

Week 2

Continuity (continuation)

Definition (Uniform continuity). Let (X, d_X) and (Y, d_Y) be metric spaces and $f : X \rightarrow Y$. We say that f is *uniformly continuous* on X if

$$\forall \varepsilon > 0 \exists \delta > 0 \text{ s.t. } (d_X(x, x') < \delta \implies d_Y(f(x), f(x')) < \varepsilon) \text{ for all } x, x' \in X.$$

Equivalently: the same $\delta = \delta(\varepsilon)$ works *simultaneously* for all pairs x, x' in X .

Remark (Negation (quantifiers made explicit)). The negation of uniform continuity is:

$$\exists \varepsilon_0 > 0 \text{ such that } \forall \delta > 0 \exists x, x' \in X \text{ with } d_X(x, x') < \delta \text{ and } d_Y(f(x), f(x')) \geq \varepsilon_0.$$

Remark (Equivalent “constructive” failure). Equivalently, f fails to be uniformly continuous iff there exist $\varepsilon_0 > 0$ and two sequences $\{x_n\}, \{x'_n\} \subset X$ such that

$$d_X(x_n, x'_n) \xrightarrow[n \rightarrow \infty]{} 0 \text{ but } d_Y(f(x_n), f(x'_n)) \geq \varepsilon_0 \text{ for all } n.$$

This rephrasing is often handier in proofs.

Intuition. Uniform continuity asks for a δ that works *globally* (same δ for the whole domain) once ε is fixed. In ordinary continuity at a point x^* , the admissible δ may depend on both ε *and* the base point x^* . The negation highlights that, if uniform continuity fails, you can zoom in ($\delta \downarrow 0$) and still find pairs x, x' arbitrarily close whose images stay separated by at least some fixed ε_0 .

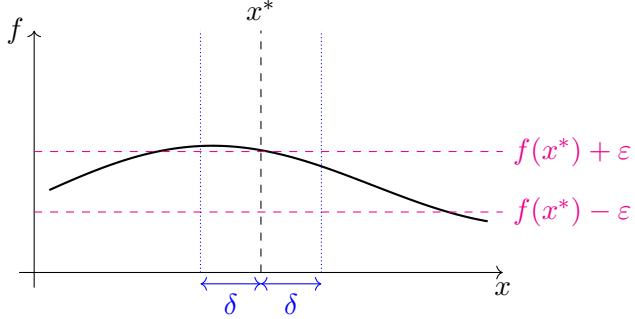


Figure 1: Uniform continuity: one $\delta(\varepsilon)$ works *everywhere* in the domain.

Remark (On the dependence of x, x' in the negation). In the negation, the “bad” points x, x' may (and typically do) depend on ε_0 and on the chosen δ . There is no single pair that witnesses failure for all δ ; instead, you can find a violating pair *for every* $\delta > 0$.

Remark (Two sequence facts used repeatedly). Let $\{a_n\} \subset \mathbb{R}$.

- (a) If $a_n \rightarrow a^*$, then $\liminf_{n \rightarrow \infty} a_n = \limsup_{n \rightarrow \infty} a_n = a^*$.
- (b) If $\liminf_{n \rightarrow \infty} a_n = \limsup_{n \rightarrow \infty} a_n \in \mathbb{R}$, then $\{a_n\}$ converges and its limit equals that common value.

Theorem 1 (Intermediate Value Theorem). *Let $f : [\underline{x}, \bar{x}] \rightarrow \mathbb{R}$ be continuous. For any y^* between $f(\underline{x})$ and $f(\bar{x})$ (i.e., either $f(\underline{x}) \leq y^* \leq f(\bar{x})$ or $f(\bar{x}) \leq y^* \leq f(\underline{x})$), there exists $x^* \in [\underline{x}, \bar{x}]$ such that $f(x^*) = y^*$.*

Intuition. A continuous graph on a closed interval cannot “jump over” a horizontal level y^* : if the endpoint values lie on opposite sides of y^* (or one equals it), the graph must cross the line $y = y^*$ somewhere in between.

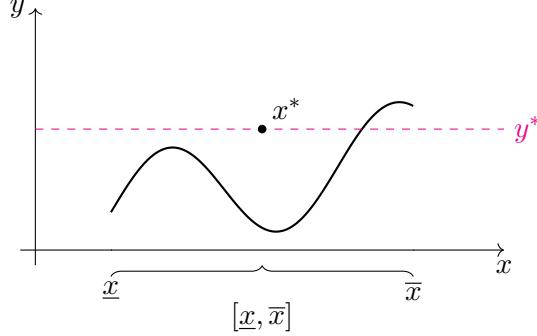


Figure 2: IVT: a continuous function on $[\underline{x}, \bar{x}]$ crosses every intermediate level.

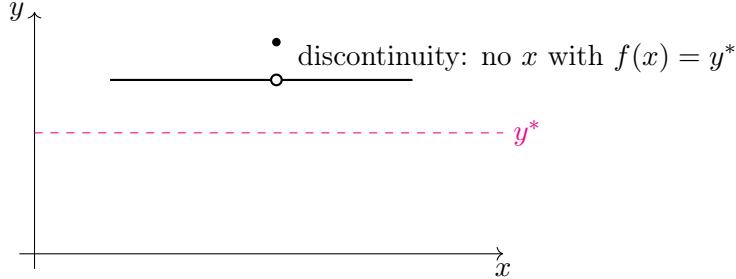


Figure 3: If f is not continuous, an intermediate value y^* may fail to be attained.

Remark (Restriction trick for IVT). Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be continuous and let $[\underline{x}, \bar{x}] \subset \mathbb{R}$. Consider the restriction

$$g := f|_{[\underline{x}, \bar{x}]} : [\underline{x}, \bar{x}] \rightarrow \mathbb{R}, \quad g(x) = f(x).$$

If $y^* \in \mathbb{R}$ is such that either $f(\underline{x}) \leq y^* \leq f(\bar{x})$ or $f(\bar{x}) \leq y^* \leq f(\underline{x})$, then, since g is continuous on the closed interval $[\underline{x}, \bar{x}]$, the Intermediate Value Theorem applied to g yields $\exists x^* \in [\underline{x}, \bar{x}]$ with $f(x^*) = y^*$.

Intuition. You do not need any global property of f beyond continuity: restricting a continuous f to $[\underline{x}, \bar{x}]$ keeps it continuous there, so IVT applies to the *restricted* function g .

Theorem 2 (Extreme Value (Weierstrass)). *Let (X, d) be a compact metric space and let $f : X \rightarrow \mathbb{R}$ be continuous. Then f attains a maximum and a minimum on X , i.e., there exist $\bar{x}, \underline{x} \in X$ such that*

$$f(\underline{x}) \leq f(x) \leq f(\bar{x}) \quad \text{for all } x \in X.$$

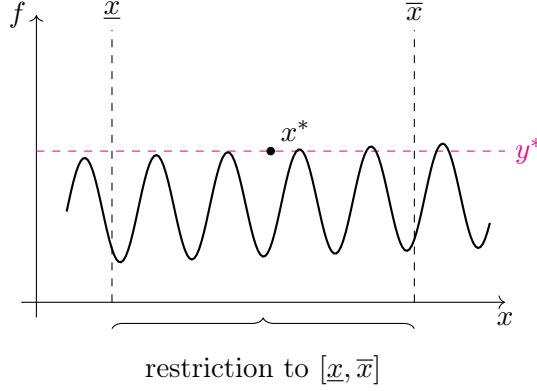


Figure 4: Apply IVT to $g = f|_{[\underline{x}, \bar{x}]}$.

Definition (Attainment of extrema). Fix $f : X \rightarrow \mathbb{R}$.

- f attains a maximum if $\exists \bar{x} \in X$ such that $f(\bar{x}) \geq f(x)$ for all $x \in X$.
- f attains a minimum if $\exists \underline{x} \in X$ such that $f(\underline{x}) \leq f(x)$ for all $x \in X$.

Intuition. Compactness rules out “escaping to infinity” and “missing boundary points.” Continuity prevents jumps. Together they force the sup and inf to be *achieved*.

Example (Identity map and the role of the domain). Let $f(x) = x$ (identity) and $X \subseteq \mathbb{R}$.

- If $X = \mathbb{R}$, then f has no maximum (unbounded above).
- If $X = [0, \frac{1}{2})$, then f has no maximum: $\sup_X f = \frac{1}{2}$ but it is not attained because $1/2 \notin X$ (domain not closed).
- If X is a *finite* disjoint union of closed intervals,

$$X = \bigcup_{k=1}^K [x_k, y_k], \quad x_1 < y_1 < x_2 < y_2 < \dots < x_K < y_K,$$

then X is compact (finite union of compact sets), hence by Weierstrass f attains both extrema; in fact, $\max_X f = y_K$ and $\min_X f = x_1$.

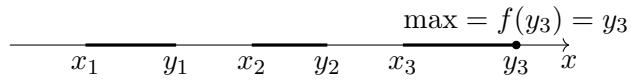


Figure 5: Finite union of closed intervals \Rightarrow compact set \Rightarrow extrema attained by $f(x) = x$.

Example (Compact domain without continuity: no maximum). Let $s > 0$ and define $f : [0, 1] \rightarrow \mathbb{R}$ by

$$f(x) = \begin{cases} s x, & x \in [0, \frac{1}{2}), \\ 0, & x \in [\frac{1}{2}, 1]. \end{cases}$$

Then f is *not* continuous at $x = \frac{1}{2}$, and f has *no* maximum on $[0, 1]$: the supremum is $s/2$, but it is not attained since the left branch does not include $x = \frac{1}{2}$ and the right branch equals 0.

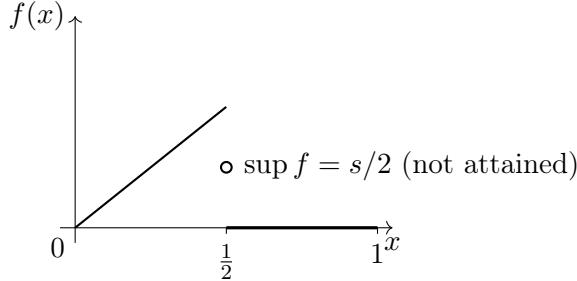


Figure 6: Discontinuity at $x = \frac{1}{2}$ breaks EVT: compact domain alone is not enough.

A useful version for constrained optimization

Let (X, d) be a metric space, $C \subseteq X$ a constraint set, and $f : X \rightarrow \mathbb{R}$.

Problem: $\max_{x \in C} f(x)$.

Definition (Solution / maximizer on C). A *solution* (or *maximizer*) is any $x \in C$ such that $f(x) \geq f(y)$ for all $y \in C$. The set of all solutions is the *arg max*,

$$\operatorname{argmax}_{x \in C} f(x) := \{x \in C : f(x) \geq f(y) \text{ for all } y \in C\}.$$

Remark. In Example with $f(x) = x$:

- If $(X, d) = (\mathbb{R}, d_u)$ and $C = \mathbb{R}$, then $\operatorname{argmax}_{x \in C} f(x) = \emptyset$.
- If $(X, d) = ([0, 1], d_u)$ and $C = [0, 1]$, then $\operatorname{argmax}_{x \in C} f(x) = \{1\}$.

