ECON 600 — Class Notes

This week has some mistakes, especially before class 5. TB solved soon.

What is a Set

Definition (Set). A set is a well-defined collection of objects (called elements). Sets are written
using curly brackets, for example A = {a, b, c}.

Definition (Membership). If x is an element of A, we write x € A; otherwise = ¢ A.
Example. Standard number sets

e Integers: Z=1{...,-2,-1,0,1,2,...}.

e Rationals: Q= {z:z =12, g,r € Z, v # 0}.

e Reals: R (not defined here; we use its usual properties).

e Positive reals: Ryg = {z € R: 2 > 0} (also R>g = {x € R: 2 > 0}).

Intervals in R

Definition (Intervals). Given a < b in R:

(a,b) ={r €eR:a <z < b}, [a,b] ={z € R:a <z <b}.
Elements and the Empty Set
Example. If A = {a,b,c}, then a is an element of A, that is a € A.

Definition (Empty set). The empty set is the set with no elements. It is denoted @.

Fundamental Property: Order and Repetition Do Not Matter

Remark. A set is determined only by which elements it contains; order and repetition do not
change the set. For example

{a,b,c} ={a,c,b} ={a,a,b,c}.
Equality of Sets
Definition (Equality). We say X =Y if and only if, for every x, x € X if and only if x € Y.
Proposition (Extensionality). If X CY and Y C X, then X =Y.
Subsets
Definition (Subset). X is a subset of Y (denoted X CY) if, for every x € X, we have z € Y.
Example (Quick examples).

{CL, b} - {CL, b7 C}7 Z - Rv Q - Ra R>0 - R.



Definition (Proper subset). We say X is a proper subset of Y if X CY but X # Y. Notation:
Xcy.

Remark. For every set X, we have & C X and X C X.

Power Set

Definition (Power set). The power set of X is the set of all subsets of X. It is denoted 2%.
Example. If A = {a,b,c}, then
24 = {Q) {CL}, {b}) {C}v {avb}a {a, C}, {b> C}a A}

Remark. If A is finite with |A| = n, then [24| = 2" (useful for counting subsets).
Summary of Notation

e r € X /x¢ X: x belongs / does not belong to X.

e XCVY /X CY: X is asubset (not necessarily proper) / a proper subset of Y.

e J: empty set. 2X. power set of X.

e Intervals: (a,b) open, [a,b] closed.

Useful Mini—Proofs

1) @ C X for all X. If there were an x € @ with z ¢ X, we would have an element of the empty set,
which is impossible; thus “for all x € @, € X” is vacuously true.

2) Criterion for equality. If X CY and Y C X, then by the definition of equality of sets it follows
that X =Y.

Set Operations

Union. Given X and Y,
XUY={z:zeXorxeY}

For an indexed family (X;)er,

UXi = {x: Ji € I such that =z € X;}.
iel

Intersection. Given X and Y,
XNY={z: zeXandz eV}

For a family (X;):er,
ﬂXi:{x: Viel, ¢z e X;}.
el



Difference and complement. For Y and X, the difference is
Y\X={z: z€Y and z ¢ X}.
If we fix a universe U with E C U, we define the complement of E (in U) as E¢ =U \ E.

Disjoint sets. We say that X and Y are disjoint if X NY = @. For a family (X;);er:

e Pairwise disjoint: Vi # j, X; N X, = @.

e Empty total intersection: [),.; X; = @ (this condition does not necessarily imply pairwise

disjointness).
Example (Difference between “pairwise” and “total intersection”). Let X; = {0,1,2}, X» = {1,3} and
X35 ={3,0}. Then
XiNXo={1}£2, XiNX;={0}#2, X2nX;={3}#2,

but

3
ﬂ X, =o.
=1

The family is not pairwise disjoint, even though the total intersection is empty.

Partitions

Definition (Partition). Let X be a set. A collection P C 2% is a partition of X if:
(i) E # & for every E € P (nonempty blocks);
(iil) f E,FePand ENF # &, then £ = F (pairwise disjoint);

(i) | J E =X (covering).
EeP
The elements of P are called classes or blocks.

Remark. A partition decomposes X into disjoint pieces that cover it entirely. Each z € X belongs to a
unique block.

Cartesian Product

Definition (Cartesian product of two sets). For X and Y,
XxY={(r,y): z€X, yeY}.

Order matters: in general (z,y) # (y, x).

Definition (Cartesian product of a family). Given a family (X;);er,
[1%i ={@)ics: Viel, € X;}.
iel

Example. Let C = {1,2,...,c} and let R5 be the positive reals. Then

CxRsog={(c,w): ceC, weRsp}.

Example. If X; = {1,2} and X5 = {«, 5}, then

X1 x Xp ={(1,0a),(L,8),(2,2),(2,8)}.
Definition (n-fold product). For a set X and n € N,
X'=XxXx---xX.

n factors

Examples: R2, R™.



Relations

Definition (Binary relation). Given sets X and Y, a relation from X to Y is a subset R C X x Y. We
write Ry to indicate (z,y) € R. Formally:

R={(z,y) € X xY : p(z,y)}
where ¢(x,y) is a property/predicate that decides when (x,y) is “related.”
Definition (Domain, image, and inverse relation). For R C X x Y,
Dom(R)={z € X: Jy €Y with (z,y) € R}, Im(R)={y €Y : Iz € X with (z,y) € R},
and the inverse relation is R~' = {(y,2) €Y x X : (z,y) € R}.

Remark. When X =Y, we speak of a relation on X; in that case, properties such as reflexivity, symmetry,
antisymmetry, and transitivity are often of interest (to be introduced in the next class).

Minimal set algebra (useful). For A,B,C C U:
(AUB)Y = A°NB°, (ANB)°=A°UBS, A\B=AnB°.

“if and only if” statements are proved by double inclusion.

Properties of Relations in X x X

Definition (Relation). A relation R between X and Y is a subset R C X xY. We write z Ry for (z,y) € R.
In what follows, R C X x X.

Definition. Basic properties
o Reflexive: Vz € X, zRx.
o Irreflexive: Yz € X, —(zRx).
e Symmetric: zRy = yRz.
e Antisymmetric: (zRy & yRx) =z =y.
e Asymmetric: zRy = —(yRx) (implies irreflexive and antisymmetric).
e Transitive: (zRy & yRz) = zRz.
e Complete (or connected): Vz,y € X, xRy or yRz.

Example A: > on R. Define z >y <= z is greater than or equal to y.
o Reflexive: x > .
e Transitive: x >yandy>z2=1x > 2.
e Antisymmetric: x > yand y > x =z =y.
e Not symmetric: 3 > 2 but 2 % 3.
e Complete: for all x,y, either x >y or y > x.

Your margin note: “not symmetric” is correct.



Example B: > on R. Define x >y <= =z is strictly greater than y.
e Not reflexive (indeed irreflexive): x % x.
e Transitive: if z > y and y > 2, then z > z.
e Asymmetric = antisymmetric vacuously: if x > y, then never y > x (no pairs go both directions).
e Not complete: when x = y, neither x > y nor y > x.
Margin marks:

° : the statement “it is antisymmetric because there are no x,y with x > y and
y > a” is correct: the implication of antisymmetry holds vacuously (no counterexamples).

° : this is a good intuition and indeed a theorem:
Proposition (Completeness implies reflexivity). If R is complete, then it is reflexive.
Proof. Fix x € X. By completeness applied to the pair (z,z) we must have zRx. O
Remark. The converse is false: a relation may be reflexive and yet not complete (e.g. equality = on X).

