving. Note that precautionary savings is increasing in absolute risk
aversion «, the volatility of the income process o, and lifespan T'. In general for any ¢, we have that for
s >t (show),

OéO'2
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Therefore, manipulating the budget constraint, we find that
T T
Z@=M+ZK
T
= ZC +Z<Ct (s —t) —+Y Yt> =4+ ) Y,
s=1

2T s t—1 T
:>(T*t+1)0t+7ZS+ZY (T—t+1)Yi=Ag+ > (Yo—Co)+ > Y,
s=1 s=t
2(T—s)(T—t+1 =1
e (T—t+1)C+ 20 8)4< i )f(Tft+1)Yt:AO+Z(A37AS,1):A,5,1
s=1
- At—l 040'2(T7t)
éot*erYt*f.

Note that this formula gives Cr = Apr_1 + Yr, as it should be. Finally, we must show that the process

does indeed follow the random walk with drift. First, note that for any ¢,

A=A o+Y 1 —Cy

B Ao ao? (T —s+1)
—At—2+n—1_m_yt—1+f
1 ac? (T —t+1)
=A o (1—
”( T—s+2)+ 4
T—t+1 aoc? (T —t+1)
= A2 .
T—t+2 4

Then, we compute the change in consumption as

Apq ao? (T —t) Ao ac? (T —t+1)
C,—Ci1=———+Y, — — —-Y_ N
s B 4 T—t4+2 11 4
Ao ac?  ao?(T—t+1)— (T —1)) Ao
=_"t=2 27 - A A
T—t+2 1 4 T—t42 1t
2
(6%
s (R
2
OéO'2

Prudence, mean-preserving spreads, and precautionary saving

We have shown that, for a particular combination of a felicity function (CARA) and income process
(Gaussian random walk), we can derive a particular consumption process (random walk with drift,
with innovations the same as in the income process) as the outcome. When directly compared to the
certainty-equivalent case (where the consumption outcome is a random walk), we obtain precautionary
saving (captured by the drift of the random walk).

In what follows, we show what causes precautionary saving more gemerally, independently of the
particular function forms assumed above: the condition u”/(-) > 0, i.e., strict convexity of marginal

felicity.
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The role of v(-) > 0 under CARA felicity

For CARA,
1
u(Cy) = ——e ¢, W/ (Cy) = e~ > 0 (strict monotonicity),
a
u"(Cy) = —ae™ % < 0 (strict concavity), u"(Cy) = a?e” % > 0 (strict convexity of u'(Cy))

Looking at the third derivative we know that the marginal felicity v/(-) in the CARA case is strictly

CONVET.
u'lc)
u(c)
u(cy) [(C+ u(CRl/2 .
) A\\\ \\
~. N
\_‘ \\
_— : O ~
[(CL) 4 BICHN2 | NN . [W(C,) + a'(Cl2 . .
WG, + Cyl/2) | e Ss. N
~. ~. ~
"\ \\ \\
u'(Cyy) - = S
CL (G + Cp)/2 Cy c Cp - € (€ + Cy)/2 é!] —-Cy C
(a) CARA: v/(C) is decreasing and strictly convex. (b) Mean-preserving spread on C. (Romer, 2018, p. 401)

(Romer, 2018, p. 401)

To make the argument cleanest, consider r = v (so that 8(1 + r) = 1). Consider a mean-preserving

spread (MPS) applied to Ct1, which by definition preserves the conditional mean:

Et [Cf?iei MPS:| _ Et [Cffit MPS:|

mean preservation
Using the Euler equation (with » = v): I do not totally understand the math here.

vicn = n i (e )] > e (o) > v (s fors ™).

Euler MPS + u”’(-) > 0 Jensen + u”’'(-) >0

From u'(Cy) > v/ (Et [CPS MPS]) and since v”(-) < 0 (i.e., u/(-) is strictly decreasing), it follows that
Ci < B[R]

By the definition of a mean-preserving spread,
Ci < B [CRy M9

The same chain of arguments for the certainty-equivalent (quadratic felicity, i.e. linear u/(-)) case yields

c.e. __ c.e., post MPS
cee = Et[ o .

Choosing the same MPS across felicity specifications (so that the comparison is sensible) implies

post MPS| __ c.e., post MPS
E, {Cm } = E, {CM }
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Taken together, we conclude:
Cye > Cy, or equivalently ~ gPrecautionary — cee o 5 ),

Intuition. Consider two people, A with linear marginal felicity (quadratic utility; "/ = 0) and B with
strictly convex marginal felicity (v > 0). Start both with a consumption lottery for tomorrow with
the same expectation (and, for ease of comparison, the same variance). Expose both to the same mean-
preserving spread (riskier lottery while the expected consumption tomorrow remains the same). Person
A will not change her consumption today. Person B will reduce her consumption today and save more

(precautionary saving).

Income risk is a case where the third derivative matters in Economics. Economists call the property
u”’(-) > 0 prudence. As we have seen, prudence (a property of the felicity function—a primitive) and
precautionary saving (an outcome) are tightly connected: u’(-) > 0 = marginal felicity is strictly convex

= mean-preserving spreads raise E[u/(-)] and induce lower C; today.