Proposition. If $f : X \rightarrow \mathbb{R}$ is continuous and $C \subseteq X$ is compact, then $\operatorname{argmax}_{x \in C} f(x)$ is nonempty and compact.

Proof. Needs double check with page 4 of class notes week two.

Step 1 (restriction). Let $g : C \rightarrow \mathbb{R}$ be the restriction $g(x) = f(x)$ for $x \in C$. Then g is continuous on C .

Step 2 (existence). By Weierstrass, the continuous image $g(C) \subseteq \mathbb{R}$ is compact, hence closed and bounded, so it contains its maximum. Let $y^* = \max g(C) \in g(C)$. Then the *arg max* can be written as a level set:

$$\operatorname{argmax}_{x \in C} f(x) = \operatorname{argmax}_{x \in C} g(x) = g^{-1}(\{y^*\}),$$

which is nonempty because $y^* \in g(C)$.

Step 3 (compactness). Since singletons $\{y^*\}$ are closed in \mathbb{R} and g is continuous, $g^{-1}(\{y^*\})$ is closed in C . A closed subset of a compact set is compact; hence $\operatorname{argmax}_{x \in C} f(x)$ is compact.

Alternative (sequences). Let $(x_n) \subseteq \operatorname{argmax}_{x \in C} g(x)$. Any limit point $x^* \in C$ of (x_n) satisfies, by continuity of g , $g(x_n) = y^*$ for all $n \implies g(x_n) \rightarrow g(x^*) = y^*$, hence $x^* \in \operatorname{argmax}_{x \in C} g(x)$. Therefore the *arg max* is closed in C and thus compact. \square

Lemma (Continuous image of a compact set). *Let (X, d) be compact and consider (\mathbb{R}, d_u) . If $f : X \rightarrow \mathbb{R}$ is continuous, then $f(X) \subseteq \mathbb{R}$ is compact.*

Lemma (Singletons are closed). *In (\mathbb{R}, d_u) , every singleton $\{y^*\}$ is closed.*

Lemma (Closed-set characterization of continuity). *Let (X, d_X) and (Y, d_Y) be metric spaces and $f : X \rightarrow Y$. Then f is continuous iff for every closed set $F \subseteq Y$ the preimage $f^{-1}(F) \subseteq X$ is closed.*

Function spaces

Definition (Real-valued function space). Let (X, d) be a metric space and (\mathbb{R}, d_u) the real line with its usual metric. We denote by

$$\mathcal{F}(X, \mathbb{R}) := \{f : X \rightarrow \mathbb{R}\}$$

the set of all real-valued functions on X .

Remark (Prominent examples).

- (a) $f : \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x) = x^2$.
- (b) $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ given by $f(x_1, x_2) = 10x_1x_2^2$.
- (c) (Operator on a function space) $T : \mathcal{F}(X, \mathbb{R}) \rightarrow \mathcal{F}(X, \mathbb{R})$ defined by

$$(Tg)(x) = \frac{1}{2}g(x) \quad \text{for all } x \in X.$$

Thus $T \in \mathcal{F}(\mathcal{F}(X, \mathbb{R}), \mathcal{F}(X, \mathbb{R}))$.

- (d) (Functional) Let

$$\mathcal{I} := \{g \in \mathcal{F}(\mathbb{R}, \mathbb{R}) : g \text{ is (Lebesgue/Riemann) integrable on } \mathbb{R}\}.$$

Define $I : \mathcal{I} \rightarrow \mathbb{R}$ by

$$I(g) = \int_{\mathbb{R}} g(x) dx.$$

This is a map $I \in \mathcal{F}(\mathcal{I}, \mathbb{R})$; it is *well-defined only when the integral is finite* (not $\pm\infty$).

Intuition. Items (c) and (d) emphasize two common kinds of maps involving function spaces: operators $T : \mathcal{F}(X, \mathbb{R}) \rightarrow \mathcal{F}(X, \mathbb{R})$ that *return* a new function, and functionals $I : \mathcal{F}(X, \mathbb{R}) \rightarrow \mathbb{R}$ that *return* a number from a function.

Definition (Sequence of functions). A *sequence of functions* on X is a family $\{f_m\}_{m \in \mathbb{N}} \subseteq \mathcal{F}(X, \mathbb{R})$.

Remark (What do we mean by “convergence of functions”?). Up to now we often fixed a function f and studied numeric sequences like $\{f(x_n)\}_{n \in \mathbb{N}}$ when $x_n \rightarrow x^*$; then $f(x_n) \rightarrow f(x^*)$ if f is continuous at x^* . *That is not the same question* as asking whether the *functions* f_m themselves converge to some new function f on X . In the sequel we will work inside $\mathcal{F}(X, \mathbb{R})$ and make precise notions of convergence (e.g., pointwise vs. uniform).

Pointwise convergence

Definition (Pointwise convergence). Let $\{f_n\}_{n \in \mathbb{N}} \subseteq \mathcal{F}(X, \mathbb{R})$. We say that f_n converges pointwise to a function $f \in \mathcal{F}(X, \mathbb{R})$ if

$$\forall x \in X : \quad \lim_{n \rightarrow \infty} f_n(x) = f(x).$$

Equivalently: for each fixed $x \in X$, the numeric sequence $\{f_n(x)\}_{n \in \mathbb{N}}$ converges in \mathbb{R} , and we *define* $f(x)$ to be that limit. Formally:

$$\forall x \in X \quad \forall \varepsilon > 0 \quad \exists N = \mathbf{N}(\mathbf{x}, \varepsilon) \in \mathbb{N} \text{ such that } \forall n \geq N : |f_n(x) - f(x)| < \varepsilon.$$

Remark. Pointwise convergence is checked *point-by-point*. It does not control how fast the convergence occurs across different x 's, and it does not preserve continuity in general.

Example (A continuous-to-discontinuous pointwise limit). Let $X = [0, 1]$ and $f_n : X \rightarrow \mathbb{R}$ be $f_n(x) = x^n$. Each f_n is continuous (even differentiable). For any fixed $x \in [0, 1)$ we have $x^n \rightarrow 0$, while $1^n \rightarrow 1$. Hence

$$f_n \xrightarrow{\text{pointwise}} f, \quad f(x) = \begin{cases} 0, & x \in [0, 1), \\ 1, & x = 1, \end{cases}$$

and f is discontinuous at $x = 1$ (thus non-differentiable there).

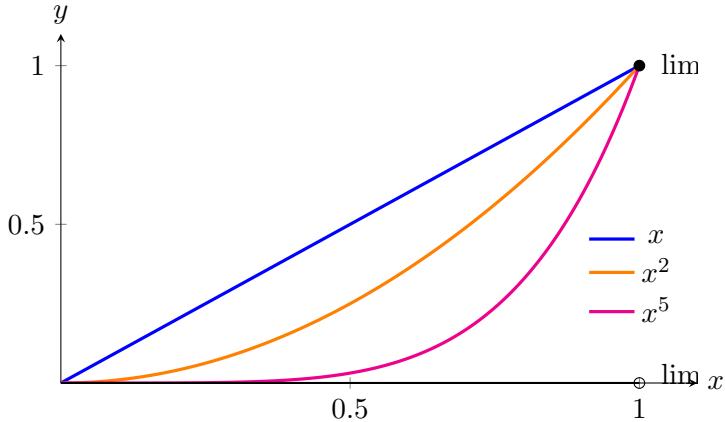


Figure 7: Pointwise limit of $f_n(x) = x^n$ on $[0, 1]$: a discontinuous function.

Remark (What if the domain is $\mathbb{R}_+?$). If we take $X = \mathbb{R}_+$ and $f_n(x) = x^n$, then for $x > 1$ we have $x^n \rightarrow +\infty$ (no finite limit in \mathbb{R}), for $x \in [0, 1)$ we have $x^n \rightarrow 0$, and at $x = 1$ we have $1^n \rightarrow 1$. Therefore $\{f_n\}$ is *not* pointwise convergent as a sequence in $\mathcal{F}(\mathbb{R}_+, \mathbb{R})$. (Allowing extended reals would give a limit taking value $+\infty$ on $(1, \infty)$, which lies outside \mathbb{R} .)

Intuition. This example shows that a sequence of continuous (even smooth) functions may converge *pointwise* to a function that is discontinuous and non-differentiable. Pointwise convergence alone is too weak to preserve regularity properties—this motivates stronger notions (e.g., uniform convergence).

More on pointwise convergence: examples and a warning

Example (Bounded functions converging to an unbounded function). Let $X = \mathbb{R}_+$ and define $f_n : X \rightarrow \mathbb{R}$ by

$$f_n(x) = \begin{cases} x, & x \leq n, \\ 0, & x > n. \end{cases}$$

Each f_n is bounded (indeed $\sup_{x \in \mathbb{R}_+} |f_n(x)| \leq n$). Fix $x \in \mathbb{R}_+$. Then $(f_1(x), f_2(x), \dots) = (0, 0, \dots, 0, \underbrace{x, x, x, \dots}_{\text{from } n \geq \lceil x \rceil})$, so $\lim_{n \rightarrow \infty} f_n(x) = x$. Hence $f_n \xrightarrow{\text{pointwise}} f$ with $f(x) = x$ on \mathbb{R}_+ , and the limit f is unbounded. Pointwise limits need not inherit boundedness.

Example (Pointwise convergence does not preserve limits/continuity). Recall the sequential characterization: for $g : X \rightarrow \mathbb{R}$ and $x^* \in X$, $\lim_{x \rightarrow x^*} g(x) = y^*$ iff for every sequence (x_m) with $x_m \neq x^*$ and $x_m \rightarrow x^*$ we have $g(x_m) \rightarrow y^*$.

Let $X = [0, 1]$ and $f_n(x) = x^n$. We know $f_n \xrightarrow{\text{pointwise}} f$ where

$$f(x) = \begin{cases} 0, & x \in [0, 1), \\ 1, & x = 1. \end{cases}$$

Fix the sequence $x_m = 1 - \frac{1}{m} \uparrow 1$ with $x_m \neq 1$. For each *fixed* n ,

$$\lim_{m \rightarrow \infty} f_n(x_m) = \lim_{m \rightarrow \infty} (1 - \frac{1}{m})^n = 1.$$

Thus all f_n have left-limit 1 at $x^* = 1$. But along the same sequence,

$$\lim_{m \rightarrow \infty} f(x_m) = \lim_{m \rightarrow \infty} 0 = 0 \neq 1.$$

Therefore the limit function f does *not* preserve that limit at x^* (indeed, f is discontinuous at 1) even though each f_n is continuous. Pointwise convergence is too weak to preserve limits/continuity.