Example (product order on R?). Define for x = (z1,22), y = (y1,%2):
x =y < (r1 >y and z2 > ya).
Then > is reflexive, transitive, and antisymmetric (a partial order), but not complete.

Example. (2,1) and (1,10) are incomparable: neither (2,1) = (1,10) (since 1 # 10) nor (1,10) = (2,1)
(since 1 £ 2).

Equivalence and Indifference Relations

Definition (Equivalence). A relation E on X is an equivalence if it is reflexive, symmetric, and transi-
tive. Its equivalence classes form a partition of X.

Example D (identity). Let X = {a,b,c} and E = {(a,a), (b,b),(c,c)}. Then E is reflexive, sym-
metric, and transitive. On your orange note (“I don’t understand transitivity”): transitivity requires: if
zPEy and yEz, then xEz. Here the only possible chains are zFx and xEx (with 2 = a,b or ¢), so 2 Ex holds;

there are no “mixed” chains, hence the condition is true. Moreover, E is not complete (e.g. neither aE'b nor
bEa).

Indifference induced by a weak preference. Let = be a reflexive and transitive relation on X
(a weak preference). Define
x~y <= (r>xyandy = ).

Proposition. The relation ~ is an equivalence (reflexive, symmetric, and transitive).

Proof. Reflexive: = > x gives x ~ x. Symmetric: the definition is commutative. Transitive: if x ~ y and
Yy~ z, then x =y = z and z > y > x; by transitivity of >, x > z and z = z, hence = ~ z. O

Guided summary (connection with your notes).
e >: irreflexive, asymmetric, transitive, not complete. Antisymmetry holds vacuously.
e >: total order (reflexive, antisymmetric, transitive, complete), but not symmetric.
e Completeness = reflexivity; not conversely (e.g. = or product order on R?).

e Identity and “indifference” are equivalence relations; equivalence does not require completeness.



Functions

Function as a Special Relation

Definition (Function). Let X and Y be sets. A function f from X to Y is a relation G C X x Y that
satisfies:

(i) Existence: for every x € X there exists y € Y such that (z,y) € G;
(ii) Uniqueness: if (z,y) € G and (z,y’) € G, then y = ¢/.

In that case we write f : X — Y and f(z) = y when (z,y) € G. The set G is called the graph of f and is
denoted

Gr(f) ={(z,y) e X xY : y= f(a)}.

Remark (On your orange note: “Is this the same as reflexive?”). No. Reflexivity of a relation on X says
(x,x) € R for every x € X, that is, “each x is related to itself.” Here condition (i) is the existence of some
image y for each x, and it need not be the case that y = x.

Domains, Codomains, Image (and the Word “Range”)

Definition. For f: X — Y
e X is the domain;
e Y is the codomain;

e Im(f)=f(X)={f(z): 2 € X} CY is the image (the values actually attained).

Remark (Your green note). Some authors use “range” to mean the codomain and others to mean the image.
To avoid ambiguity, in this course we adopt: codomain =Y, image = f(X).
Two Baseline Examples from Class
Example (Finite domain). Let X = {-9, 200}, Y =R, and f(-9) = 10, f(200) = —1. Then
GI'(f) = {(_9710)7(2007_1)}’ Im(f) = {107_1}

Example (Increasing parabola on X = R-). Let f: Rug — R, f(x) = 22. For each x there is a unique y
(“vertical line test”): it is a function. It is injective on R~ (strictly increasing), but it is not surjective
onto R (it does not take negative values).

Example (Concave parabola f(x) = ax — 2% on X = R+(). The graph passes the vertical line test (it is a
function), but it is typically not injective: for certain positive y there are two distinct = with f(z) =y (your
orange note “there might be multiple x’s with f(x) = y”).
Direct Image and Inverse Image
Definition (Image of a subset). For E C X, the image of E under f is
f(Ey={yeY: JzreEwithy=f(z)}CY.

Definition (Inverse image of a subset). For F' C Y, the inverse image (or preimage) is

i) ={zeX: flx) e F} C X.
In particular, f=1({y}) (the fiber over y) is the set of all z that map to y.

Example (Your example 10b). If f(x) = ax — 2% and y* lies below the maximum of the parabola, then

F Yy = {21, 22} with 1 # 2.

This shows that the inverse image is a set; it is not, in general, a functional inverse.



Injectivity, Surjectivity, Bijectivity
Definition (Types of functions). Let f: X — Y.

e Injective (one-to-one): for all x1 # o, f(x1) # f(x2). Equivalent formulation: f(z1) = f(z2) =
x1 = T2. Equivalent in terms of fibers: |f~*({y})| < 1 for every y.

e Surjective (onto): Im(f) =Y. Equivalent in terms of fibers: f~1({y}) # & for every y € Y.

e Bijective: both injective and surjective.

Inverse Function

Proposition (Characterization of invertibility). A function f : X — Y is invertible if and only if it is
bijective. In that case there exists a unique function g : Y — X (the inverse of f) such that

g(f(x)) ==z for every z € X, and flg) =y for everyy €Y.

Proof idea. If f is bijective, then for each y € Y there is exactly one x € X with f(x) = y; defining g(y) = =
satisfies the identities. Conversely, if there exists g with g o f = idx and f o g = idy, then each y equals
f() for a unique x, hence f is bijective. O

Notation and Graphical “Tests”

e f:X — Y denotes the function; f(z) denotes its value at x.
o F(X,Y): the set of all functions from X to Y.

e Vertical line test: a curve in the plane describes a function x +— y if every vertical line intersects
the curve in at most one point (your orange note “for each z there is a unique y”).

e Horizontal line test: a function is injective if every horizontal line intersects the graph in at
most one point (your orange note “there may exist multiple z with the same 3” indicates failure of
injectivity).

Types of Functions

Let f: X Y.
e Injective (one-to-one): if 21 # x5 then f(x1) # f(z2).
e Surjective (onto): for every y € Y there exists z € X such that f(z) = y (equivalently: f(X)=7Y).

e Bijective: both injective and surjective (equivalently: invertible).

Basic Rules for Images and Preimages

Proposition (Monotonicity and inclusions). Let f: X — Y. Then:
(1) TEC E' C X, then f(E) C f(E").
(2) If FCF CY, then f~Y(F) C f~'(F").
(3) For every E C X, one has E C f~Y(f(E)).
(4) For every F CY, one has f(f~'(F)) C F.

Proof. All proofs proceed by element chasing.

(1) Let y € f(F). By definition, there exists x € E with f(z) = y. Since E C E’, then x € E’, hence
y = f(z) € f(E'). Therefore f(E) C f(E').

(2) Let € f~1(F). By definition, f(z) € F. Since FF C F’, we also have f(z) € F', so x € f~1(F').
Therefore f~1(F) C f=*(F").

(3) Let z € E. Then f(z) € f(E) by definition of image. Hence z € f~1(f(E)). Thus E C f~1(f(E)).

(4) Let y € f(f~*(F)). Then there exists x € f~*(F) with f(z) =y. But x € f~}(F) means f(x) € F,
that is, y € F. Hence f(f~(F)) C F. O



Important remarks (when equalities may fail).

e (3) may be strict if f is not injective. Classic example: f: R — R, f(z) = 2. Take E = {1}.
Then f(E) = {1} and
FHE) = {1 ={-L1} 2 E.