Addendum. Risk aversion (u”(C) < 0) and prudence (v”'(C') > 0) play different roles. Risk aversion
governs dislike of risk in levels; prudence governs the precautionary response of current consumption to

future risk. Under 8(1 + r) = 1 and a mean-preserving spread (MPS) in Cy1:

o If u(C) < 0 and v"'(C) = 0 (e.g., quadratic utility), the MPS leaves C; unchanged = certainty

equivalence.

e Ifu(C) < 0and u”(C) >0 (e.g., CARA/CRRA), the MPS raises E.[v/(Ct+1)], so by Euler «/(C})
must rise = C} falls = higher saving (precautionary saving).

o If v/(C) < 0 and v"(C) < 0 (“imprudence”), the MPS lowers E,[u/(Cy11)] = C; rises = lower

saving.
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Dynamic Programming

An Initial Remark This subsection is methodological. We will first apply dynamic programming to
the consumption problem, but the techniques are broadly applicable beyond that context. The discussion
is slightly more abstract than the substance-oriented material elsewhere in the lecture; the goal is to equip

you with a general tool.

Statement of the Problem

We work in discrete time, indexed by ¢t = 0,1,2,... (starting at ¢ = 0 is a convention). Intertemporal
aggregation is additively separable: lifetime value is the discounted sum of per-period flow payoffs.? The
horizon is infinite for most of what follows, and—for now—we assume perfect foresight/certainty.

Given an initial state g € R™, the planner’s value function is

V(zg) = max Zﬁtr(xt,ut)

{ut}io =0

subject to the law of motion

Ter1 = g(@e, up), t=0,1,2,...
For ease of notation we suppress boldface; it should be clear that x; and u; can be vectors:
o 1z, € R for all ¢ (the state).
e u; € RF for all ¢ (the control).
e The discount factor is 5 € (0,1) in the infinite-horizon case (so that the objective is well-defined).

e The per-period flow payoff is a real-valued mapping

r: R" x R¥ — R, (z,u) = r(z,u).

e V(xzp) is measured in the same “units” as r and represents the maximal discounted value starting at

Zg-

What does r(z;,u;) capture? In general r can depend on both states and controls. In the baseline

consumption application we will take

r(zy, ur) = u(Cy),

i.e., felicity depends only on the choice C; (do not confuse the function w(-) here with the control vector
notation). One could also allow r to depend on components of the state (e.g., preference shocks), in

which case 7 = r(x¢,u;) truly uses both arguments.

Example (time-varying CRRA). A simple specification with time-varying risk aversion oy is

1—o¢
Gy
1-— Ot

ut(C’t) =

)

where the subscript on u; reminds us that felicity parameters may change over time.

2 Additive separability means the objective contains no cross-time interaction terms such as h(z:,x¢+1); instead it is

Y2 Bir(we, ug).
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States vs. Controls: Formulation Dependence

What one labels as a state or a control is formulation-dependent. In the baseline consumption formula-
tion, today’s consumption C} is the control and beginning-of-period assets are a component of the state,
e.g. xy = (A—1,Y%,...). An equivalent formulation replaces C; with a flow budget constraint and takes
next period’s assets A; as the control; then A; becomes part of tomorrow’s state z;11. Thus, today’s

control can become tomorrow’s state via the transition g.
Minimal example. Budget constraint with zero interest for simplicity:
A = A+ Y —Cy, Cy >0,
and per-period payoff r(z¢,u:) = u(Ct). The stochastic object for next period is Yi41.

Formulation A (choose consumption). State today: z; = (A4;_1,Y:). Control today: u, = C; €
[0, A;—1 + Y;]. Transition (law of motion):

w1 = (Ay, Yip1) with A, = A1 +Y, —C,.
Bellman equation:

VA Y) = max {u(C€) + BE[V (A + Y - €, Yi) | Y]}
Formulation B (choose next period’s assets). Same state today: z; = (A;_1,Y;). Control today:
us = Ay € [A, Ay—1 +Y}] (an occasionally imposed borrowing limit A). Consumption is now implied by
the choice of A;:

Ot = At—l + Yt — At-

Transition:
211 = (Ag, Yig).

Bellman equation:

V(41,Y) = {u(As+Yi— 2) + BE[V(A, Vi) | Y] }.

max
A<SA'<A1+Yy
Why this is the same problem. Formulation A optimizes directly over C' and then induces A’ =
A;_1+Y;—C. Formulation B optimizes directly over A’ and then induces C = A;_1+Y;—A’. Substituting
A’ < C turns one Bellman equation into the other. Hence, “today’s control becomes part of tomorrow’s

state” simply because the control feeds the transition map g:
9(A1, Yy C) = (A1 + Yy — Cp, Yeqa) or g(Ae_1, Yy Ay) = (Ap, Yiga).