Uniform versus pointwise

Definition (Uniform convergence). Let $\{f_n\}_{n \in \mathbb{N}} \subseteq \mathcal{F}(X, \mathbb{R})$ and $f \in \mathcal{F}(X, \mathbb{R})$. We say that $f_n \rightarrow f$ uniformly on X if

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \text{ s.t. } \forall n \geq N, \ \forall x \in X : |f_n(x) - f(x)| < \varepsilon.$$

or in another way (more helpful for exercises sometimes):

$$\forall \varepsilon > 0 \ \exists N = \mathbf{N}(\varepsilon) \in \mathbb{N} \text{ such that } \forall x \in X \ \forall n \geq N : |f_n(x) - f(x)| < \varepsilon.$$

In this case, call f the **uniform limit** of $(f_n : n \in \mathbb{N})$

Intuition: The important thing here is the order of the quantifiers. In **uniform** convergence the index can be chosen as $\mathbf{N} = \mathbf{N}(\varepsilon)$ (the **same** N works for **all** x). By contrast, in **pointwise** convergence one only has $\mathbf{N} = \mathbf{N}(x, \varepsilon)$. Equivalently: uniform $\iff (\forall \varepsilon)(\exists N)(\forall x)(\forall n \geq N)$.

Proposition (Uniform \Rightarrow pointwise). If $f_n \rightarrow f$ uniformly on X , then $f_n \rightarrow f$ pointwise on X .

Proof. Given $x \in X$ and $\varepsilon > 0$, choose N such that for all $n \geq N$, $\sup_{y \in X} |f_n(y) - f(y)| < \varepsilon$. In particular $|f_n(x) - f(x)| < \varepsilon$ for all $n \geq N$, hence $f_n(x) \rightarrow f(x)$. \square

Remark. To analyze a sequence (f_n) :

- (i) First, figure out to which f it converges *pointwise*.
- (ii) Then, check whether the convergence is *uniform*.

Example (Back to Example : not uniform). For $f_n(x) = x^n$ on $[0, 1]$ with pointwise limit $f = \mathbf{1}_{\{1\}}$ on the endpoint, we have

$$\sup_{x \in [0,1]} |f_n(x) - f(x)| = \max \left\{ \sup_{x \in [0,1]} x^n, |1^n - 1| \right\} = \sup_{x \in [0,1]} x^n = 1 \quad \text{for every } n.$$

(Indeed, $x^n \uparrow 1$ as $x \uparrow 1$.) In particular, the sup norm does not go to 0, so the convergence is *not* uniform. A quantitative lower bound is obtained by $x_n = (1 - \frac{1}{n})$, for which $x_n^n \rightarrow e^{-1} > 0$.

Remark (Negation). Failure of uniform convergence means:

$$\exists \varepsilon_0 > 0 \text{ s.t. } \forall N \in \mathbb{N} \ \exists n \geq N, \ \exists x \in X \text{ with } |f_n(x) - f(x)| \geq \varepsilon_0.$$

Here the “bad” x may depend on n (and on N).

Proposition (Sup-norm criterion). *Let $\|g\|_{\infty, X} := \sup_{x \in X} |g(x)|$. Then*

$$f_n \rightarrow f \text{ uniformly on } X \iff \|f_n - f\|_{\infty, X} \xrightarrow[n \rightarrow \infty]{} 0.$$

Example ($f_n(x) = x^n$ on $[0, 1]$ is not uniform). The pointwise limit is $f(x) = 0$ for $x \in [0, 1)$ and $f(1) = 1$. For $\varepsilon = \frac{1}{4}$ and any N , choose $n = N$ and $x = (\frac{1}{4})^{1/n} \in (0, 1)$. Then $f(x) = 0$ and

$$|f_n(x) - f(x)| = |x^n - 0| = \frac{1}{4} \geq \varepsilon.$$

By the negation, $f_n \not\rightarrow f$ uniformly on $[0, 1]$. Equivalently, $\|f_n - f\|_{\infty, [0,1]} = \sup_{x \in [0,1]} x^n = 1$ for all n .

Example ($f_n = \mathbf{1}_{[0,n]} \cdot \text{id}$ on \mathbb{R}_+ is not uniform). Recall $f_n(x) = x$ for $x \leq n$ and $f_n(x) = 0$ for $x > n$, so $f_n \rightarrow f$ pointwise with $f(x) = x$. Take $\varepsilon = 1$. For any N , pick $n = N$ and $x = 2N > n$. Then $f_n(x) = 0$ while $f(x) = 2N$, hence

$$|f_n(x) - f(x)| = 2N \geq \varepsilon.$$

Thus the convergence is not uniform on \mathbb{R}_+ .

Example ($f_n(x) = x/n$).

- (a) On $X = [0, K]$ the limit is $f \equiv 0$ and

$$\|f_n - f\|_{\infty, [0, K]} = \sup_{x \in [0, K]} \frac{x}{n} = \frac{K}{n} \xrightarrow[n \rightarrow \infty]{} 0,$$

so $f_n \rightarrow 0$ uniformly on $[0, K]$. In ε - N form: given $\varepsilon > 0$, take $N > \frac{K}{\varepsilon}$; then for $n \geq N$ and all $x \in [0, K]$, $|f_n(x) - 0| = \frac{x}{n} \leq \frac{K}{n} < \varepsilon$.

(b) On $X = \mathbb{R}_+$ the convergence to 0 is *not* uniform. Indeed, fix $\varepsilon > 0$. For any N choose $n = N$ and $x = N\varepsilon$. Then $|f_n(x) - 0| = \frac{x}{n} = \varepsilon$, so the sup-norm never falls below ε .

Intuition. Uniformity requires that a single N work simultaneously for all x in the domain. In unbounded domains (such as \mathbb{R}_+), it is typical that we can “push” x toward the region where the error becomes large again, breaking uniformity.

Restriction and preservation properties

Proposition (Restriction preserves uniform convergence). *Let $(f_n)_{n \in \mathbb{N}} \subset \mathcal{F}(X, \mathbb{R})$ converge uniformly to f on X . If $E \subseteq X$ and we denote by $f_n|_E$ and $f|_E$ the restrictions to E , then $(f_n|_E)$ converges uniformly to $f|_E$ on E .*

Proof. Done in a PS I think. □

Remark (Uniform continuity: what is preserved?).

- (a) **Heine–Cantor.** If X is compact and $f : X \rightarrow \mathbb{R}$ is continuous, then f is uniformly continuous.
- (b) **Linear operations.** If $f, g : X \rightarrow \mathbb{R}$ are uniformly continuous and $c \in \mathbb{R}$, then $f \pm g$ and cf are uniformly continuous.
- (c) **Absolute value, max, min.** If f, g are uniformly continuous, then $|f|$, $\max\{f, g\}$, and $\min\{f, g\}$ are uniformly continuous.
- (d) **Composition.** If $f : (X, d_X) \rightarrow (Y, d_Y)$ and $g : (Y, d_Y) \rightarrow (Z, d_Z)$ are uniformly continuous, then $g \circ f$ is uniformly continuous on X .
- (e) **Product: not preserved in general.** Even if f and g are uniformly continuous, the product $f \cdot g$ may fail to be uniformly continuous on non-compact domains.
- (f) **Division: not preserved in general.** Even if f and $g \neq 0$ are uniformly continuous, the product $f \cdot g$ may fail to be uniformly continuous on non-compact domains.

Example (Product counterexample on \mathbb{R}_+). Let $g(x) = x$ on \mathbb{R}_+ . Then g is 1-Lipschitz (hence uniformly continuous). But $f = g \cdot g = x^2$ is *not* uniformly continuous on \mathbb{R}_+ : take $x_n = n$, $y_n = n + \frac{1}{2n}$; then $|x_n - y_n| = \frac{1}{2n} \rightarrow 0$ while $|f(x_n) - f(y_n)| = |y_n^2 - x_n^2| = (x_n + y_n)|y_n - x_n| \geq 2n \cdot \frac{1}{2n} = 1$.

Uniform limits of continuous functions

Proposition. *Let $(f_n)_{n \in \mathbb{N}} \subset \mathcal{F}(X, \mathbb{R})$ converge uniformly to f on X .*

- (a) *If for each n the function f_n is continuous at a point $x^* \in X$, then f is continuous at x^* .*
- (b) *If each f_n is continuous on X , then f is continuous on X .*

Proof. (a) Fix $\varepsilon > 0$. By uniform convergence choose N with $\|f_N - f\|_{\infty, X} < \varepsilon/3$. Since f_N is continuous at x^* , there exists $\delta > 0$ such that $d_X(x, x^*) < \delta$ implies $|f_N(x) - f_N(x^*)| < \varepsilon/3$. Then, for $d_X(x, x^*) < \delta$,

$$\begin{aligned} |f(x) - f(x^*)| &= |f(x) - f_N(x) + f_N(x) - f_N(x^*) + f_N(x^*) - f(x^*)| \\ &\leq |f(x) - f_N(x)| + |f_N(x) - f_N(x^*)| + |f_N(x^*) - f(x^*)| < \varepsilon. \end{aligned}$$

(b) Apply (a) at each $x^* \in X$. □

Uniform limits live in the bounded space and the sup metric

Definition (Bounded function space and sup metric). Let

$$\mathcal{F}^B(X, \mathbb{R}) := \{ f \in \mathcal{F}(X, \mathbb{R}) : \|f\|_{\infty, X} := \sup_{x \in X} |f(x)| < \infty \}.$$

On $\mathcal{F}^B(X, \mathbb{R})$ define the metric

$$d_{\infty}(f, g) := \sup_{x \in X} |f(x) - g(x)| = \|f - g\|_{\infty, X}.$$

Proposition (Uniform limit of bounded functions is bounded). *Let $(f_n)_{n \in \mathbb{N}} \subset \mathcal{F}^B(X, \mathbb{R})$ converge uniformly to $f \in \mathcal{F}(X, \mathbb{R})$. Then $f \in \mathcal{F}^B(X, \mathbb{R})$.*

Proof. Beyond the scope. □

Proposition (Uniform \iff d_{∞} -convergence). *Let $(f_n)_{n \in \mathbb{N}} \subset \mathcal{F}^B(X, \mathbb{R})$ and let $f \in \mathcal{F}^B(X, \mathbb{R})$. Then the following are equivalent:*

- (a) $f_n \rightarrow f$ uniformly on X ;
- (b) $d_{\infty}(f_n, f) = \|f_n - f\|_{\infty, X} \rightarrow 0$ as $n \rightarrow \infty$.

Proof. Beyond the scope. □

Intuition. The metric d_{∞} “measures” the worst error uniformly across the entire domain. Therefore, uniform convergence and convergence in d_{∞} are the same thing; and if any (in fact, all) of the f_n are bounded, the uniform limit is also bounded.

Vector spaces and norms

Intuition. A vector space is an abstract set of objects equipped with two operations (vector addition and scalar multiplication) that obey precise rules. In the background there is a *field* of scalars (in this course we usually take \mathbb{R} , but any field works).