This matches your sketch of the concave parabola: a single y-value may correspond to multiple x’s
in the preimage.

e (4) may be strict if F' contains values outside Im(f). Again with f(z) = 22, take F' = (—1,1).
Then f~}(F) = (-1,1) and

FOFHE) = f(-L))=[0,1) S (-1,1) = F.
The intuition: f does not “reach” negative values, so it cannot recover all of F.
e Useful characterizations.

a) f is injective <= for every E C X one has f~1(f(E)) = E.
b) f is surjective <= for every ' CY one has f(f~1(F))=F.

Proofs: the forward direction follows from (3) and (4) plus the definition of injectivity /surjectivity;
the reverse direction follows by taking F = {z} in a) and F = {y} in b).

Distribution of preimage and image over unions and intersections. For F;G C Y and
E HCX:

fFAPUE) =1 (P UG, fTHFENG) = fHF)NfHE).

For images:
f(EUH)=f(E)U f(H), f(ENH)C f(E)Nf(H) (equality may fail if f is not injective).
When (3) and (4) are Equalities

Corollary. Let f: X — Y.

a) f is injective <= for every F C X one has
fTHA(E) = E.
b) f is surjective <= for every F' C Y one has
FFH ) = F.
Counterexamples.
¢ (3) may be strict if f is not injective. With f : R - R, f(z) = 2% and E = {1}:
fEy={1},  fE)={-11}2E.

e (4) may be strict if f is not surjective. With f: R — {a, b} given by f(z) = a for all z € R,
and F ={a,b} CY:

HE) =R, f(fTHF) = fR) = {a} S {a,b} = F.
Remark. Here f~1(F) is the inverse image (preimage) of a set F' C Y; it is not the “inverse function.”

Only when f is bijective does the inverse function f~! : Y — X exist, and in that case f~!(F) coincides
with the preimage via that inverse function.



Composition of Functions
Let f: X > Y and g: Y — Z. We define the composition
gof:X =27,  (gof)()=g(f(x))

Type check: the codomain of f must coincide with the domain of g. Otherwise f o g or g o f “does not
make sense.”

Example (Order matters). Let f : R? — R, f(x1,72) = 321 + 22122, and ¢ : R — R, g(t) = 3t. Then
go f:R% = R is well defined and

(go f)(z1,x2) = g(3x1 + 21‘1902) = 3[3z1 + 2z122].

In contrast, f o g does not make sense because g returns a real while f expects a pair in R2.

Useful properties.
e Associativity: ho(go f) = (hog)o f (when compositions are well typed).
e Identity: idy of = f and foidx = f.
e Monotonicity of properties:

— If f and g are injective, then g o f is injective.
— If f and g are surjective, then g o f is surjective.

— If f and g are bijective, then g o f is bijective; its inverse is (go f)~t = f~tog™ L

Correspondences (Multivalued Maps)

Definition (Correspondence). A correspondence (or multivalued map) from X to Y is a rule T" that assigns
to each z € X a nonempty set I'(x) C Y. We can view it as a function

I: X — 2"\ {9}, x— T(x).
Its graph is Gr(I') = {(z,y) e X xY : y e '(x)}.

Remark. A correspondence **is** a function, but its codomain is not Y but the power set 2V \ {@}. It
does not require uniqueness of the value: it allows multiple “outputs” for each x.

Example (Your discrete sets). Let X = {a,b} and Y = {z,y, z,q,r}. Define
U(a) ={z,y,2}, T ={y,qr}

Then I': X — 2V \ {@} is a correspondence with
Gr(I') = {(a,2), (a,y), (a,2), (b,y), (b,q), (b,)}.
Image and preimage for correspondences. For FC X and F CY:

NE)=|JT@cYy, T '(F)={zeX:T@)nF+#o}CX.
zelE

(Note: in the preimage we require “nonempty intersection” with F'.)

Definition (Selections). A selection of T' is a function s : X — Y such that s(x) € T'(z) for all z. (Useful
when one wants to “pick” an element from each set of the correspondence.)



Real Numbers and Bounds

Upper and Lower Bounds
Let X C R be a nonempty set.

Definition. Lower and upper bounds:
e u € R is an upper bound of X if Vo € X, z < w.
e /cRis alower bound of X if Vz € X, / < z.

Definition (Bounded). We say that X is bounded above if it has some upper bound; bounded below if
it has some lower bound; and bounded if it has both.

Remark. A set may have neither an upper nor a lower bound (for example, Z C R has no upper bound).

Supremum and Infimum
Definition (Supremum and infimum). Let X C R be nonempty.

e The supremum of X, denoted sup X, is the least upper bound of X: it is an upper bound and
satisfies sup X < u for every upper bound wu.

e The infimum of X, denoted inf X, is the greatest lower bound of X: it is a lower bound and satisfies
{ < inf X for every lower bound /.

Remark. sup X and inf X need not belong to X. For example, if X = (0,1), then inf X = 0 ¢ X and
supX =1¢ X.

X =(0,1)

o o

inf X su

Axiom of Completeness of R

Definition (Axiom of completeness). Every nonempty subset X C R that is bounded above has a supre-
mum in R; and every nonempty subset that is bounded below has an infimum in R.

Remark. This fails in Q. For example, X = {qg € Q : ¢*> < 2} is nonempty and bounded above, but
sup X = v/2 ¢ Q. This is why we work in R when using suprema/infima without further hypotheses.

Remark (Convention). If X has no upper bound, we write sup X = +o0; if it has no lower bound, inf X =
—00. (These are conventional values useful for stating results.)

Basic Properties of the Supremum
Proposition. Let X C R be nonempty and bounded above. Then:
(i) sup X is unique.

(#) (Approximation by elements of X ) For every € > 0 there exists x € X such that

sup X —e < x < sup X.

Dually, if X is bounded below, then for every € > 0 there exists x € X with inf X <z <inf X +¢.

10



Proof. (i) If u; and us are suprema, then u; < us (since ue is an upper bound) and us < u; (since u; is an
upper bound). Hence u; = us.

(ii) Let e > 0. Suppose there is no x € X with sup X —e < 2. Equivalently, Vo € X, © < sup X —e.
But then sup X — ¢ would be an upper bound of X smaller than sup X, contradicting minimality of sup X.
Therefore, there exists x € X with sup X —¢ < z. Since sup X is an upper bound, we also have x < sup X. [

rzeX

| o—!
T T

sup X R

<>

€
supX — ¢

Two Conceptual Diagrams

Upper bounds and supremum.

upper bound

X = (a,b] supX =b
o *—
a pou
Lower bounds and infimum (dual).
lower bound
infX =a X =[a,b)
. 6
¢ a b

Alternative Proofs for Prop. (ii)

Recall: if X # & is bounded above, then for every € > 0 there exists € X such that sup X —e < z < sup X.