Mnemonic. State = what you need to carry into the Bellman problem to evaluate feasibility and
continuation value next period. Control = what you pick today; once picked, it is recorded in the next

state via xy11 = g(xe, ug).
Regularity: Existence, Boundedness, and Concavity TB Revised For existence of an optimal

policy and well-behaved value functions it is standard to assume: (i) the feasible correspondence U(x)

is nonempty, compact-valued, and (jointly) continuous in x; (ii) g(z,u) is continuous; (iii) r(x,u) is
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continuous and bounded above (or § < 1 with growth conditions). Under these conditions standard
fixed-point arguments (e.g., Blackwell’s sufficient conditions) deliver a unique bounded solution to the
Bellman equation.

If, in addition, the feasible set is convex (for each z, the set {(z',u) : ¢’ = g(z,u), u € U(x)} is
convex) and the flow payoff r is concave in (z,u), then the Bellman operator preserves concavity and

the value function V is concave.

The Sequence Problem

Given zo € R", B € (0,1), a flow payoff r : R® x R¥ — R, and a transition map g : R® x R¥ — R", the

decision maker solves

oo
V(xog) = max Zﬁtr(xt,ut) st. x1 = g(we, uy), xo given.
{ue}e2o =0

This is the sequence problem. The objective is additively separable over time.

Dynamic Programming and the Recursive Problem

The idea is to replace the infinite sequence {u;};>¢ with a (time-invariant, in infinite horizon) policy
function uy = h(x:) so that the path generated by x:11 = g(x¢, h(z:)) solves the sequence problem.
Many macro problems admit such recursive solutions (state — choice — next state); with finite memory

one can pack lags into x;.

Bellman’s optimality principle. Whatever the current state and decision, the remaining decisions

must be optimal for the state induced by today’s choice.

Bellman equation. Dropping time subscripts and denoting next period with a prime,

V(r) = urer}?é) {r(x,u) + 5V(g(x,u))}, 2 = g(x,u).

Here r(z,u) is the flow value and V(g(x,u)) the (discounted) continuation value. A maximizer defines
u = h(z) and then
V(z)=r(z,hz)) + BV (g(z, h(z))).

Both displays are functional equations in the two unknowns A(-) and V().

Existence, Uniqueness, and Iteration Under standard regularity (nonempty compact feasible sets
U(z), continuity of r and g, and boundedness or 5 < 1 with growth control), the Bellman operator has a
unique bounded fixed point V. With concave r and a convex feasible set, V' is concave. Value iteration
Vigr = TVJ with

(TV)(z) = max{r(z,u) + BV (g(z,u))}

converges to V from any bounded continuous Vj.

First-Order and Envelope Conditions

Assume interior solutions and differentiability of r and g. A necessary condition for u = h(zx) is

or(z,u)
ou

oV (z') dg(z,u)
ox’ ou

+ 8 = 0, 2 = g(x,u).
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Differentiating the Bellman equation w.r.t. « at the optimum u = h(x) yields

oV (x) _ or(x,u) . or(xz,u) Oh(x) LB

oV (x") [9g(x,u) n dg(x,u) Oh(x)
Ox Ox ou Ox

ox’ ox ou ox

If, in addition, g can be written as g(u) (or more generally dg/0x = 0 after re-formulation), the Ben-

veniste—Scheinkman envelope condition simplifies to

oV(z)  Or(x,u) B
. —  on at u = h(x).

Substituting the envelope condition back into the FOC gives the standard Euler equation that contains
h(-) but no V(-):

or(z,u)
ou

Or(x',u') Og(x, u)

+ B ox’ ou

=0, 2 = g(x,u), v = h(z").

This functional equation in the policy h can be attacked with analytical or numerical methods.

Remark. Before an example:
e The FOC will almost always exist, as long as we have differentiability of the functions involved.

e However, the FOC in a useful way, both economically and for numerical purposes, i.e., as an Euler
equation without the value function, does not always exist; only when the Benveniste-Scheinkman

formula holds.

e If this is not the case, the solution has to come directly from the Bellman equation (which is also

a function equation, but in V(z)).

Example I: Consumption—Saving

We revisit the standard consumption—saving problem under perfect foresight. Let assets be A, income

Y, interest rate r, and period felicity u(-).
r(z,u) = u(C), gzu): AA=0+r)A+Y —C,

with Y exogenous, control variable C, and state variables (A,Y"). State the problem at ¢ =0 as

o0

tu(C . A =(1 A+ Y, —Cy, Ap given.
{Cmglti)l(}fig ;5 uw(Cy) s r1=1+rA+Y; t, Ap glven

Equivalently, using forward substitution,

o0

1 > 1
Zict = A0(1+r)+27Yt.
= (L) = (L)

With state (A,Y") and control C,
V(A)Y) = I(Ijl%c{u(C) +BV(A,Y")} st A=(1+r)A+Y -C.
Plugging the constraint,

V(4,Y)= max u(C)+BV(1+1)A+Y —C, Y').
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The FOC w.r.t. Cis
W(C)—BVA(A)Y)=0 <= 4(C)=pVa(AY'),

which is not yet an Euler equation because it still contains V(). Because A’ = (1 +r)A+Y —
C(A) depends on A, the Benveniste-Scheinkman envelope in its simple form does not apply directly.
Differentiating the Bellman equation at the optimum C = C(A,Y) gives
OV(AY oC ocC
# =u'(C) = —BVA(A)Y') = + BVA(AY) (1 +7) =d'(C)(1 + 7).
0A 0A — "~