Definition (Vector space). Let \mathbb{F} be a field (typically \mathbb{R}). A *vector space over \mathbb{F}* is a triple $(V, +, \cdot)$ where:

- V is a set (its elements are called *vectors*);
- $+$ is a binary operation $V \times V \rightarrow V$ (vector addition);
- \cdot is an operation $\mathbb{F} \times V \rightarrow V$ (scalar multiplication, $(\alpha, v) \mapsto \alpha v$);

satisfying the following axioms for all $u, v, w \in V$ and all $\alpha, \beta \in \mathbb{F}$:

- (1) **Addition is commutative:** $v + w = w + v$.
- (2) **Addition is associative:** $u + (v + w) = (u + v) + w$.
- (3) **Additive identity:** there exists $0 \in V$ (the *zero vector*) such that $0 + v = v + 0 = v$.
- (4) **Additive inverses:** for each $v \in V$ there exists $w \in V$ (denoted $-v$) with $v + w = 0$.
- (5) **Multiplicative identity:** $1 \cdot v = v$.
- (6) **Compatibility with field multiplication:** $\alpha(\beta v) = (\alpha\beta)v$.
- (7) **Distributivity over vector addition:** $\alpha(v + w) = \alpha v + \alpha w$.
- (8) **Distributivity over scalar addition:** $(\alpha + \beta)v = \alpha v + \beta v$.

Example (A vector space of bounded functions). Fix a set X . Let

$$\mathcal{F}^B(X, \mathbb{R}) = \{f : X \rightarrow \mathbb{R} : f \text{ is bounded}\}.$$

Define the operations pointwise:

$$(f + g)(x) = f(x) + g(x), \quad (\alpha f)(x) = \alpha f(x) \quad (\alpha \in \mathbb{R}).$$

Let $0 \in \mathcal{F}^B(X, \mathbb{R})$ be the zero function $0(x) = 0$ and for $f \in \mathcal{F}^B(X, \mathbb{R})$ define its additive inverse by $(-f)(x) = -f(x)$. Then $(\mathcal{F}^B(X, \mathbb{R}), +, \cdot)$ is a vector space over \mathbb{R} .

Remark. A vector space axiomatizes *addition of vectors* and *scalar multiplication*. It does *not* prescribe a rule to multiply two vectors with each other. Any notion of “multiplying vectors” (dot product, cross product, matrix product, convolution, etc.) is *extra structure* that depends on the environment we are working in.

Definition (Dot product on \mathbb{R}^I). For $I \in \mathbb{N}$, the *dot product* on \mathbb{R}^I is

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^I x_i y_i \in \mathbb{R}, \quad \mathbf{x} = (x_1, \dots, x_I), \quad \mathbf{y} = (y_1, \dots, y_I) \in \mathbb{R}^I.$$

Note that $\langle \mathbf{x}, \mathbf{y} \rangle$ is a *scalar*, not a vector.

Lemma (Basic properties of the dot product). *For all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^I$ and all $\alpha \in \mathbb{R}$:*

- (a) **Nonnegativity and definiteness:** $\langle \mathbf{x}, \mathbf{x} \rangle \geq 0$, and $\langle \mathbf{x}, \mathbf{x} \rangle = 0$ iff $\mathbf{x} = \mathbf{0}$.
- (b) **Symmetry:** $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$.
- (c) **Additivity in the second entry:** $\langle \mathbf{x}, \mathbf{y} + \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{z} \rangle$.
- (d) **Homogeneity in the second entry:** $\langle \mathbf{x}, \alpha \mathbf{y} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle$.
- (e) *Equivalently, linearity in the first entry also holds by symmetry:*

$$\langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{x} \rangle + 2 \cdot \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle.$$

Sketch. (a) $\langle \mathbf{x}, \mathbf{x} \rangle = \sum_{i=1}^I x_i^2 \geq 0$ and it is zero only when each $x_i = 0$. (b) $\sum_i x_i y_i = \sum_i y_i x_i$. (c) Expand componentwise: $\sum_i x_i(y_i + z_i) = \sum_i x_i y_i + \sum_i x_i z_i$. (d) Likewise, $\sum_i x_i(\alpha y_i) = \alpha \sum_i x_i y_i$. \square

Subspaces

Remark. If $W \subseteq V$, then $(W, +, \cdot)$ need not be a vector space by itself. Here we are talking about *subspaces*.

Proposition (Subspace test). *Let $W \subseteq V$. Then $(W, +, \cdot)$ is a vector space iff for every $v, w \in W$ and every scalars $\lambda_1, \lambda_2 \in \mathbb{R}$,*

$$\lambda_1 v + \lambda_2 w \in W.$$

Corollary. Under the subspace test, $0 \in W$ (e.g., take $\lambda_1 = \lambda_2 = 0$).

Remark (Notation). When the operations $+$ and \cdot are clear, we simply write V for the vector space $(V, +, \cdot)$.

Definition (Norm). Fix a vector space V . A *norm* on V is a function $\|\cdot\| : V \rightarrow \mathbb{R}$ such that, for all $v, w \in V$ and $\alpha \in \mathbb{R}$,

1. (Nonnegativity) $\|v\| \geq 0$.
2. (Definiteness) $\|v\| = 0$ iff $v = 0$.
3. (Homogeneity) $\|\alpha v\| = |\alpha| \|v\|$.
4. (Triangle inequality) $\|v + w\| \leq \|v\| + \|w\|$.

The Euclidean norm on \mathbb{R}^I

Let $x = (x_1, \dots, x_I) \in \mathbb{R}^I$. With the standard inner product

$$x \cdot y = \sum_{i=1}^I x_i y_i,$$

the Euclidean norm is

$$\|x\|_2 = \sqrt{x \cdot x} = \left(\sum_{i=1}^I x_i^2 \right)^{1/2}.$$

Norm properties.

- (1) $\|x\|_2 \geq 0$ for all x (sum of squares).
- (2) $\|x\|_2 = 0 \iff x = 0$.
- (3) Homogeneity: for any scalar $\lambda \in \mathbb{R}$,

$$\|\lambda x\|_2 = \sqrt{(\lambda x) \cdot (\lambda x)} = \sqrt{\lambda^2 x \cdot x} = |\lambda| \|x\|_2.$$

- (4) Triangle inequality: for any $v, w \in \mathbb{R}^I$,

$$\|v + w\|_2 \leq \|v\|_2 + \|w\|_2.$$

A direct coordinate expansion gives

$$\|v + w\|_2^2 = (v + w) \cdot (v + w) = \|v\|_2^2 + 2v \cdot w + \|w\|_2^2,$$

which does not by itself yield the inequality unless one controls $v \cdot w$. Using Cauchy–Schwarz, $|v \cdot w| \leq \|v\|_2 \|w\|_2$, hence

$$\|v + w\|_2^2 \leq \|v\|_2^2 + 2\|v\|_2 \|w\|_2 + \|w\|_2^2 = (\|v\|_2 + \|w\|_2)^2,$$

and taking square roots proves (4).

Amanda's proof (triangle inequality \Leftrightarrow Cauchy–Schwarz).

$$\begin{aligned} \|x + y\|_2 \leq \|x\|_2 + \|y\|_2 &\iff \|x + y\|_2^2 \leq (\|x\|_2 + \|y\|_2)^2 \\ &\iff (x + y) \cdot (x + y) \leq \|x\|_2^2 + 2\|x\|_2\|y\|_2 + \|y\|_2^2 \\ &\iff x \cdot x + 2x \cdot y + y \cdot y \leq \|x\|_2^2 + 2\|x\|_2\|y\|_2 + \|y\|_2^2 \\ &\iff x \cdot y \leq \|x\|_2\|y\|_2, \end{aligned}$$

which is precisely the Cauchy–Schwarz inequality

$$\sum_{i=1}^I x_i y_i \leq \left(\sum_{i=1}^I x_i^2 \right)^{1/2} \left(\sum_{i=1}^I y_i^2 \right)^{1/2}.$$

Thus Cauchy–Schwarz implies (and is equivalent to, through the chain above) the triangle inequality for $\|\cdot\|_2$.

The sup–norm on bounded functions. Let $V = \mathcal{F}^B(X, \mathbb{R})$ be the vector space of all bounded real–valued functions on X . For $f \in V$ define the sup–norm

$$\|f\|_\infty := \sup_{x \in X} |f(x)|.$$

Axioms (1) nonnegativity and (2) $\|f\|_\infty = 0 \iff f \equiv 0$ are immediate. For the other two axioms:

(3) Absolute homogeneity. For every $\lambda \in \mathbb{R}$,

$$\|\lambda f\|_\infty = \sup_{x \in X} |\lambda f(x)| = |\lambda| \sup_{x \in X} |f(x)| = |\lambda| \|f\|_\infty.$$

(4) Triangle inequality. For $f, g \in V$,

$$\|f + g\|_\infty = \sup_{x \in X} |f(x) + g(x)| \leq \sup_{x \in X} (|f(x)| + |g(x)|) \leq \sup_{x \in X} |f(x)| + \sup_{x \in X} |g(x)| = \|f\|_\infty + \|g\|_\infty.$$

Hence $\|\cdot\|_\infty$ is a norm on $\mathcal{F}^B(X, \mathbb{R})$.

Remark 4 (Every norm induces a metric). If $(V, \|\cdot\|)$ is a normed vector space, then

$$d(v, w) := \|v - w\|$$

defines a metric on V . (Nonnegativity and symmetry are clear, $d(v, w) = 0 \iff v = w$ by the norm axiom, and the triangle inequality follows from $\|v - w\| \leq \|v - z\| + \|z - w\|$.)

Examples.

- On \mathbb{R}^t with the Euclidean norm $\|\cdot\|_2$: $d_{\text{euc}}(v, w) = \|v - w\|_2$.
- On $\mathcal{F}^B(X, \mathbb{R})$ with the sup-norm: $d_\infty(f, g) = \|f - g\|_\infty$.

Key idea to remember: a *norm* measures the *length* of a vector; a *metric* measures the *distance* between two points.

Vectors in \mathbb{R}^2 as points and as displacements

- We begin by focusing on the vector space \mathbb{R}^2 .
- Pictorially, a vector in \mathbb{R}^2 can be seen in two (equivalent) ways:
 1. as a *point* (x_1, x_2) in the plane, or
 2. as a *displacement* (an arrow) with a length and a direction.

Let $\mathbf{x} = (x_1, x_2)$ and $\mathbf{y} = (y_1, y_2)$. The displacement that carries \mathbf{x} to \mathbf{y} is

$$\mathbf{z} = \mathbf{y} - \mathbf{x} = (y_1 - x_1, y_2 - x_2).$$

Equivalently, $\mathbf{x} + \mathbf{z} = \mathbf{y}$.

Key idea. Thinking of vectors as displacements, two arrows are *equivalent* if they have the same length and the same direction. Thus the arrow drawn from the origin to \mathbf{z} is equivalent to the arrow drawn from \mathbf{x} to \mathbf{y} . The arrow $\mathbf{w} = \mathbf{x} - \mathbf{y} = -(\mathbf{y} - \mathbf{x})$ has the same length but the *opposite* direction, so it is not equivalent to \mathbf{z} .