Proof. (a) Proof by contradiction. Suppose there exists e > 0 such that Vo € X, x < supX — e. Then
sup X —¢ is an upper bound of X and is strictly smaller than sup X, contradicting the minimality of sup X. [

Proof. (b) Proof by contrapositive. Let u be an upper bound of X. If there exists ¢ > 0 such that u—¢ >z
for all x € X, then u — € would also be an upper bound, hence u could not be the least upper bound. By
contrapositive, if u = sup X, then for every ¢ > 0 there must exist x € X with z > u —e. O]

Maximum and Minimum
Definition (Maximum and minimum). Let X C R be nonempty.
e 7 is a maximum of X if z € X and z < 7 for every z € X.

e z is a minimum of X if z € X and z < z for every x € X.
Remark. There may be bounds without a maximum /minimum. Examples:

X =[0,1) (no maximum), X =(0,1] (no minimum).

sup=1¢ X inff=0¢ X

[0,1) (0,1]
6 1 0 1

11
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Proposition (Maximum/minimum vs. supremum/infimum). Let X C R be nonempty.
(i) T is a maximum of X < T=supX andZ € X.
(ii) x is a minimum of X <= z=1inf X and z € X.
Proof. (i) If Z is a maximum, then it is an upper bound and belongs to X; by minimality of the supremum,

sup X < 7, and since T is already a bound, sup X = Z. Conversely, if £ = sup X € X, then no z € X exceeds
Z; hence it is a maximum. The case (ii) is dual. O

Corollary. X has a maximum <= sup X € X (in that case, it is unique). Similarly, X has a minimum
<— inf X € X.

Metric Spaces

Definition (Metric). Let X be a set. A metric on X is a function d : X x X — R such that, for all
z,y,z € X:

(a) d(z,y) >0 (nonnegativity);

(b) d(z,y) =0 < x =y (identity of indiscernibles);
(c) d(z,y) =d(y,z) (symmetry);

(d) d(z,z) <d(z,y) +d(y,z) (triangle inequality).

Definition (Metric space). A metric space is a pair (X, d) with X # & and d a metric on X.

Example 1: usual metric on R. For X C R, d,(z,y) = | — y|. Properties (a)-(c) follow from
properties of the absolute value. For (d):

=zl =z -y +(y—-2)| < |z -yl +]y - =]

|z -y ly — z|

— e &>
z ] Z
|z — 2|

Example 2: Euclidean metric on R". For X CR", z = (x1,...,Zpn), ¥y = (Y1,-- -, Yn)s

de(z,y) = Z(xz Yi)?
When n =1, d. = d,.
z
de(y, 2)
de(x,z)
Y
X d(i('r7y)
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Example 3: Discrete Metric
Let X be a nonempty set. Define d: X x X — R by

1, z#y,
d(x,y) = {0 r—y

It is immediate to verify (nonnegativity, identity, symmetry). For the triangle inequality: if x # z then
d(z,z) =1 < d(z,y) + d(y, z) since the right-hand side is 0, 1, or 2; if z = z, both sides equal 0. Therefore,
d is a metric (the discrete metric).

Bounded Real Functions

Definition (Bounded functions). Fix X # &. A real function f : X — R is bounded if f(X) C R is a
bounded set. We denote
FB(X,R)={f:X =R : fis bounded }.

Remark. If f or g are not bounded, the set {|f(z) — g(z)| : € X} may fail to have a finite upper bound
(and its “supremum” would be +00), which would prevent defining a distance with values in R. That is why
we restrict the domain to FZ(X,R).

Supremum (Uniform) Metric on F?(X R)
Definition (Supremum metric). Let X # @. Define do, : FZ(X,R) x FB(X,R) — R by

doo(f:9) = sup |f (@) = g(@)].
Note that dao(f, 8) = [f — llses where |2l = supcx [h(x)].
Proposition. d, is a metric on FB(X,R).
Proof. Let f,g,h € FB(X,R).

(a) Nonnegativity: |f(z) — g(z)| > 0 for all z, so the supremum is > 0.

(b) Identity of indiscernibles: d(f,g) = 0 implies sup,, |f(x) — g(x)| = 0, hence |f(x) — g(x)| =0
for all x, i.e. f = g. The converse is clear.

(¢) Symmetry: |f(z) — g(x)| = |g(x) — f(x)] for all z, so the suprema coincide.
(d) Triangle inequality: by the usual triangle inequality in R, | f(z)—h(z)| < |f(z)—g(x)|+|g(z)—h(z)]
for all x € X. Taking suprema on both sides and using the fact

(Vx, ay < bx) = supa, < supb,,
we obtain
sup | f(z) — h(z)| < sup|f(z) — g(z)| + sup |g(x) — h(z)].
That is, doo(f, h) < doo(f, 9) + doo(g, h).
O

Lemma. If for every x one has A(z) < B(x), then sup, A(x) < sup, B(z). Reason: every supremum is the
least upper bound; since sup, B(x) bounds each A(x), it also bounds their set of values and, by minimality,
dominates the supremum of A.

Remark (When the supremum in d, exists). If X is compact and f, g are continuous, then 2 — |f(z)—g(z)|
attains a maximum (extreme value theorem), and ds(f,g) exists without needing to assume that f, g are
globally bounded in R. In general, it suffices that f — g be bounded.
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Sequences: Boundedness, Monotonicity, and Basic Theorems

Definition (Bounded sequence in a metric space). Let (X, d) be a metric space and (z,)nen & Ssequence in
X. We say that (z,) is bounded if there exists some y € X and M > 0 such that

d(xpn,y) <M forallmeN.
In particular, in (R, d,) with d,(x,y) = |x — y|, a real sequence (x,,) is bounded if and only if
IM > 0 such that |x,| < M Vn.
Indeed, if |z, —y| < M for all n (with some y € R), then
[Tn| < lzn —yl+ [yl < M+ 1yl Vn,
and therefore it is bounded taking M:= M+ ly|.

Remark (Boundedness of the set of values). For a real sequence (z,,), the set of its values E := {x,, : n > 1}
is bounded if there exist a,b € R with
a<z,<b Vn.

Then |z,| < max{|al,|b|} for all n.
Proposition. Let (X,d) be a metric space. If (x,) converges in X, then (x,) is bounded.

Proof. Let x € X be the limit of (z,). Taking ¢ = 1, there exists N such that d(x,,z) <1 for all n > N.
Define
M :=max{ 1, d(z1,),...,d(zN-1,2) }.

Then d(x,,z) < M for all n, and by definition (z,,) is bounded. O

Example. The sequence ((—1)"),eny = (—1,1,—1,1,...) is bounded in (R, d,,) (since |(—1)"] < 1) but does
not converge.
Definition (Monotone sequences). A real sequence (z,,) is

o increasing if x,11 > x,, for all n;

o decreasing if x, 11 <z, for all n;

e monotone if it is either increasing or decreasing.

Proposition (Monotone convergence theorem). Let (x,) be a monotone and bounded real sequence. Then
(xn,) converges. Moreover:

if (zy,) 1is increasing, lim x, = sup{z, : n € N};
n— o0

if (xn,) is decreasing, lim x, =inf{z, :n € N}.
n—oo

Proof (increasing case). Let S := {x, : n € N}; by boundedness, S has an upper bound, and by completeness
of R there exists * := sup S. Let € > 0. By the definition of supremum, there exists N such that xy > x*—e¢.
Since (z,) is increasing, for every n > N we have x,, > xy > x* —¢ and, since z* is an upper bound, z,, < z*.
Hence 0 < 2* —z, < ¢, i.e. |z, —a*| < e for alln > N. Therefore x,, — z*. The decreasing case is analogous
replacing sup by inf. O

Remark. Proposition , together with the boundedness criterion of Proposition , is useful to verify that a
sequence does not converge: if it is monotone but not bounded, it cannot converge.

Lemma (Monotone subsequence). Every sequence (x,,) in (R, d,) has a monotone subsequence.