0A
=u’(C)

Using the FOC «/(C) = 8Va(A’,Y") to cancel the bracketed terms yields

AV (A,Y)

=BVA(A Y ) (1+7r) = Va(A,Y") =4 (C")(1+r) (holds tomorrow).
oa Al

=u’(C)

Substituting back into the FOC produces the familiar Euler equation:

| (C) =B+ |

Equivalent Formulation Making Envelope Immediate

We can instead take next period’s assets as the control, u = A’, and write
V(AY)= max w(A(l+r)+Y —A") + V(A Y).

Here g(z,u) is the identity in u3

so the Benveniste—Scheinkman envelope gives
Va(AY) =/ (C) (I+7r).

The FOC —u/(C) + V4 (A’,Y’) = 0 then implies

w'(C)

Va(A,Y') =
the same Euler condition as above.

Remarks Three important points:

e Y is technically part of the state; under perfect foresight it can be suppressed in notation without

loss.

e Both derivations highlight the “formulation dependence” of states/controls: taking C or A’ as the

control leads to the same optimality condition, but different algebra.

3¢g(x,u) is the identity at u” means that, when taking A’ as the control, the transition is *’ = g(x,u) = (A’,Y”’): the

first component of the future state is exactly the control, so that 9A’/Ou = 1 and, crucially for the envelope with respect
to A, 8z’ JOA = (DA’ /DA, 0Y'/DA) = (0,0) (because A’ = w and Y is exogenous). Intuition: if I choose C' as the control,
the constraint A’ = (1+7r)A+Y — C makes A’ dependent on A; then when deriving V' with respect to A, a “cross” term
appears via A’ (and must be canceled using the FOC). On the other hand, if I choose A’ as the control variable, the future
state no longer changes when I vary A in that derivative: there is no cross effect and the envelope condition is immediate,
Va(A,Y) = u/(C)(1 + 7).
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e Under the usual concavity /compactness conditions, the Bellman problem admits a unique time-

invariant value function and policy.

Statement of the Problem II
Sequence problem

Given an initial state xg, consider

V(zg) = max EOZBtr(Jct,ut)
=0

{ut}i>0

subject to
Ter1 = g(Tt, Ut E441), {e:} 1.i.d. with distribution F, xo € R" given.

Recursive formulation (Bellman equation)
Viz) = muax{r(m,u) + B E [V(g(x,u,a)) ‘l‘] },

where the conditional expectation is
E[V(g(z,u,c)) ’x] = /V(g(x,u,e)) dF (e).

First-order condition For an interior optimum,

oV (x') dg(x,u,e) _
ox! ou ’a: =0

or(z,u)
ou

—I—BE[

Envelope (Benveniste-Scheinkman). If dg(z,u,e)/0x = 0, the usual reasoning yields

oV (x) or(z,u)

ox or

And you get
or(z,u)
ou

+ BE

or(z’,u') dg(x,u,e) _
ox’ ou ‘x =0

Example II: Consumption—Savings with Stochastic Income

Let current assets A and current income Y be the state. The Bellman problem (taking next period’s

assets A’ as the control) is
V(AY) = max u(AQ+7r)+Y - A) + BE[V(A,Y)|Y]. (Bellman)

Why is Y a state? It carries information about Y’ (e.g., if Y follows a Markov process), so it matters

for expectations even though today it only enters the budget through resources.

Envelope (identity in the control). With A’ as the control, the transition for the asset component
is the identity: the choice A’ is next period’s asset state. Hence, when differentiating with respect to A,

we hold A’ fixed and obtain the envelope directly:

VA(AY) = uc(C)(1+1), C=Al+r)+Y - A, (Envelope)
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Note: If instead C' were the control, A’ = (1+1r)A+Y — C depends on A and a cross term would appear;
it cancels with the FOC below.

FOC.
—uc(C) + BE[Va(A,Y')|Y] = 0. (FOC)

Using the envelope one period ahead, V4(A',Y') = (147) uc(C’), we obtain the familiar stochastic Euler
equation:
uc(C) = Bl +r) Efuc(C’)|Y]. (Euler)

What not to confuse (derivative bookkeeping).

0
oA’

{u(AQ+7)+Y = A} = —uc(0).

. %{u(A(l +7)+Y —A)} = uc(C) (1+r) is the derivative wrt the current state A, not wrt the

control A’. Do not mix the role of A" as control with the role of A as (future) state variable.

or(z',u’)
!/

e Hence in the slide’s abstract notation corresponds here to (1 + r) uc(C’).

e If g denotes the law of motion for the asset state, then with A’ as control we have g(A4’,-) = A’
(identity), so 9g/0A" = 1.