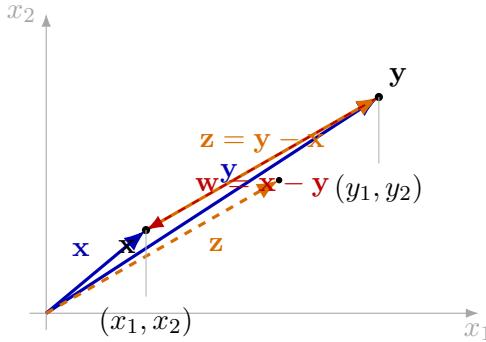


Figure 8: **Vectors as points** and as displacements: $\mathbf{x} + \mathbf{z} = \mathbf{y}$ with $\mathbf{z} = \mathbf{y} - \mathbf{x}$. The dashed orange arrow is equivalent to the solid orange arrow (same length and direction).

Two viewpoints on \mathbb{R}^2

- *As a set of points:* elements are (x_1, x_2) .
- *As a set of displacements:* elements are arrows with length and direction; two displacements are equivalent iff they share the same length and direction.

Remarks on notation

- We often write a vector \mathbf{x} in coordinates as $\mathbf{x} = (x_1, \dots, x_J)$. When it is helpful to stress “column” form we use

$$\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_J \end{pmatrix} \in \mathbb{R}^{J \times 1}.$$

- For a scalar $\lambda \in \mathbb{R}$ we may use the constant vector

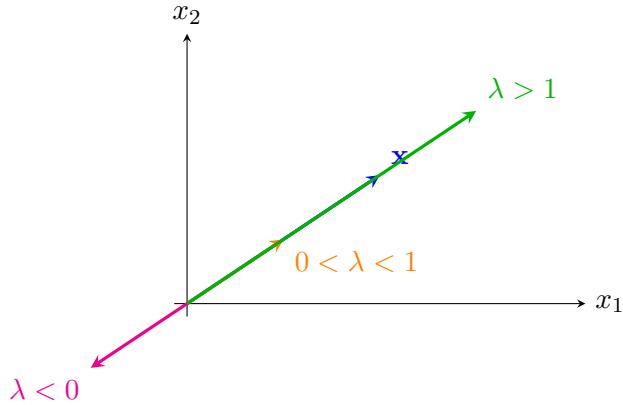
$$\bar{\lambda} = (\lambda, \dots, \lambda).$$

- The zero vector is denoted by $\mathbf{0} = (0, \dots, 0)$.

Scaling a vector

Let $\mathbf{x} \in \mathbb{R}^j$ and $\lambda \in \mathbb{R} \setminus \{0\}$. Scaling by λ produces the vector $\lambda\mathbf{x}$:

$$\begin{cases} \lambda > 1 : & \text{stretches } \mathbf{x} \text{ in the same direction,} \\ 0 < \lambda < 1 : & \text{shrinks } \mathbf{x} \text{ in the same direction,} \\ \lambda < 0 : & \text{reverses direction and scales by } |\lambda|. \end{cases}$$



Inner product and the angle between vectors

In \mathbb{R}^j with the standard (Euclidean) inner product and norm,

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^j x_i y_i, \quad \|\mathbf{x}\|_2 = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}.$$

By the law of cosines applied to the triangle with sides \mathbf{x} , \mathbf{y} , and $\mathbf{y} - \mathbf{x}$,

$$\|\mathbf{y} - \mathbf{x}\|_2^2 = \|\mathbf{x}\|_2^2 + \|\mathbf{y}\|_2^2 - 2 \|\mathbf{x}\|_2 \|\mathbf{y}\|_2 \cos \theta.$$

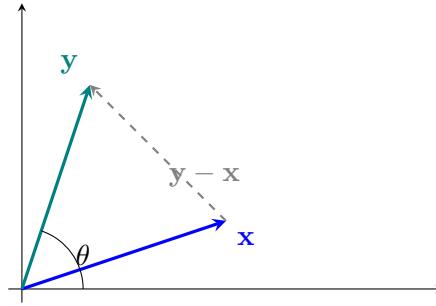
On the other hand,

$$\|\mathbf{y} - \mathbf{x}\|_2^2 = \langle \mathbf{y} - \mathbf{x}, \mathbf{y} - \mathbf{x} \rangle = \|\mathbf{x}\|_2^2 + \|\mathbf{y}\|_2^2 - 2 \langle \mathbf{x}, \mathbf{y} \rangle.$$

Equating the two expressions gives the fundamental link between angle and inner product:

$$\boxed{\cos \theta = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\|_2 \|\mathbf{y}\|_2}}$$

Hence $\langle \mathbf{x}, \mathbf{y} \rangle = 0 \iff \cos \theta = 0 \iff \theta = 90^\circ$ (the vectors are perpendicular).



Orthogonality and orthonormality

- Two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^j$ are *orthogonal* if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$.
- A vector \mathbf{x} is orthogonal to a set $X \subseteq \mathbb{R}^j$ if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$ for every $\mathbf{y} \in X$.
- The zero vector satisfies $\langle \mathbf{0}, \mathbf{y} \rangle = 0$ for all \mathbf{y} , so $\mathbf{0}$ is orthogonal to every vector.
- A set $\{\mathbf{u}_1, \dots, \mathbf{u}_m\} \subset \mathbb{R}^j$ is *orthonormal* if the vectors are pairwise orthogonal and each has Euclidean norm 1:

$$\langle \mathbf{u}_i, \mathbf{u}_k \rangle = 0 \ (i \neq k), \quad \|\mathbf{u}_i\|_2 = 1.$$

Example. Let $\mathbf{x} = (3, 1)$ and $\mathbf{y} = (-1, 3)$. Then

$$\langle \mathbf{x}, \mathbf{y} \rangle = 3(-1) + 1 \cdot 3 = -3 + 3 = 0 \quad \Rightarrow \quad \mathbf{x} \perp \mathbf{y}.$$

If we scale \mathbf{y} by $\frac{1}{2}$, $\mathbf{z} := \frac{1}{2}\mathbf{y} = \left(-\frac{1}{2}, \frac{3}{2}\right)$, then

$$\langle \mathbf{x}, \mathbf{z} \rangle = \frac{1}{2} \langle \mathbf{x}, \mathbf{y} \rangle = 0,$$

so $\mathbf{x} \perp \mathbf{z}$ as well. (For comparison, $\mathbf{w} = (-2, 3)$ gives $\langle \mathbf{x}, \mathbf{w} \rangle = 3(-2) + 1 \cdot 3 = -3 \neq 0$, hence not orthogonal.)

Example. Let $\mathbf{x} = (1, 0)$ and $\mathbf{y} = (0, 2)$. Then $\langle \mathbf{x}, \mathbf{y} \rangle = 0$ so they are orthogonal. However,

$$\|\mathbf{x}\|_2 = 1, \quad \|\mathbf{y}\|_2 = 2,$$

so the pair is *not* orthonormal (the second vector does not have unit length).

Linear combinations and span

Definition (Linear combination). Let V be a vector space and let $X = \{\mathbf{v}_1, \dots, \mathbf{v}_k\} \subset V$ be finite. A vector $\mathbf{v} \in V$ is a *linear combination* of X if there exist scalars $\lambda_1, \dots, \lambda_k \in \mathbb{R}$ such that

$$\mathbf{v} = \sum_{j=1}^k \lambda_j \mathbf{v}_j.$$

Coordinate form in \mathbb{R}^J . Write $\mathbf{x}^1, \dots, \mathbf{x}^k \in \mathbb{R}^J$ with $\mathbf{x}^r = (x_{r1}, \dots, x_{rJ})$. A vector $\mathbf{x} = (x_1, \dots, x_J) \in \mathbb{R}^J$ is a linear combination of $\{\mathbf{x}^1, \dots, \mathbf{x}^k\}$ iff there exist $\lambda_1, \dots, \lambda_k \in \mathbb{R}$ with

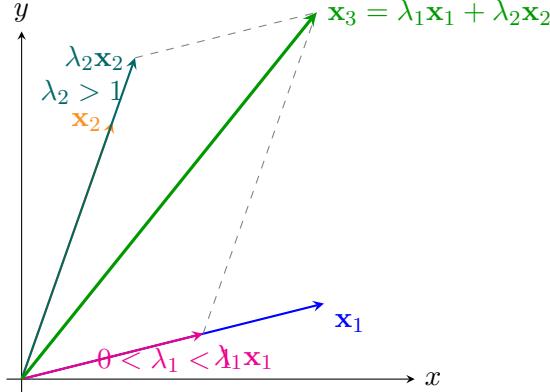
$$x_i = \sum_{r=1}^k \lambda_r x_{ri} \quad \text{for each } i = 1, \dots, J.$$

Definition (Span). For $W \subset V$ define the *span* of W by

$$\text{span}(W) = \left\{ \sum_{j=1}^m \lambda_j \mathbf{w}_j : \mathbf{w}_j \in W, \lambda_j \in \mathbb{R}, m \in \mathbb{N} \right\}.$$

Equivalently, $\mathbf{v} \in \text{span}(W)$ iff there exists a *finite* subset $\widehat{W} \subset W$ such that \mathbf{v} is a linear combination of vectors in \widehat{W} .

Remark. $\mathbf{0} \in V$ is a linear combination of any finite set (take all coefficients $\lambda_j = 0$). For two vectors $\mathbf{x}_1, \mathbf{x}_2 \in V$, any vector of the form $\mathbf{x}_3 = \lambda_1 \mathbf{x}_1 + \lambda_2 \mathbf{x}_2$ is reached by scaling and then adding.



Basic facts. For any $W \subset V$,

$$W \subset \text{span}(W).$$

Example. If $W = \{(1, 0, 0), (0, 1, 0)\} \subset \mathbb{R}^3$, then

$$\text{span}(W) = \{(z_1, z_2, 0) : z_1, z_2 \in \mathbb{R}\} \quad (\text{the } xy\text{-plane}).$$

Also, is true that $\{\mathbf{0}\} = \text{span}(\{\mathbf{0}\})$ and $V = \text{span}(V)$.

Example (Collinear pair). Let $\mathbf{x} = (4, 2)$ and $\mathbf{y} = (2, 1)$. Then $\mathbf{y} = \frac{1}{2}\mathbf{x}$, so

$$\frac{1}{2}\mathbf{x} - \mathbf{y} = \mathbf{0}.$$

Hence $\{\mathbf{x}, \mathbf{y}\}$ is linearly dependent and

$$\text{span}\{\mathbf{x}, \mathbf{y}\} = \{\lambda\mathbf{x} : \lambda \in \mathbb{R}\} = \{\mu\mathbf{y} : \mu \in \mathbb{R}\},$$

the line through the origin with direction \mathbf{x} (equivalently, \mathbf{y}).

Example (Not a rescaling). Let $\mathbf{x} = (4, 2)$ and $\mathbf{y} = (2, \frac{1}{2})$. If \mathbf{y} were a scalar multiple of \mathbf{x} , we would have

$$(2, \frac{1}{2}) = t(4, 2) \implies 2 = 4t \text{ and } \frac{1}{2} = 2t,$$

which forces $t = \frac{1}{2}$ and $t = \frac{1}{4}$, a contradiction. Thus \mathbf{y} is not a rescaling of \mathbf{x} , and in particular \mathbf{x} is not a linear combination of the single vector \mathbf{y} . (Here $\text{span}\{\mathbf{y}\} = \{s(2, \frac{1}{2}) : s \in \mathbb{R}\}$ is a different line.)