Corollary (Bolzano-Weierstrass). Every bounded sequence in (R, d,) has a convergent subsequence.
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Proposition (Squeeze theorem). Let (xy,), (Yn), (2n) be real sequences such that, for all n,
Tn < Yp < Zn, lim z, = lim 2z, =a €R.
n—oo n—roo

Then lim y, = a.
n—oo

Proposition (Algebra of limits). Let (x,) and (y,) be real sequences with lim x, =z € R and lim y, =

n—00 n— 00
y € R. Then:
1. lim |z,| = |z|;
n—oo

2. lim (zp+yn) =z +y;
n—roo

3. lim (zpyn) =2 y;

n—oQ

4. ILm (n/yn) = x/y when y # 0 and y, # 0.

Example (Example 4). Consider the sequence

T, = m + (A+%).

n
Since (1 — %)2 — 1 and @ — 2, the first term tends to %; moreover \ -+ % — A. Therefore

lim z, = A+ %
n— oo

Application of Limits and Bounds: O and o Notation
Let (z,,) and (y,) be two real sequences with y,, # 0 for all n.

Definition (Same order / Big-O). We say that () is of the order of (y,) if the quotient (i—") is bounded,
that is, there exists II > 0 such that
Ty,

Yn

<II for all n,

equivalently,
|[wn| < Iyl Vn.

In this case we write x, = O(yn). As a particular case, if y, = 1, then z, = O(1) means that (x,) is
bounded.

Definition (Lower order / little-o). We say that (z,,) is of lower order than (y,) if

. Tn
lim — =0,
n—00 Yn

and we write x,, = o(yy). In particular, if y,, = 1, then z,, = o(1) is equivalent to z,, — 0.

Proposition (Basic properties of O and o). Let (x,,), (), (Yn), (Un) be real sequences.

1. If x, = O(yn) and T, = O(Yn), then

Proof: |z,| < Hlyn| and [T, < H[Gn] = |20Zn| < T |ynbil-
2. If k#0 and x,, = O(yn), then kx, = O(|k| yn).
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3. If v = O(yn) and T, = O(Yy), then

In particular, |z, +Zp| < (1T + ﬁ) max{|ynl, |Un|} < 2 max{Il, ﬁ} max{|yn|, |¥n|}-
4. If &y, = O(yn) and also T, = O(yn), then x, + T, = O(yn). (This is a particular case of (3).)
5 Ifk#0 and x, = o(yy), then kx, = o(yy).

6. If xy, = 0(yn) and Tp, = o(Yy,), then
since $nﬂﬁn :x—n-f—n—>0~020.
YnYn Yn  Yn

InFln _Tn I g0 =0,
Yn Yn Yn

7. If x,, = o(yn) and T, = o(yn), then x, + T, = o(yy), because

Cauchy and a Clarification on Boundedness

Initial clarification
Given a metric space (X, d) and a sequence (z,)neny C X:
o (r1,x2,23,...)1s a sequence; in contrast, {x1, x2,x3, ...} is the set of values the sequence may produce.

o We say that (x,) is bounded if there exists y € X and M > 0 such that d(z,,y) < M for all n € N.
For a fixed y € X, let
E,={d(zn,y):neN} CR.

Then (z,) is bounded <= E, is bounded above. Moreover, if d(z,,y) < M for all n and ¢’ € X is
arbitrary, by the triangle inequality

d(n,y") < d(zn,y) +d(y,y") < M +d(y,y),

so the notion of boundedness does not depend on the chosen center.

e Trivial case: if the set of values {z, : n € N} is finite, then (z,,) is bounded. The case that requires
attention is when infinitely many distinct values appear.

e Observation. An unbounded sequence does not necessarily contain a bounded subsequence (e.g.
2, = n in R has none).

Remark. We will say that a subsequence is proper when it does not coincide with the original sequence.

Cauchy Sequences

Definition (Cauchy sequence). Let (X, d) be a metric space and (zy)neny C X. We say that (x,,) is Cauchy
if for every € > 0 there exists N € N such that for all m,n > N we have

d(XTp, Tm) < €.

Example (1b). In (R,d,) (the usual metric), the sequence z,, = = is Cauchy. Indeed, given & > 0, choose
N with % <e. If m,n > N, then

| | ’1 1’<1<
Ty —Tm| = |—— —| < —= <e.
n m N

(Note that in (0,1) the same sequence does not converge because its limit 0 ¢ (0, 1).)
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Example (3). The sequence z,, = (—1)" in (R, d,,) is not Cauchy. Take ¢ € (0,1). For every N we have
len g1 —zn| = |(-DV = (-] =2 > ¢,

hence the Cauchy condition fails.

Proposition (7). Every convergent sequence is Cauchy.

Proof. Let (x,,) be a sequence in (X, d) that converges to x € X. Given € > 0, by convergence there exists
N such that d(z,,z) < e/2 for all n > N. If m,n > N, by the triangle inequality,

A( @, Tm) < d(@n, z) +d(z,2m) <e/2+e/2 =c¢.
O

Remark. The converse does not always hold in an arbitrary metric space: a sequence may be Cauchy and
not converge if the space is not complete (e.g. 1/n in (0, 1)).

Proposition (Convergent = Cauchy). Let (z,,)nen be a sequence in a metric space (X, d) that converges to
x € X. Then (z,,) is Cauchy.

Proof. Fix € > 0. By convergence, there exists N such that d(x,,z) < e/2 for alln > N. If m,n > N, then
by the triangle inequality,

Ad(@p, Tm) < d(xn,z) +d(z,2m) <e/2+e/2 =c¢.
O

Proposition (Every Cauchy sequence is bounded). Let (x,,)nen be a Cauchy sequence in (X,d). Then there
exist y € X and M > 0 such that d(x,,y) < M for all n (that is, (z,,) is bounded).

Proof. Take ¢ = 1. Since (z,) is Cauchy, there exists N such that d(x,,x,,) < 1 for all m,n > N. Fix
y:=xy. Then d(z,,y) <1 for all n > N. For the finitely many indices 1 < n < N, define

K := max{d(z1,y), d(z2,¥), ..., d(xn-1,7) }.
Let M := max{K,1}. Then d(z,,y) < M for all n € N. O

Definition (Complete space). We say that a metric space (X, d) is complete if every Cauchy sequence in
(X,d) converges (to a point in X).
Example.
o (R™,duye1) is complete.
e Every finite set with the discrete metric is complete.
e If 7B(X,R) denotes the space of bounded functions f : X — R and doo(f, ) := sup,ex |f(z) — g(2)],
then (FB(X,R),d,) is complete.
Example (Incomplete spaces).
e ((0,1),dy) is not complete (e.g. ,, = + is Cauchy but does not converge in (0,1)).

e (Q,d,) is not complete (there are Cauchy sequences that “aim” at irrational numbers, e.g. v/2).
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Divergent Sequences and Cluster Points

Example. In (R, d,,) consider

1 1-— l, n even,
Ty = (—1)“(1 - f) - n

n -1+ %, n odd.
The sequence does not converge, but it approaches 1 and —1 infinitely many times.

Definition (Cluster point of a sequence). Let (zy,)nen be a sequence in (X, d). A point © € X is a cluster
point of (z,,) if for every € > 0 and every N there exists n > N such that d(z,,z) < e.

Remark. Equivalently, « is a cluster point of (x,) if and only if there exists a subsequence (z,,) that
converges to x.