Combining the FOC with the one-step-ahead envelope gives
—uc(C) + B+ Efuc(C)|[Y] =0 <= uc(C) = B(1+7)E[uc(C')|Y].
To avoid any confusion about what to plug into the general Euler equation, start from the FOC
—uc(C) + BE[Va(A,Y')|Y] =0,

then apply Benveniste-Scheinkman to get Va(A4,Y) = uc(C) (1 + r) and shift it forward to (A’,Y”) to
obtain V4 (A", Y') = (1 + r)uc(C’). Substituting back delivers the Euler equation.
If Y isi.i.d., define cash on hand
Z = AQl+r)+Y.

Now Y does not forecast Y’ and can be dropped from the state. The Bellman equation collapses to a

single state variable:
V(Z) = max u(Z - A) + BE[V(Z)], 7' = A(1+r)+Y"

Economic takeaway. Y entered the state only because it predicted Y’. When that forecasting role
disappears (i.i.d. case), current resources are fully summarized by Z. In general, look for transformations
that compress forecasting information into fewer state variables (e.g., cash-on-hand with i.i.d. shocks;

companion-form stacking when only finitely many lags matter).

Summary so far

So far, Dynamic Programming has delivered (via Bellman -+ Benveniste-Scheinkman) the Euler equation.
The next step is more substantive: can we compute/characterize the value function V' (x) and the policy

h(z)? To push in that direction, we will need a bit more mathematical background.
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Contraction Mapping for the Bellman Operator

Bellman operator as a map on functions
Let X be the state space and U the set of feasible controls at each x € X. Given:
e a bounded one-period return (flow utility) r: X x U — R,
e a transition g : X x U x E — X with shock ¢ € F,
e a discount factor g € (0,1),
e and a conditional expectation operator E[- | z] over ¢,

define the Bellman operator T : S — S by

TV)(z) = ugl(?é) { r(z,u) + BE[V(g(z,u,¢)) | 2] }

Here S is a set of real-valued functions on X (specified below).

Interpretation. T takes a candidate continuation value V' and produces a new function: (i) forecast
next period’s value through g and expectation, (ii) discount, (iii) add current flow r, (iv) maximize over

u. The Bellman equation is the fixed-point condition
T(V)="V.
Let S be the space of bounded real functions on X, and endow it with the sup norm
Vi = sup [V(@)|,  d(V,V) =V =V
zeX
Then (S, d) is a complete metric space (the space of bounded functions is complete under the sup norm).

Contraction Mapping Theorem (Banach)

Theorem 1 (CMT). Suppose T : S — S is a contraction with modulus 8 € (0,1) under the metric d,
i.€.
d(TV,TV) < Bd(V,V) VYV,VeS.

Then:
1. Existence and Uniqueness. T has exactly one fized point V* € S with T(V*) = V*.

2. Convergence of Value Iteration. For any Vy € S, the sequence V1 = T(V,,) satisfies V,, —
V=,

3. Geometric error bound. For all n > 0,
d(Vn,V*) < B”d(VO,V*).

4. Operational bound (no V*). For alln >0,

d(Vo,V*) < i

= 1—6 d(Vn»Vn+1)~

This bound is convenient because it only involves iterates you can compute.
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Intuition A contraction shrinks distances by a fixed factor g < 1. Iterating T keeps shrinking the gap
to the (unique) fixed point. The “geometry” is that T pulls every candidate value function closer to V*
by at least a factor 3 each step.

When is the Bellman operator a contraction?

In our setting with || - ||oo,
TV —TV|_ = sup ’mﬁx{r(fﬂvu) + BE[V (2/) ]} — max{r(z,u) + ﬂEW(x’)lx}}! < BIV = Vi,

because the r cancels and the max is 1-Lipschitz: ’maxi a; — max; bZ" < max; |a; — b;|. Moreover,
conditional expectation is a contraction in sup norm: sup, |E[V (z') — V(') | a]| < ||V - Vloo. Hence
with 8 € (0,1), T is a contraction on (S, || + [leo)-

Remark (Quick checklist). To argue T is a contraction under || - || it suffices that: (i) r is bounded
and U(z) nonempty; (ii) E[- | ] maps bounded functions to bounded functions and is 1-Lipschitz in sup
norm; (iii) S € (0,1). In practice this is exactly the standard consumption-savings setup: bounded (or
suitably normalized) returns, discounting, and well-behaved expectations.
Why this is useful
If T is a contraction with modulus j3:

e Existence of a solution to the Bellman equation.

e Uniqueness of that solution.

e Computation: value iteration V,,11 = T'(V},) converges to V* from any V), with a known rate (3)

and practical error bounds.

In applications we often just iterate and see whether V;, stabilizes. Convergence suggests (and under
contraction guarantees) existence and uniqueness. A simple robustness check is to try different V; and

verify they converge to the same limit; monitor d(V,,, V,,41) to certify accuracy via the operational bound.

Figure 3: Bellman operator as a pipeline (top) and as a contraction driving value iteration to the unique
fixed point V* (bottom).