Example (All linear combinations of $\{\mathbf{x}, \mathbf{y}\}$). With $\mathbf{x} = (4, 2)$ and $\mathbf{y} = (2, \frac{1}{2})$, a vector \mathbf{z} is a linear combination of $\{\mathbf{x}, \mathbf{y}\}$ iff there exist $\lambda_x, \lambda_y \in \mathbb{R}$ such that

$$\mathbf{z} = \lambda_x\mathbf{x} + \lambda_y\mathbf{y} = (4\lambda_x + 2\lambda_y, 2\lambda_x + \frac{1}{2}\lambda_y).$$

Since $\det \begin{pmatrix} 4 & 2 \\ 2 & \frac{1}{2} \end{pmatrix} = 4 \cdot \frac{1}{2} - 2 \cdot 2 = -2 \neq 0$, the pair $\{\mathbf{x}, \mathbf{y}\}$ is linearly independent and therefore $\text{span}\{\mathbf{x}, \mathbf{y}\} = \mathbb{R}^2$. Equivalently, given $\mathbf{z} = (u, v) \in \mathbb{R}^2$ there are unique scalars

$$\lambda_x = v - \frac{u}{4}, \quad \lambda_y = u - 2v$$

such that $\mathbf{z} = \lambda_x\mathbf{x} + \lambda_y\mathbf{y}$.

Remark (Nontrivial relation \Rightarrow one vector depends on the others). In general, if $\lambda_x\mathbf{x} + \lambda_y\mathbf{y} + \lambda_z\mathbf{z} = \mathbf{0}$ with at least one coefficient nonzero, then one of the vectors is a linear combination of the other two. For instance, if $\lambda_z \neq 0$, then

$$\mathbf{z} = -\frac{\lambda_x}{\lambda_z}\mathbf{x} - \frac{\lambda_y}{\lambda_z}\mathbf{y}.$$

Definition (Linear dependence and independence). Let V be a vector space and let $W = \{v_1, \dots, v_k\} \subset V$ be a finite set.

(i) W is *linearly dependent* if there exist scalars $\lambda_1, \dots, \lambda_k \in \mathbb{R}$, not all zero, such that

$$\sum_{i=1}^k \lambda_i v_i = \mathbf{0}.$$

(ii) W is *linearly independent* if for every choice of scalars $\lambda_1, \dots, \lambda_k \in \mathbb{R}$,

$$\sum_{i=1}^k \lambda_i v_i = \mathbf{0} \implies \lambda_1 = \dots = \lambda_k = 0.$$

Remark. Intuition: a linear dependence is a *non-trivial* way to obtain the zero vector; equivalently, we have two different ways to “get $\mathbf{0}$ ”, so the set should be called dependent.

Example. Let $W \subset V$ be finite and suppose $\mathbf{0} \in W$. Write $W = \{v_1, \dots, v_k, \mathbf{0}\}$. Then

$$1 \cdot \mathbf{0} + \sum_{i=1}^k 0 \cdot v_i = \mathbf{0}$$

is a non-trivial linear relation among the vectors in W . Hence W is linearly dependent.

Proposition. Let $W \subseteq V$ be a finite set of vectors.

(a) If W contains a linearly dependent subset, then W is linearly dependent.

(b) If W is linearly independent, then every nonempty subset of W is linearly independent.

Proof. (a) Let $\widehat{W} = \{v_1, \dots, v_j\} \subseteq W$ be linearly dependent. Then there exist scalars $\lambda_1, \dots, \lambda_j$, not all zero, with

$$\sum_{i=1}^j \lambda_i v_i = \mathbf{0}.$$

Write $W = \{v_1, \dots, v_j, v_{j+1}, \dots, v_\ell\}$ and extend the list of scalars by $\lambda_{j+1} = \dots = \lambda_\ell = 0$. Then

$$\sum_{i=1}^\ell \lambda_i v_i = \mathbf{0}$$

with some $\lambda_i \neq 0$, so W is linearly dependent.

(b) This is the contrapositive of (a). If a nonempty subset of W were linearly dependent, then (a) would force W to be dependent as well, contrary to the hypothesis. Hence every nonempty subset is linearly independent. \square

Remark (Convention). The empty set \emptyset is considered *linearly independent*.

Proposition. Let $X = \{\mathbf{x}_1, \dots, \mathbf{x}_k\} \subset \mathbb{R}^t$ be a set of nonzero, pairwise orthogonal vectors (i.e., $\langle \mathbf{x}_i, \mathbf{x}_j \rangle = 0$ for $i \neq j$). Then $\{\mathbf{x}_1, \dots, \mathbf{x}_k\}$ is linearly independent.

Proof. Suppose $\sum_{i=1}^k \lambda_i \mathbf{x}_i = \mathbf{0}$. Fix $j \in \{1, \dots, k\}$ and take the inner product with \mathbf{x}_j :

$$0 = \left\langle \mathbf{x}_j, \sum_{i=1}^k \lambda_i \mathbf{x}_i \right\rangle = \sum_{i=1}^k \lambda_i \langle \mathbf{x}_j, \mathbf{x}_i \rangle = \lambda_j \langle \mathbf{x}_j, \mathbf{x}_j \rangle = \lambda_j \|\mathbf{x}_j\|^2.$$

Since $\mathbf{x}_j \neq \mathbf{0}$, we have $\|\mathbf{x}_j\|^2 > 0$, hence $\lambda_j = 0$. Because j was arbitrary, all $\lambda_i = 0$, so the set is linearly independent. \square

Example (Back to Example 7). Take $\mathbf{x} = (4, 2)$ and $\mathbf{y} = (2, \frac{1}{2})$ in \mathbb{R}^2 . They are *not* orthogonal because

$$\langle \mathbf{x}, \mathbf{y} \rangle = 4 \cdot 2 + 2 \cdot \frac{1}{2} = 8 + 1 \neq 0.$$

Nevertheless they are linearly independent: if $\alpha \mathbf{x} + \beta \mathbf{y} = \mathbf{0}$ then

$$\begin{cases} 4\alpha + 2\beta = 0, \\ 2\alpha + \frac{1}{2}\beta = 0. \end{cases}$$

Multiplying the second equation by 4 gives $8\alpha + 2\beta = 0$; subtracting 2 times the first equation yields $-2\beta = 0$, so $\beta = 0$, and then $\alpha = 0$. Hence $\{\mathbf{x}, \mathbf{y}\}$ is LI. This shows orthogonality is *sufficient* but not *necessary* for linear independence.

Definition (Basis). Let $W \leq V$ be a vector subspace. A finite set $B = \{v_1, \dots, v_k\} \subset W$ is a *basis* of W iff

1. B is linearly independent, and
2. $\text{span}(B) = W$.

Equivalently, a basis is a minimal generating set of W (no vector of B lies in the span of the others).

Example (Standard basis of \mathbb{R}^J). Define $e_i = (0, \dots, 0, 1, 0, \dots, 0) \in \mathbb{R}^J$ with 1 in the i -th position. Then $E = \{e_1, \dots, e_J\}$ is a basis of \mathbb{R}^J :

- **LI:** If $\sum_{i=1}^J \lambda_i e_i = \mathbf{0}$, then every coordinate equals 0, hence $\lambda_i = 0$ for all i .
- **Spanning:** For $x = (x_1, \dots, x_J) \in \mathbb{R}^J$ we have $x = \sum_{i=1}^J x_i e_i$.

Example (A non-standard basis of \mathbb{R}^2). Let $\mathbf{x} = (4, 2)$ and $\mathbf{y} = (2, \frac{1}{2})$. The matrix with columns \mathbf{x}, \mathbf{y} is

$$A = \begin{pmatrix} 4 & 2 \\ 2 & \frac{1}{2} \end{pmatrix}, \quad \det A = 4 \cdot \frac{1}{2} - 2 \cdot 2 = -2 \neq 0.$$

Hence $\{\mathbf{x}, \mathbf{y}\}$ is linearly independent and therefore a basis of \mathbb{R}^2 ; consequently $\text{span}\{\mathbf{x}, \mathbf{y}\} = \mathbb{R}^2$. (Another basis is the standard one $\{e_1, e_2\}$; both bases have two elements.)

Invariance of basis size If B and B' are both bases of the same subspace W , then $|B| = |B'|$ (they have the same number of elements). This number is called the *dimension* of W and is denoted $\dim W$.

Example (A 2-dimensional subspace of \mathbb{R}^3). Let

$$W = \{(z_1, z_2, z_3) \in \mathbb{R}^3 : z_3 = 0\}.$$

Then $W = \text{span}\{(1, 0, 0), (0, 1, 0)\}$ and these two vectors are LI, so $\{(1, 0, 0), (0, 1, 0)\}$ is a basis of W . Hence $\dim W = 2$ (the xy -plane).

Linear transformation and matrices

Definition (Linear transformation). A map $L : V \rightarrow W$ between vector spaces is *linear* if, for all $\mathbf{u}, \mathbf{v} \in V$ and all $\lambda \in \mathbb{R}$,

$$(\text{Additivity}) \quad L(\mathbf{u} + \mathbf{v}) = L(\mathbf{u}) + L(\mathbf{v}), \quad (\text{Homogeneity}) \quad L(\lambda \mathbf{v}) = \lambda L(\mathbf{v}).$$

Characterizing linear maps $L : \mathbb{R}^t \rightarrow \mathbb{R}$

Proposition. A function $L : \mathbb{R}^t \rightarrow \mathbb{R}$ is linear iff there exists a vector $\mathbf{v} = (v_1, \dots, v_t) \in \mathbb{R}^t$ such that, for every $\mathbf{x} = (x_1, \dots, x_t) \in \mathbb{R}^t$,

$$L(\mathbf{x}) = \mathbf{v} \cdot \mathbf{x} = \sum_{i=1}^t v_i x_i.$$

In particular, the representing vector is unique and equals $\mathbf{v} = (L(\mathbf{e}_1), \dots, L(\mathbf{e}_t))$, where $\{\mathbf{e}_1, \dots, \mathbf{e}_t\}$ is the standard basis of \mathbb{R}^t .

Proof. (\Rightarrow) Assume L is linear. Any $\mathbf{x} \in \mathbb{R}^t$ can be written as $\mathbf{x} = \sum_{i=1}^t x_i \mathbf{e}_i$. By linearity,

$$L(\mathbf{x}) = L\left(\sum_{i=1}^t x_i \mathbf{e}_i\right) = \sum_{i=1}^t x_i L(\mathbf{e}_i).$$

Set $v_i := L(\mathbf{e}_i)$ and $\mathbf{v} = (v_1, \dots, v_t)$; then $L(\mathbf{x}) = \sum_{i=1}^t v_i x_i = \mathbf{v} \cdot \mathbf{x}$.