Proposition (Cluster points of ?? ). The sequence x, = (—1)"(1 — 1/n) has exactly two cluster points:

{1,—-1}.
Proof. That 1 is a cluster point: given € > 0 choose N such that 1/N < € and take n > N even. Then
1 1
|zn—1|:‘1—7—1’:—<5.
n n
Similarly, for —1: given € > 0, choose N with 1/N < ¢ and take n > N odd. Then
1 1
[ = (1) = | =14 = +1| = = <.
n n
To see that there are no other cluster points, let (x,, ) be a convergent subsequence. Either it contains

infinitely many even indices or infinitely many odd indices. In the first case, the subsequence of even indices

Tom = 1 — ﬁ converges to 1; in the second, the subsequence of odd indices xg,,—1 = —1 + le_l converges

to —1. Therefore, every subsequential limit belongs to {1, —1}. O

Cluster Points, lim sup/liminf, and Open Sets

Cluster Points of a Sequence

Definition (Cluster point of (z,)). Let (X, d) be a metric space and (z,,)neny C X. We say that z € X is a
cluster point of (z,,) if for every € > 0 and every N € N there exists n > N such that d(z,,z) < e.

Proposition. Let (z,) in (X,d).
1. If a subsequence (x,, ) converges to x*, then x* is a cluster point of (z,).
2. If (x,,) converges to x, then x is a cluster point (in fact, the only one).

3. An unbounded sequence can have cluster points. For example,

1 dd
o { > T 0as, in (R,d,),
n, n even,

is unbounded and has 1 as a cluster point.

Theorem 1 (Bolzano—Weierstrass in R). Fvery bounded sequence in (R, d,) has a convergent subsequence;
in particular, it has (at least) one cluster point.

Remark (Caution with the ambient space). In the subspace ((O, 1],du) the sequence x, = % is bounded
but does not have a cluster point in (0, 1] (its only candidate would be 0 ¢ (0, 1]).
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limsup and lim inf

Definition. For a real sequence (z,) we define

limsupx, = inf supxzg, liminfx, = sup inf xg.
n—o0o neN k>n n—00 neN k>n

Proposition. For any real sequence (x,,):

1. limsup x,, is the largest cluster point of (x,).
n—oo

2. liminf x,, is the smallest cluster point of (x,).
n—oo

3. It always holds that liminf z,, < limsup x,,, with equality if and only if (x,) converges.
n—00 n—o00

Example. Let z,, = (=1)"(1 — 1). Then

supz =1 *% = limsupuz, :i%f(l - %) =1,

k>n n— 0o
and
infrp,=-14<+ = liminfz, =su (—1—|—l) =—1.
k>n n n—00 n n

Open Balls, Interior Points, and Open Sets

Definition (Open ball). In a metric space (X,d) and for z € X, € > 0, the open ball centered at x with
radius ¢ is

B(z,e) ={ye X: dlz,y) <e}.

Example. 1. In (R,d,), B(z,e) = (z —¢, z +¢).
2. In the subspace ([0, 1], du),

B(1/2,3/4) = (-1, }) n[0,1] = [0,1].
3. In (R? Euclidean distance), B((a,b),¢) is the usual open disk.

Definition (Interior point and interior). Let E C X. A point z € F is interior to E if there exists £ > 0
such that B(x,e) C E. The interior of E is

int(E) ={z € E: z is interior to F }.
Definition (Open set). A set £ C X is open if E = int(E), i.e., if every point of F is interior.

Remark. 1. For every F, always int(E) C E.
2. Eisopen < FE Cint(E).
3. Openness depends on the ambient space: in (R, d,) the set [0,1) is not open (because of 0), whereas

in the subspace ([0, 1], du) the set (0,1] 4s relatively open.

B(a,€) open

a—¢€ a a+¢€ R
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B(z,¢) (open disk)
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%

x € nt(@ j# nt(E)

Cluster points and subsequences

Definition (Cluster point). Let (z,)nen be a sequence in a metric space (X, d). We say that z € X is a
cluster point of (x,) if for every € > 0 and every N € N there exists n > N such that d(z,,z) < e.

If a subsequence (x,, ) converges to z*, then z* is a cluster point of the original sequence (z,).
If (x,,) converges to x, then x is a cluster point of (z,,).

An unbounded sequence can have a cluster point. For example, zo; = k and zar+1 = 1 is unbounded
and has 1 as a cluster point.

In (R,d,) (the usual metric), every bounded sequence has a cluster point (Bolzano-Weierstrass): it
has a convergent subsequence and its limit is a cluster point.

In the subspace ((0,1],d,), the sequence z,, = % is bounded but does not have a cluster point in X
(its only natural limit would be 0 ¢ X).

Upper and lower limits

Definition (limsup and liminf). For a real sequence (x,,) define

limsupx, := inf supxy, liminf x, := sup inf xy.
n—o00 neN k>n n—o00 neN k>n

The limsup (resp. liminf) is the largest (resp. smallest) cluster point.

Example. For z,, = (=1)"(1 — 1) we have

limsup z,, = 1, liminf z,, = —1.
n—00 n—0oo

Indeed, fixing n, the suprema (resp. infima) of the tails {z} : & > n} approach 1 (resp. —1).

Open balls, interior points, and open sets

Definition (Open ball). Given (X,d), z € X, and € > 0, the open ball centered at x with radius € is

B(z,e)={ye X : d(z,y) <e}.

Example.



1. In (R,d,): B(z,e) = (x —¢,x +¢).
2. In the subspace ([0,10],d,):

B(%v ) = (_ia %) n [07 10] = [07 %)

|

3. In (R?,deye): B(w,€) is the open disk of radius e.

Definition (Interior point and interior). Let E C X. A point = € F is interior to E if there exists € > 0
such that B(z,e) C E. The interior of E is int(E) = {z € E : z is interior}.

Definition (Open set). A set E C X is open if E = int(E), equivalently, if every « € F is an interior point.

Remark. Openness depends on the underlying space. For example, in (R, d,), [0,1) is not open; however,
in the subspace ((0,100),d,) the set [0, 1] is open.

Example.

1. In the discrete metric (X, daisc), {2} is open because B(z,1) = {z}. In fact, every subset of X is
open.

2. In (R,d,), no finite subset (nor, more generally, any countable set) is open: every open ball in R
contains infinitely many (indeed uncountably many) points.

Basic properties of open sets
Proposition. In a metric space (X,d):

1. @ and X are open.

2. Arbitrary unions of open sets are open.

3. Finite intersections of open sets are open.

Example. A countable intersection of open sets need not be open in (R, d,):

ﬂ (7%7 %) = {O}v

n>1
which is not open.

Proposition. For every x € X and € > 0, the open ball B(x,€) is an open set. In particular, int(E) is
always an open set and int(E) C E.

Closed balls and closed sets
Definition (Closed ball and closed set). The closed ball centered at x with radius € > 0 is

B(z,e) ={ye€ X: d(z,y) <e}.
A set F C X is closed if X \ F is open.
Proposition. Every closed ball B(x,¢) is a closed set.

Remark (The real line R). In (R, d,), the complement of a closed interval [x — e,z + €] is open: if y ¢
[ — &,z + €], then taking ¢’ = 1 dist(y, [z — £,z + ¢]) > 0 we have B(y,e’) CR\ [z — &,z +¢].