V() Foreca%t Dlscount Add ﬂow Optimize
E[V(z) |z +r(z,u) maxy,

metric: usually the sup norm on bounded functions

distance shrinks by < g3 < B again — fixed point

-

Contraction: d(T'V, TV)
Value iteration: V41 = T n —>
Geometric bound: d(V,,,V*) < " d(Vp, V™)

44



Blackwell’s sufficient conditions

Let B(X) be the set of bounded, real-valued functions on a state space X and
dV,V) = |V =Vl = sup [V(z) = V(2)]
zeX
be the sup-norm metric. For V,V € B(X), write V < V to mean V(z) < V(z) for all z; and for a € R,
(V+a)(z) =V(z)+a.

Theorem 2 (Blackwell). Let T : B(X) — B(X) satisfy:
1. Monotonicity: if V < V then TV < TV.

2. Discounting: there exists 8 € (0,1) such that for all V € B(X) and a > 0,

T(V+4+a) < T(V)+ Ba.

Then T is a contraction on (B(X), | - ||eo) with modulus §:
d(TV,TV) < Bd(V,V)  VV,V e B(X).

Consequently, T has a unique fized point V*, and for any Vy the iterates V41 = T(V,,) converge to V*

with geometric rate (.

Proof (three short steps). Step 1. For any V, v,

V(z)=V()+ (V(z) - V(2)) < V(2)+sup |[V(y) = V(y)| = V(z)+d(V,V),

yex

soV <V +dV,V).
Step 2. By monotonicity and discounting,

TV < T(V+d(V,V)) < TV +Bd(V,V).

Swapping V, V gives TV < TV + Bd(V, ‘7)
Step 8. The two inequalities imply, for all z,

| TV (z) = TV(z)| < Bd(V,V),
hence d(TV,TV) < Bd(V,V). O

Intuition. Monotonicity: improving continuation values cannot hurt today’s evaluation. Discounting:
adding a constant a to continuation values moves 1" by at most Sa. Together they bound T"s “sensitivity”

to changes in V' by the factor § < 1, which is exactly the contraction property.

Garbage In—Garbage Out (GIGO) for Bellman fixed points

Let (S,d) be a complete metric space of functions (e.g. B(X) with the sup norm). A subset S’ C S is

closed if every convergent sequence in &’ has its limit in &'.

Closedness facts (with || - [|»). (i) Bounded and continuous functions X — R form a closed set in

B(X). (ii) On an interval [a,b], bounded and increasing functions [a,b] — R form a closed set. (iii)

45



On [a,b], bounded and convex functions form a closed set. (Each follows since uniform limits preserve

continuity, monotonicity, and convexity.)

Lemma (GIGO). Let T : § — S be a contraction with modulus 8 € (0,1) and let V* be its unique fized
point. If ) #8' C S is closed and invariant under T (i.e. T(8') C 8'), then V* € 8’. More generally, if
T(S") 8" c S with 8" closed, then V* € §”.

Proof. Pick any Vy € §’. By invariance, V,, = T"(Vy) € &’ for all n. By contraction, V,, — V* in d.
Closedness of &’ gives V* € §’ (and similarly for S”). O
Applications. Let T be the Bellman operator on (B(X), || - [lco)-

e Continuity: If T maps bounded continuous functions into bounded continuous functions, then V*

is continuous.

e Monotonicity: On [a,b], if T maps bounded increasing functions into increasing functions, then V*

is increasing.

e Convexity/concavity: On [a,b], if T maps bounded convex (resp. concave) functions into convex

(resp. concave) functions, then V* is convex (resp. concave).

Strict versions. If, for every increasing V', the image T'(V) is strictly increasing, then starting from
any increasing V; the sequence T™(V}) is strictly increasing for all n and the limit V* is strictly increasing.

(Analogous statements hold for strict convexity/concavity.)

Intuition. Start with a “good” guess Vj (continuous, increasing, convex, ... ). If T never leaves that class
(invariance) and value iteration converges, the limit inherits the good property by closedness. Garbage

in = garbage out; good in = good out.

Equivalence of the sequence and the recursive problems

Let states evolve by x111 = g(x+, ut, £¢41) and per—period payoff be r(z, u;) with discount 8 € (0, 1).
Finite horizon (perfect foresight for simplicity). Fix a terminal value Vp1(+). Define recursively
‘/t(x) = mgx{r(mau)+ﬂ‘/t+l(g(xau)) }7 t=1,...,0.

By successive substitution,

T
Vo(zo) max ZBtT(l‘t,ut) + BT Wi (wr),
t=0

- {uo,... ’U.T}

subject to x1y1 = g(x¢,u). Hence the recursive and sequence problems are the same object written

differently; there is no fixed point (values are time-indexed).

Infinite horizon. Let V solve the Bellman equation

V(z) = max {r(w,u) + B E[V(g(z,u,e)) | 2] }
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Tterating the recursion T+1 times along any feasible policy {u;} yields the telescoping representation

T

S Bt u) + BTV (@r)

t=0

V(zg) = sup E
{ue}

If the tail term vanishes,
lim ﬁT+1 ]E[ |V($T+1)| |x0] = 0,

T—o0
.’L'O] )

Easy sufficient condition (practical). If |r(z,u)| <7 < oo and g8 € (0, 1), the fixed point satisfies

then

V(zg) = sup E

> Bl ue)
{ue}

t=0

so the sequence and recursive formulations are equivalent.