(\Leftarrow) Conversely, suppose $L(\mathbf{x}) = \mathbf{v} \cdot \mathbf{x}$ for some fixed \mathbf{v} . Then for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^t$ and $\lambda \in \mathbb{R}$,

$$L(\mathbf{x} + \mathbf{y}) = \mathbf{v} \cdot \mathbf{x} + \mathbf{v} \cdot \mathbf{y} = \mathbf{v} \cdot \mathbf{x} + \mathbf{v} \cdot \mathbf{y} = L(\mathbf{x}) + L(\mathbf{y}),$$

$$L(\lambda \mathbf{x}) = \mathbf{v} \cdot \lambda \mathbf{x} = \lambda \mathbf{v} \cdot \mathbf{x} = \lambda L(\mathbf{x}),$$

so L is linear. Uniqueness of \mathbf{v} follows by evaluating at the basis vectors \mathbf{e}_i . \square

Checks. If $L(\mathbf{x}) = \mathbf{v} \cdot \mathbf{x}$, then

$$L(\mathbf{x} + \mathbf{y}) = \mathbf{v} \cdot \mathbf{x} + \mathbf{v} \cdot \mathbf{y} = \mathbf{v} \cdot \mathbf{x} + \mathbf{v} \cdot \mathbf{y} = L(\mathbf{x}) + L(\mathbf{y}), \quad L(\lambda \mathbf{x}) = \mathbf{v} \cdot \lambda \mathbf{x} = \lambda \mathbf{v} \cdot \mathbf{x} = \lambda L(\mathbf{x}).$$

Consequences.

- A linear functional $L : \mathbb{R}^t \rightarrow \mathbb{R}$ is completely determined by its values on the standard basis: $v_i = L(\mathbf{e}_i)$.
- In coordinates, $L(x_1, \dots, x_t) = \sum_{i=1}^t v_i x_i$.

Characterizing linear transformations $L : \mathbb{R}^I \rightarrow \mathbb{R}^J$

Let $L : \mathbb{R}^I \rightarrow \mathbb{R}^J$ be linear. For each $j = 1, \dots, J$ define the linear functional $L_j : \mathbb{R}^I \rightarrow \mathbb{R}$ by $L(\mathbf{x}) = (L_1(\mathbf{x}), \dots, L_J(\mathbf{x}))$. For every j set

$$\mathbf{v}_j := (L_j(\mathbf{e}_1), L_j(\mathbf{e}_2), \dots, L_j(\mathbf{e}_I)) \in \mathbb{R}^I.$$

Then, for all $\mathbf{x} \in \mathbb{R}^I$,

$$L_j(\mathbf{x}) = \langle \mathbf{v}_j, \mathbf{x} \rangle \quad \text{and} \quad L(\mathbf{x}) = (\langle \mathbf{v}_1, \mathbf{x} \rangle, \dots, \langle \mathbf{v}_J, \mathbf{x} \rangle) \in \mathbb{R}^J.$$

Matrix viewpoint. When we regard inputs/outputs as column vectors,

$$\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_I \end{pmatrix}, \quad L(\mathbf{x}) = \begin{pmatrix} \langle \mathbf{v}_1, \mathbf{x} \rangle \\ \vdots \\ \langle \mathbf{v}_J, \mathbf{x} \rangle \end{pmatrix} = \underbrace{\begin{pmatrix} \mathbf{v}_1^\top \\ \vdots \\ \mathbf{v}_J^\top \end{pmatrix}}_{A \in \mathbb{R}^{J \times I}} \mathbf{x}.$$

Thus every linear map $L : \mathbb{R}^I \rightarrow \mathbb{R}^J$ is represented by the (unique) matrix A whose j -th row is \mathbf{v}_j^\top , and $L(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^I$.

Example (From linear forms to the matrix of L). Let $L : \mathbb{R}^3 \rightarrow \mathbb{R}^2$ be

$$L(x_1, x_2, x_3) = \underbrace{(x_1 + 2x_2 + 3x_3)}_{\ell_1(\mathbf{x})}, \underbrace{(4x_1 + 5x_2 + 6x_3)}_{\ell_2(\mathbf{x})}, \quad \mathbf{x} = (x_1, x_2, x_3).$$

Define $\mathbf{v}_1 = (1, 2, 3)$ and $\mathbf{v}_2 = (4, 5, 6)$. Then

$$\ell_1(\mathbf{x}) = \langle \mathbf{v}_1, \mathbf{x} \rangle, \quad \ell_2(\mathbf{x}) = \langle \mathbf{v}_2, \mathbf{x} \rangle,$$

so $L(\mathbf{x}) = (\langle \mathbf{v}_1, \mathbf{x} \rangle, \langle \mathbf{v}_2, \mathbf{x} \rangle)$.

Viewing L as a $J \times I = 2 \times 3$ matrix,

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} = \begin{pmatrix} \mathbf{v}_1^\top \\ \mathbf{v}_2^\top \end{pmatrix}, \quad A\mathbf{x} = \begin{pmatrix} x_1 + 2x_2 + 3x_3 \\ 4x_1 + 5x_2 + 6x_3 \end{pmatrix} = L(\mathbf{x}).$$

Equivalently, if $(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ is the standard basis of \mathbb{R}^3 , the *columns* of A are $L(\mathbf{e}_1)$, $L(\mathbf{e}_2)$, $L(\mathbf{e}_3)$, and

$$L(\mathbf{x}) = \sum_{i=1}^3 x_i L(\mathbf{e}_i).$$

Proposition (Standard matrix of a linear map). *Let $L : \mathbb{R}^I \rightarrow \mathbb{R}^J$ be linear. Its (unique) standard matrix $A_L \in \mathbb{R}^{J \times I}$ is*

$$A_L = [L(\mathbf{e}_1) \ L(\mathbf{e}_2) \ \cdots \ L(\mathbf{e}_I)],$$

so that for every $\mathbf{x} \in \mathbb{R}^I$,

$$L(\mathbf{x}) = A_L \mathbf{x} \quad \text{and} \quad L(\mathbf{x}) = \sum_{i=1}^I x_i L(\mathbf{e}_i).$$

Conversely, given any $A \in \mathbb{R}^{J \times I}$ there is a (unique) linear map $L_A : \mathbb{R}^I \rightarrow \mathbb{R}^J$ defined by $L_A(\mathbf{x}) = A\mathbf{x}$ for all \mathbf{x} .

Example (Dropping a coordinate vs. projection matrix). Take $L : \mathbb{R}^3 \rightarrow \mathbb{R}^2$ given by $L(x_1, x_2, x_3) = (x_1, x_2) = (\ell_1(\mathbf{x}), \ell_2(\mathbf{x}))$, where $\ell_1(\mathbf{x}) = x_1$ and $\ell_2(\mathbf{x}) = x_2$. Then

$$L(\mathbf{e}_1) = (1, 0)^\top, \quad L(\mathbf{e}_2) = (0, 1)^\top, \quad L(\mathbf{e}_3) = (0, 0)^\top,$$

and the standard matrix is

$$A_L = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad A_L \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = L(\mathbf{x}).$$

Remark. A_L is *not* a “projection matrix” in the usual sense because it is not square. The (orthogonal) projection in \mathbb{R}^3 onto the subspace $\text{span}\{\mathbf{e}_1, \mathbf{e}_2\}$ is the 3×3 matrix

$$P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad P^2 = P \text{ (idempotent)}, \quad P^\top = P \text{ (symmetric)}.$$

Example (Identity map). Let $L : \mathbb{R}^I \rightarrow \mathbb{R}^I$ be the identity: $L(\mathbf{x}) = \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^I$. Then for the standard basis $(\mathbf{e}_1, \dots, \mathbf{e}_I)$ we have $L(\mathbf{e}_i) = \mathbf{e}_i$, and the standard matrix is the identity matrix

$$A_L = I_I = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}.$$

Remark (Square case). Very often we consider $L : \mathbb{R}^I \rightarrow \mathbb{R}^I$. In that case the standard matrix A_L is *square*, i.e., $A_L \in \mathbb{R}^{I \times I}$.

Definition (Kernel and rank). Let $L : V \rightarrow W$ be linear between vector spaces.

- The *kernel* (null space) of L is

$$\ker L = \{v \in V : L(v) = 0\} = L^{-1}(\{0\}).$$

- The *rank* of L is

$$\text{rank } L = \dim(L(V)),$$

i.e., the dimension of the image (a subspace of W). Equivalently: the number of elements in a basis of $L(V)$.

Proposition (Column dimension equals rank). Let $L : \mathbb{R}^I \rightarrow \mathbb{R}^J$ be linear and let $A_L \in \mathbb{R}^{J \times I}$ be its standard matrix. Then

$$\text{rank } L = \dim(L(\mathbb{R}^I)) = \dim(\text{col}(A_L)) = \#\{\text{linearly independent columns of } A_L\}.$$

Corollary (Image and kernel are subspaces). For any linear map $L : V \rightarrow W$,

$$L(V) \subseteq W \quad \text{is a vector subspace of } W, \quad \ker L \subseteq V \quad \text{is a vector subspace of } V.$$

Proposition. Let $L : V \rightarrow W$ be a linear transformation.

- (1) $L(0) = 0$ in W .
- (2) If L is invertible, then the inverse map $L^{-1} : W \rightarrow V$ is a linear transformation.
- (3) L is injective (one-to-one) if and only if $\ker L = \{0\}$.
- (4) Let $\{v_1, \dots, v_k\}$ be a basis of V . Then

$$L : V \rightarrow W \text{ is surjective} \iff \text{span}(L(v_1), \dots, L(v_k)) = W.$$

- (5) If $\{v_1, \dots, v_k\}$ are linearly dependent in V , then $(L(v_1), \dots, L(v_k))$ is linearly dependent in W .

Intuition. About point (3):

You need the set of v that map to 0 is only 0. If some nonzero u satisfies $L(u) = 0$, then $L(u) = L(0)$: two different inputs ($u \neq 0$) collapse to the same output, so L is not injective. Conversely, if $Lx = Ly$ with $x \neq y$, then $L(x - y) = 0$ with $x - y \neq 0$, meaning that the kernel is not trivial.

About point (4):

Every $x \in V$ is written as a linear combination $x = \sum_i \lambda_i v_i$; by linearity, $L(x) = \sum_i \lambda_i L(v_i)$. Then L “reaches” a $w \in W$ if and only if that w is a linear combination of the images $L(v_i)$. Therefore, L is surjective exactly when $\{L(v_i)\}$ generates W .

Proposition. Fix a linear map $L : \mathbb{R}^I \rightarrow \mathbb{R}^J$ and its standard matrix $A_L \in \mathbb{R}^{J \times I}$.

- (1) L is injective iff the homogeneous system $A_L \mathbf{z} = \mathbf{0}$ has the unique solution $\mathbf{z} = \mathbf{0}$ (i.e., $\ker A_L = \{\mathbf{0}\}$).

(2) L is surjective iff the columns of A_L span \mathbb{R}^J :

$$\text{span}(A_L[*, 1], \dots, A_L[*, I]) = \mathbb{R}^J.$$

(Matrix translation of Prop. (4)).