Lemma. Let (z,,) be a sequence in a metric space (X,d). A point z* € X is a cluster point of (z,) if and
only if there exists a subsequence (x, ) such that x,, — z*.
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Example. Consider in (R,d,,) the sequence
=1, 20=2, 23=1, 24 =3, x5 =1, ¢ =4,...
For each n we have sup{zy : k > n} = +o0, so

lim sup x,, = inf sup x = +o00,
n—oo n kE>n

which is not a cluster point in R. On the other hand, inf{z : £ > n} =1 for all n, and thus

liminf x,, = sup inf z; =1,
n— o0 n k>n

and 1 is indeed a cluster point (taking the subsequence of odd terms).

Proposition. For any real sequence (x,,):

1. If x* is a cluster point, then liminf z,, < 2* < limsup z,,.
n—00 n—00

2. Iflimsupx, € R, then this value is a cluster point (analogously for the liminf ).
n—oo

3. The limit lim z, =z € R exists if and only if liminf z,, = limsup z,, = x.
n— oo n—oo n—oo

Closed sets
Proposition. In a metric space (X,d):
1. @ and X are closed.
2. The finite union of closed sets is closed.

3. The arbitrary intersection of closed sets is closed.

Example. In (R,d,), for n € Nlet F,, = [-141/n, 1 —1/n]. Each F, is closed, but
U Fo=(-11),
neN
which is not closed (its complement is not open; at = 1 there is no € > 0 such that B(z,e) C (—oo0, —1] U

[1,00)).

Proposition (Sequential characterization of closed sets). A set E C X is closed if and only if for every
convergent sequence (x,,) with x, € E for all n, we have lim,_, x, € E.

Idea. If E is closed and z, — z with z,, € E, assuming ¢ F implies x € X \ E, which is open; hence
there exists € > 0 with B(z,¢) C X \ E. But then, for n large, z,, € B(z,e) C X \ E, a contradiction. The
converse follows by considering complements. O

Proposition (Sequential characterization of closed sets). Let (X,d) be a metric space and E C X. The
following are equivalent:
1. E is closed.

2. For every sequence {Tp}nen with z, € E and x,, —— x € X, it follows that x € E.
n— oo

Proof. (1) = (2): If E is closed, then X \ F is open. If there were x € X \ F and x,, € E with z,, — =z,
choose € > 0 such that B(x,e) C X \ E, contradicting the fact that eventually x,, € B(x,¢).

(2) = (1) (contrapositive): Suppose E is not closed. Then X \ E is not open: there exists x € X \ F
that is not an interior point of X \ E. Hence, for every n € N,

B(z,1/n)NE # @.
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Choose z,, € B(z,1/n) N E; then x,, — « and ¢ E. Thus we obtain a sequence of points in F converging
to a point outside E, contradicting (2). Therefore, E is closed. O

Remark (Practical guide). To show that E is closed, it suffices to:
1. Prove that X \ E is open; or
2. Prove that every convergent sequence in E has its limit in E.
To show that F is not closed, it suffices to:
1. Exhibit that X \ E is not open; or

2. Find a sequence {z, }nen with 2,, € F and x,, » x ¢ E.

Proposition (Operations with closed sets). Let (X, d) be a metric space. Then:
1. @ and X are closed.
2. A finite union of closed sets is closed.

3. An (arbitrary) intersection of closed sets is closed.

Example (Countable union of closed sets that is not closed). In (R, d,) with the usual metric, for n € N
define
F,=[-1+2% 1-1].

n

Each F,, is closed. However

which is not closed (for instance, 1 is an adherent point but 1 ¢ (—1,1)).

Interior, adherence, and closure

Definition (Interior point and interior). Let £ C X. We say that « € E is an interior point of E if there
exists € > 0 such that B(z,e) C E. The set of all interior points is denoted

int()E) ={z € E:3e >0 with B(z,¢e) C E}
and is called the interior of E.

Proposition (Basic properties of the interior). For every E C X:
1. int(()E) is open and int(()E) C E.
2. If U is open and U C E, then U C int(()E) (largest open set contained in E ).
3. int(()int()E)) = int(() E).

Definition (Adherent point and closure). Let E C X. We say that « € X is an adherent point of E if
Ve>0, B(z,e)NE#Q2.
The closure of E is the set of its adherent points:
E={re€X:Ve>0, B(z,e)NE # o}.

Proposition (Basic properties of the closure). For every E C X :
1. E is closed and E C E.
2. If F is closed and E C F, then ECF (smallest closed set containing E ).
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3. We have the open—closed sandwich:

int()E) € E C E.

Example (Set neither open nor closed in R). In (R, d,), the set E = [0, 1) is not open (no ball around 0 fits
inside F) and not closed (its complement R\ E = (—o00,0) U [1,00) is not open).

Example (Open ball plus isolated points). In (R?, deye) fix € R? and € > 0. Let
F= B(l‘,E) U {pla .. apm}a
where p; € 0B(z,¢) are isolated boundary points. Then:

e F'is not open (no p; has a ball B(p;,d) contained in F).

e Fis not closed: for instance, a point ¢ of the circle 9B(z, ¢) different from the p; is an adherent point
of F but ¢ ¢ F. In particular,

int()F) = B(x,e) and F = B(w,¢).

Remark (Closure of open balls). In normed spaces (in particular in R” with the Euclidean norm), B(z,¢) =

B(z,e).

Definition (Adherent point, closure, and boundary). Let (X, d) be a metric space and E C X. We say that
x € X is an adherent point of E if for every £ > 0 we have

B(z,e)NE # @.
The closure of E is -
E =cl(E)={x € X : zis an adherent point of E}.
The boundary of F is -
OF = F\ int(E).
Proposition. Let E C X. Then:
1. int(F) is the largest open set contained in E.
2. E is the smallest closed set containing E.
Proof. (1) By definition, = € int(E) if there exists € > 0 with B(x,e) C E, hence int(E) is open and
int(E) C E. If U is open and U C E, then for each z € U we have B(z,e) CU C E, so x € int(F) and
U Cint(E).

(2) If = ¢ E, there exists ¢ > 0 with B(x,e) N E = &, hence B(x,e) € X \ E, so X \ E is open and E is
closed. If F'is closed and E C F, every adherent point of F is also an adherent point of F', thus ¥ C F. [

Definition (Cover and open cover). Let E C X. A family {F;};c; of subsets of X is a cover of F if
E C U, Fi- It is an open cover if, moreover, each F; is open in X.

Definition (Compact set). We say that F C X is compact if every open cover of E admits a finite subcover;
that is, if { F;}ics is an open cover of F, then there exists a finite set J C I such that E C |J,.; Fi. A metric
space (X, d) is compact if X is compact as a subset of itself.

Example ((0,1) is not compact in (R, dys)). Consider the family of open sets
U={(1/n,1):n>2}.

We have J,,~,(1/n,1) = (0,1), so U is an open cover of (0,1). If we take a finite subfamily {(1/n, 1)},
then -

s

(1/mk, 1) = (1/ max{ny Ly, 1) # (0, 1),
k

1

24



since, for example, = m € (0,1) is not covered. Therefore, no finite subcover exists and (0, 1) is
not compact.

Remark. Being compact does not mean “having some” finite open cover, but that every open cover admits
a finite subcover.

Example ((0,1) is not compact in (R, deyc)). Let E = (0,1) and consider the open cover
U = {Un:(%,l) n>2%.