7

1- 8

Voo <

hence BTHLE[|V (z741)]] < BT ||V ]||o — 0 and equivalence follows. (Variants: any bound of the form
|V (z)] < K suffices; in growth models one uses no—Ponzi/borrowing constraints or weighted norms to

ensure the tail goes to zero.)

Intuition. Backward induction (finite T') or repeated substitution (infinite horizon) “unwraps” the Bell-
man equation into the sequence objective plus a single terminal piece. Under discounting, the terminal

piece dies out; what remains is exactly the sequence problem.

Numerical solution: value function iteration

Given the Bellman operator

[T(V)](z) = max {r(x,u) + E[V(g(x,u,s)) | :c]},

u€eU(x)

value function iteration (VFI) computes V by fixed—point iteration.
Algorithm. Choose any Vj (e.g., Vo =0) and for j =0,1,2,... update

Viti(z) = max {r(a@u) + B E[Vj(g(z,u,¢)) | 2] }
wel(z)
Stop when ||Vj41 — Vj|lo < tol. Under the contraction conditions, V; — V* and the operational error
bound holds:
IV* = Ville < 2515 = Vimtlle

Practical remarks. (i) With a finite state space, the update is a finite-dimensional fixed point in
R™; contraction carries over and convergence is guaranteed. (ii) With continuous states, one works on a
grid and interpolates (e.g., linear, monotone cubic). Contraction applies to the true Bellman operator;
the discretized/interpolated operator need not be a contraction—if convergence is slow/unstable, refine
the grid or use structure—preserving interpolation (monotonicity/concavity). (iii) Expectations: use

quadrature or simulation consistent with the shock process and the interpolation scheme.
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Howard policy improvement / modified policy iteration. Let h; be the maximizer (policy)
associated with V;. Rather than re-maximizing every step, evaluate the current policy several times

before the next maximization:
Vier1(z) = T(m, hj(x)) + B E[‘/M(g(x, hj(x),a)) | x}, £=0,...,L—1,

starting from Vj o = Vj; then set Vj41 = V; 1 and update hj;q. This typically yields large speedups

because costly maximizations are done only every L iterations and values improve monotonically.

Euler—equation methods (policy approximation)

When the first—order approach is valid, the optimal policy u = h(x) satisfies the functional equation

or(x,u)
ou

or(z',u') 0g(z,u, )
ox’ ou

R(z,h(z)) =

o =0

+ o E|

u=h(z) u=h(z),u =h(z’)

Approximate h(-) in a parametric family h(x;#) and choose 6 so that R(z, h(z;0)) =~ 0:
e Collocation: enforce R(&x, h(&;0)) = 0 at nodes {&}.

e Residual minimization: choose 6 to minimize Y., wy R(&g, h(&;6))? (deterministic or simula-
tion—based).

This targets the policy directly. It is fast but requires (a) valid FOCs (concavity, interior solutions),
(b) careful treatment of constraints (e.g., occasionally binding), and (c) accurate expectations consistent

with the parameterization.

Summary and guidance

e VFTsolves for V(+); the policy follows from the argmax. It is robust (works with kinks/non—differentiabilities)

but can be slow.

e Euler—equation methods solve for h(:); very fast when FOCs are valid and constraints are well
handled.

e Once you have either V or h, the other is essentially implied.

e For speed with reliability: start with VFI on a coarse grid to get a good initial policy, then switch

to policy improvement and/or an Euler residual refinement.

Closed-form solutions: when and why

Ounly a handful of dynamic programs admit paper-and-pencil solutions. Two canonical ones: (i) Brock—
Mirman (optimal growth, Cobb—Douglas output, 6 = 1, log utility); (ii) consumption-saving with HARA
preferences under special income processes. In both, the strategy is guess and verify: posit a parametric

form for V' (and often for the policy) and check optimality.
Why useful? (i) Solving by hand builds intuition for numerical algorithms (what objects the Bellman

update is pushing). (ii) These are limit cases of richer models; their closed forms are excellent initial

guesses for value/policy iteration.
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Brock—Mirman (deterministic, capital only)
Planner chooses {Cy, Ky+1}1>0 to maximize

V(Ko) = {c?,l;?il} ;ﬁt 10g Ct s.t. Kt+1 = K? — Ct, Ct Z 07 Kt+1 Z 0,

with 8 € (0,1) and o € (0,1). Resource feasibility implies K;11 € [0, K.

Recursive form.

Vi) = max {log(K* — ) + 5V ().

Guess. Try V(K) = A+ Blog K with constants (A4, B) to be determined.

Verification. FOC of the Bellman problem under the guess:

1 B BB
. — = — K
Ko—f P 0

= K*=sK*“.
K’ 1+ 3B s

Thus the policy is proportional savings. Plug the Euler equation from the primal problem,

1 1

i - OéKa_l’

=V

together with Cy = (1 — s) K}, K41 = sKJ¥, to obtain s = af. Equating the two expressions for s pins

down B:
BB «

1+p8 " 1-ap
Finally, identify A by substituting the optimal policy (K’ = a8K*, C = (1 — af) K?) into the Bellman

equation:

_ log(1 — af) + fBlog(ap) with B oY

4 1-3 T 1-apf

Closed forms.

(K =afKy,  Ci=(1-ap) K] |

« e log(1 — af) + Blog(ap)
1—ap’ N 1-p5

Feasibility requires only o € (0,1), which holds given «, 8 € (0,1).

V(K)=A+BlogK, B=

Notes. (i) The proportional-savings rule is the hallmark of log utility plus Cobb-Douglas with full
depreciation. (ii) With i.i.d. multiplicative shocks Y; = Z; K and E[log Z;] = 0, the same guess delivers
Kiy1 = af Z K and the value function gains an E[log Z] term in A; the share of is unchanged. (iii)

These formulas are excellent warm starts for VFI or policy iteration in nearby calibrated models.

Cookie—Cutter: Guess and verify under a certain value function form

Setup. State x (e.g. assets A), control y (e.g. next assets A’).
Bellman: V(z) = maxy{ u(z,y) + SV (f(z,y)) } with easy-to-eliminate y via the flow budget.

1) Guess. Pick a functional form closed under the operator, e.g.

V(z)=a+krg(x)'™” or V(z)=a+rlogg(z).
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2) Reduce. Eliminate consumption using the FBC (e.g. C = A — A’/R), so the Bellman is V(4) =
max . {u(C (A4, A")) + BV (A")}.

3) FOC/Policy. Compute 9/9A’: solve for A’ = h(A) (often affine). If messy, do a change of variables
that linearizes marginal utility (e.g. HARA: Z = 2C + b).

4) Euler pin-down. Use envelope V'(A) = u/(C) to turn FOC into the Euler u'(C;) = SR (Ci1); this
pins the slope/ratio of the policy (e.g. Zi11 = ¥Z;, ¢ = (BR)Y°).

5) Verify (levels). Plug h(A) and the guessed V(-) back into Bellman:

!

w(C(A, h(A))) + BV (h(A)) = V(A) VA.

Match coefficients to solve unknown constants (o, &, . . .).
6) Checks. (i) Domain (e.g. Z > 0), (ii) TVC, (iii) corner solutions, (iv) knife-edges (BR =1, p — 1), (v)

monotonicity/concavity as needed.

Consumption—savings with Y = 0 (log utility)

We revisit the single-agent problem with no exogenous income, Y = 0. Preferences are u(C) = logC

and assets evolve with the flow budget constraint
A= A(l+r)-C.

Idea (interpretation). If human capital can be traded at the market rate of return, we can subsume

labor income into asset income and set Y = 0. Perfect foresight is not essential for the main insight.

Bellman equation and guess.
V(A) = max {logC + BV (4A)}, A'=AQ1+r)-C.
Guess a linear—affine transformation of felicity:
V(A) = E+ FlogA.
Verification. Plugging the guess,
E+ FlogA= max {logC + BE + BFlog((1+1)A—-C)}.

FOC:
1 BF 147

cC (1Q+nrnA-C 1+ BF
Substitute back and compare coefficients on log A:

1

F =1 F F=—.
+ — -

Therefore the (policy) consumption rule is

C=(1-p+nAa]

Special case: if § = 1ir, then C' = rA. Note on timing: under the alternative timing A’ = (A—C)(1+7r)

the rule becomes C' = (1 — B)A.
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Constants. The level E follows from the constant terms in the Bellman equation (uninteresting for

policy and comparative statics).

Generalization: HARA felicities. The same logic extends to HARA utility; the value function is a

linear—affine transform of felicity. HARA is

with parameters (o, a,b). Notable members:
e Linear: 0 =0 = u(C) = aC (limit case).

e Quadratic: 0 = -1 = u(C) = —3(—aC +b)? = abC — $b? — a*C.
o
l1-0
In each HARA case (with Y = 0), V(4) = E + F - felicity(A) with F pinned down by the same

coefficient-matching argument.

e CRRA:a=0,0=0 = u(C) = C177 (the front factor is irrelevant).

CARA as a limiting case of HARA. CARA utility can be derived as a limit of the HARA class.
Set b =1 and take 0 — co. Then:

Clearly,

so we can focus on the second limit.
Inspection shows this is an indeterminate form of type 1~°°. To apply L’Hoépital’s rule, it is convenient

to work with logarithms:
lim (1 - o) log(ac + 1) ,
o

g—00

which is of the type (—o0) - 0. Rewriting gives a 0/0 form:

log(§ + 1)

lim T
T—00 —_—
l1—0o
Applying L’Hopital’s rule:
(— z )% 1—20+ 02
lim ~— 2" — _C lim —— 0 — _qC.
e (L) o—oo aCo + o2
l1-0o

Since —aC' is the limit of the logarithm, the original expression’s limit is its exponential:

which is a special case of the HARA family of felicity functions.
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