We have |J,5, Un = (0,1). If we take a finite subcover {Uy,,...,Uy,}, then U?Zl Un, = (7,1) with
N = max{ns,...,nx}, and thus points near 0 are not covered (for instance z € (0, ). Therefore E does

not admit a finite subcover and is not compact.

Example (A closed unbounded set that is not compact). In (R, deyc), let E = [0,00). Forn € Z withn > —1,
define U, = (n,n+2). Then ;5 Un = (—1,00) D E, i.e. this is an open cover of E. No finite subcover can

cover E: if we choose finitely many Uy, ,...,Uy, and N = max{n,...,n}, then Ule Un, C (=00, N +2),
so EN (N + 3,00) remains uncovered. Hence E is not compact.

Definition (Bounded set). Let (X, d) be a metric space. We say that E C X is bounded if there exist x € X
and IT > 0 such that d(z,y) <II for all y € E.

Proposition. If E C X is compact, then E is closed and bounded.

Proof. Closed: If (z,) C E and x,, — x in X, since F is compact there exists a subsequence z,, — y with
y € E. But convergence in metric spaces is unique, hence x = y € E. Thus E contains the limits of its
sequences and is closed.

Bounded: Fix xo € X. The balls {B(zo,n)}nen cover X, hence they cover E. By compactness, there
exists N such that E C B(xg, N). This shows that E is bounded. O

Example (Closed and bounded but not compact in the discrete metric). Consider X = {1/n : n € N}
with the discrete metric dgisc. Then every subset (in particular each singleton {1/n}) is open. The family
U ={{1/n} : n € N} is an open cover of X with no finite subcover, so X is not compact. Nevertheless, X
is bounded and closed in itself.

Theorem 2 (Heine-Borel). In (R?,dey) a set E CR7 is compact if and only if it is closed and bounded.

Proposition (Maximum in compact subsets of R). If E C R is compact in (R,deyc), then E attains its
mazimum (and analogously its minimum).

Proof. By Proposition , F is closed and bounded; in particular it has a supremum = = sup £ € R. For each n
there is xz,, € E with & — % < xp < T. Then z,, — T; since F is closed, T € F, and therefore max F = z. [

Proposition. Let (X,d) be a compact metric space and F C X a closed subset. Then F is compact.

Proof. 1f {U;}icr is an open cover of F, then {U;};cr U{X \ F} is an open cover of X. By compactness of
X it admits a finite subcover; removing (if it appears) X \ F', we obtain a finite subcover of F. O

Proposition. FEvery compact metric space is complete.

Proof. Let (x,) be a Cauchy sequence in compact X. Then it has a convergent subsequence z,, — x € X.
Since (z,,) is Cauchy, every subsequence has the same Cauchy bound and necessarily z,, — . O

Continuity in metric spaces

Fix metric spaces (X,dx) and (Y,dy) and a function f: X — Y.

25



Definition (Continuity at a point). We say that f is continuous at xg € X if for every £ > 0 there exists
0 > 0 such that

dx(I,l‘o) <jd = dy(f(x),f(xo)) < E.

We say that f is continuous if it is continuous at every point of X.

Proposition (Sequential characterization). f is continuous at zo if and only if for every sequence (x,) C X
with x, — xg we have f(x,) — f(xg) in Y.

Continuity

Let (X,dx) and (Y,dy) be two metric spaces and f : X — Y a function. Intuitively, a discontinuity at z*
occurs if there are points ' near #* such that f(z') is not near f(z*).

f

Definition (Pointwise continuity). We say that f : X — Y is continuous at © € X if for every € > 0 there
exists > 0 such that
dx(z,2") <6 = dy(f(z), f(2)) <e.

The function is continuous if it is continuous at every x € X.

Proposition (Sequential characterization). f is continuous at x € X if and only if for every sequence
(n)nen in X with x, — x we have

Proposition (Topological characterization). A function f : X — Y is continuous if and only if for every
open set U CY the preimage f~1(U) = {x € X : f(x) € U} is open in X. The same is true for closed sets.

Example (Basic examples of continuous functions). 1) Identity. If X = Y and f(z) = z, then f is
continuous (indeed, f~1(U) = U).

2) Constant function. If f(x) = yo for all z € X, then f is continuous (the preimage of any open
UCYis X if yo € U and @ otherwise).

3) Finite domain. If X is finite (with any metric), every subset of X is open; therefore, every function
f: X — Y is continuous.

4) Linear functions in R. With the usual metric d(u,v) = |u — v|, the function f(z) = ax + b (a # 0)
is continuous. Given € > 0, choose = ¢/|al, since

lz— 2| <0 = [f(z) = f(@)] = lalle — 2’| <]a]d = .

Proposition (Algebra of continuous functions). Let f,g : X — R be continuous (with the usual metric on
R). Then the following are also continuous:
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(i) f+9;

(1) [-9;
(iii) g, provided g(x) # 0 for all x € X;
(i) max{f,g};

(v) min{f, g};

(vi) [f]: 2= |f(@)].

Definition (Uniform continuity). We say that f : X — Y is uniformly continuous if for every £ > 0 there
exists > 0 such that

dx(z,2') <6 = dy(f(z), f(2')) <e  for all z,a’' € X.
The key difference with pointwise continuity is that here § does not depend on the point x.

Example (Not uniformly continuous in R). Let f : R — R, f(x) = 22, with the usual metric. f is continuous
on R, but not uniformly continuous.

Proof. Take ¢ = 1. Let § > 0 be arbitrary and define

Ti= St vi=r— g
Then |z — 2’| = §/2 < 4, but
) ) 52 ) 52
|x2—(m')2‘:|x—x"-|x+m”:§(2x—§) :(530—2:5(54—1) _Z:L

In particular, for that pair x, 2’ we have |z% — (2/)?| > € even though |z — 2’| < 4. Since this holds for every
0 > 0, f is not uniformly continuous. O

(a) Uniform continuity: f(z) = /z en [0,1]. (b) Pointwise continuity: f(z) = 1/z en (0,1]. El
Mismo ¢ funciona para cualquier zo (dados €). d requerido depende fuertemente de .

f(z) f(x)
T
/ 7777777777 1 no hay ¢ global para este ¢

1Te \
<
) ) 0 (figo) 0 (figo)

0(x1) (mds pequeno, sirve en 1)

2
e ——a
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Lets build intuition. We have to different but related concepts:

e Uniform continuity. Given a function f : A — R, we say it is uniformly continuous if for every
g > 0 there exists a single 6 > 0 (which does not depend on the point in the domain) such that, for
any x,y € A,

lz—yl<d = [f(@x)-fly)l<e

The “uniformity” means precisely that one §(g) works across the whole domain. Geometrically: imagine
a “caliper” that opens ¢ along the z-axis. If, while sliding it over the graph, the images of any pair of
points separated by less than ¢ always remain within a vertical band of height €, then f is uniformly
continuous. Choosing § amounts to ensuring that this caliper works in the worst corner of the domain;
if it works there, it will surely work elsewhere.

e Pointwise (or “conventional”) continuity. In contrast, f is continuous at zg if for every ¢ > 0
there exists § = (e, xg) such that

|t —zo| <§ = [f(z) - f(zo)| <e.

Here 0 may depend on the point xy. That is why a function may be continuous at every point and yet
fail to be uniformly continuous: the required ¢ keeps shrinking “more and more” as we move across
certain regions of the domain, and there is no single § that works for all points simultaneously.
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