(3) L is bijective iff $I = J$ and there exists $B \in \mathbb{R}^{I \times I}$ with

$$A_L B = B A_L = I_{I \times I} \quad (\text{the identity matrix}).$$

Proposition (Rank–Nullity). Let $L : \mathbb{R}^I \rightarrow \mathbb{R}^J$ be linear. Then

$$\dim(\ker L) + \text{rank } L = I.$$

Equivalently, for the standard matrix A_L ,

$$\text{nullity}(A_L) + \text{rank}(A_L) = \#\text{columns of } A_L (= I).$$

Consequences (useful translations):

- L injective $\iff \text{rank } L = I$ (i.e., columns linearly independent).
- L surjective $\iff \text{rank } L = J$.
- If $I = J$, then L bijective $\iff \text{rank } L = I = J \iff A_L$ is invertible.

Proposition (Square matrix). Fix a linear map $L : \mathbb{R}^I \rightarrow \mathbb{R}^I$ and its associated square matrix $A_L \in \mathbb{R}^{I \times I}$.

(1) L is injective if and only if it is surjective.

(2) A_L is invertible if and only if there is a unique $\mathbf{z} \in \mathbb{R}^I$ with $A_L \mathbf{z} = \mathbf{0}$ (equivalently $\ker L = \{\mathbf{0}\}$; i.e., injective).

Remark.

- Same input/output dimension \Rightarrow injective \Leftrightarrow surjective.
- Practical takeaway: **for a square matrix, to check invertibility it suffices to check injectivity** (or, equivalently, surjectivity).

Remark. Let $L : \mathbb{R}^I \rightarrow \mathbb{R}^I$ induce a *singular* square matrix A_L .

- Then $\ker L$ contains at least two points ($\mathbf{0}$ and some nonzero vector).
- $\ker L$ is a vector subspace (it *need not* be all of \mathbb{R}^I).
- Hence $\ker L$ is infinite; in particular, there are infinitely many $\mathbf{x} \in \mathbb{R}^I$ with $A_L \mathbf{x} = \mathbf{0}$.

Proposition. Let A_L be singular. For any $\mathbf{y} \in \mathbb{R}^I$, the system $A_L \mathbf{x} = \mathbf{y}$ has either no solutions or infinitely many solutions.

Idea only. If \mathbf{x}^* solves $A_L \mathbf{x} = \mathbf{y}$ and $\mathbf{x}^{**} \in \ker A_L$ (exists since A_L is singular), then $A_L(\mathbf{x}^* + \mathbf{x}^{**}) = \mathbf{y} + \mathbf{0} = \mathbf{y}$. Since $\ker A_L$ is infinite, you obtain infinite solutions by adding different vectors from the kernel. If, on the other hand, there is no first solution, the system simply has no solutions. \square

Remark (Invertible case). If A is invertible (i.e., non-singular), then L is bijective and for *each* \mathbf{y} there exists a *unique* \mathbf{x} with $A \mathbf{x} = \mathbf{y}$.

Determinants and invertibility

Definition. Fix a square matrix $A \in \mathbb{R}^{1 \times 1}$, then $A = [a_{11}]$ and $\det(A) = a_{11}$

Proposition. Fix a square matrix $A \in \mathbb{R}^{I \times I}$. Then

A is singular (non-invertible) $\iff \det(A) = 0$, A is non-singular (invertible) $\iff \det(A) \neq 0$.

Definition (Minor and cofactor). Let $A \in \mathbb{R}^{I \times I}$. For $j, i \in \{1, \dots, I\}$, the M_{ji} matrix is obtained from A by deleting the j -th row and the i -th column; hence $M_{ji} \in \mathbb{R}^{(I-1) \times (I-1)}$.

The corresponding *cofactor*- ji is

$$c_{ji} = (-1)^{j+i} \det(M_{ji}).$$

Definition (Determinant). Let $A = (a_{ji}) \in \mathbb{R}^{I \times I}$ and let $c_{ji} = (-1)^{j+i} \det(M_{ji})$ be the cofactor obtained by deleting the j -th row and i -th column. For any fixed $j \in \{1, \dots, I\}$,

$$\det(A) = \sum_{i=1}^I a_{ji} c_{ji}.$$

It does not matter which row j you choose—the final value is the same.

Example. 2×2 check. For $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$:

$$\text{for } j = 1 : \det(A) = a_{11} a_{22} - a_{12} a_{21},$$

$$\text{for } j = 2 : \det(A) = -a_{21} a_{12} + a_{22} a_{11}.$$

(Same value; only the order/sign pattern changes.)

Determinant in \mathbb{R}^3

Let

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Using the cofactor expansion along the first row (any fixed row/column gives the same final value),

$$\det(A) = a_{11} \det(M_{11}) - a_{12} \det(M_{12}) + a_{13} \det(M_{13}),$$

where the minors are

$$\det(M_{11}) = a_{22}a_{33} - a_{23}a_{32}, \quad \det(M_{12}) = a_{21}a_{33} - a_{31}a_{23}, \quad \det(M_{13}) = a_{21}a_{32} - a_{22}a_{31}.$$

Equivalently,

$$\boxed{\det(A) = a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{31}a_{23}) + a_{13}(a_{21}a_{32} - a_{22}a_{31})}$$

Definition. Properties of determinants (column-wise formulation) Throughout, $A, B, C \in \mathbb{R}^{I \times I}$ and $A[*i]$ denotes the i -th column of A .

1. **Transpose:** $\det(A) = \det(A^T)$.

2. **Identity:** $\det(I_I) = 1$.

3. **Duplicate column \Rightarrow zero:** If $A[*, i] = A[*, \ell]$ for some $i \neq \ell$, then $\det(A) = 0$.

4. **Swap two columns flips the sign:** If

$$A[*, k] = B[*, \ell], \quad A[*, \ell] = B[*, k] \quad (k \neq \ell), \quad \text{and } A[*, i] = B[*, i] \quad \forall i \notin \{k, \ell\},$$

then $\det(A) = -\det(B)$.

5. **Homogeneity in one column:** If

$$A[*, \ell] = c B[*, \ell] \quad \text{and} \quad A[*, i] = B[*, i] \quad \forall i \neq \ell,$$

then $\det(A) = c \det(B)$.

6. **Additivity in one column:** If

$$A[*, \ell] = B[*, \ell] + C[*, \ell] \quad \text{and} \quad A[*, i] = B[*, i] = C[*, i] \quad \forall i \neq \ell,$$

then $\det(A) = \det(B) + \det(C)$.

Also useful:

- **Multiplicativity:** $\det(AB) = \det(A) \det(B)$.
- **Triangular/diagonal:** If A is triangular, then $\det(A) = \prod_{i=1}^I a_{ii}$.
- **Zero column:** If some $A[*, \ell] = \mathbf{0}$, then $\det(A) = 0$ (special case of (5) with $c = 0$).

Eigenvalues and eigenvectors

Let $L : \mathbb{R}^I \rightarrow \mathbb{R}^I$ be linear. We call $\lambda \in \mathbb{R}$ an *eigenvalue* of L if there exists a nonzero vector $\mathbf{x} \neq \mathbf{0}$ such that

$$L(\mathbf{x}) = \lambda \mathbf{x},$$

and any such \mathbf{x} is an *eigenvector* associated with λ .

Example. With

$$A = \begin{bmatrix} 2 & 0 \\ 1 & 5 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix},$$

we have

$$A\mathbf{x} = \begin{bmatrix} 2x_1 \\ x_1 + 5x_2 \end{bmatrix},$$

which is typically *not* parallel to \mathbf{x} (so not an eigenvector in general).

Remark. We require $\mathbf{x} \neq \mathbf{0}$ because $L(\mathbf{0}) = \mathbf{0}$ for any linear map; eigenvectors capture directions that the transformation sends to a parallel vector (possibly scaled).

Example. Projection Let

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Starting from $\mathbf{x} = (1, 1, 1)^\top$ gives $A\mathbf{x} = (1, 1, 0)^\top$ (down to the plane $z = 0$ in \mathbb{R}^3). There is no single λ with $A\mathbf{x} = \lambda\mathbf{x}$ for arbitrary $\mathbf{x} \in \mathbb{R}^3$, so we look inside the plane: for any $\mathbf{y} = (y_1, y_2, 0)^\top$,

$$A\mathbf{y} = \mathbf{y} \Rightarrow \lambda = 1 \text{ with eigenvectors in the plane } z = 0.$$

Vectors orthogonal to that plane give the other eigenvalue:

$$A \begin{bmatrix} 0 \\ 0 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = 0 \cdot \begin{bmatrix} 0 \\ 0 \\ x_3 \end{bmatrix}, \quad \lambda = 0 \text{ with eigenvectors along the } z\text{-axis.}$$

Example. Permutation Matrix

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_1 \end{bmatrix} = \lambda \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

Hence:

$$\begin{cases} x_1 = x_2 \neq 0 \Rightarrow \lambda = 1, \text{ eigenvectors } \{(1, 1)\}; \\ x_1 = -x_2 \neq 0 \Rightarrow \lambda = -1, \text{ eigenvectors } \{(1, -1)\}. \end{cases}$$

Eigenvalues and eigenvectors: general approach

- First, *solve for eigenvalues*. Then use them to obtain the corresponding eigenvectors.
- We look for nonzero vectors $\vec{x} \neq \vec{0}$ and scalars λ such that

$$A\vec{x} = \lambda\vec{x} \iff (A - \lambda I_I)\vec{x} = \vec{0}.$$

Denote $B := A - \lambda I_I$.

- If B were invertible, the only solution would be $\vec{x} = \vec{0}$ for every $\lambda \in \mathbb{R}$. But we want a *nonzero* solution, so B must be non-invertible (singular).
- Therefore we search for the unknown λ from the single scalar equation

$$\det(A - \lambda I_I) = 0.$$

Corollary. A scalar $\lambda \in \mathbb{R}$ is an eigenvalue of $A \in \mathbb{R}^{I \times I}$ if and only if

$$\det(A - \lambda I_I) = 0.$$

Side note: the polynomial $p_A(\lambda) := \det(A - \lambda I_I)$ is the **characteristic polynomial**.

Example (back to the 2×2 case). For

$$A = \begin{bmatrix} 2 & 0 \\ 1 & 5 \end{bmatrix}, \quad B = A - \lambda I_2 = \begin{bmatrix} 2 - \lambda & 0 \\ 1 & 5 - \lambda \end{bmatrix},$$

we get

$$\det(B) = (2 - \lambda)(5 - \lambda) = 0 \Rightarrow \lambda \in \{2, 5\}.$$

Basic spectral facts (no proofs)

Proposition. Fix $A \in \mathbb{R}^{I \times I}$.

1. A has I eigenvalues (counted with algebraic multiplicity), *possibly complex*.
2. If A is **symmetric** ($A = A^T$), then all eigenvalues are real.
3. $\det(A) = \prod_{i=1}^I \lambda_i$ (product of the eigenvalues, with multiplicity).
4. $\sum_{i=1}^I \lambda_i = \text{tr}(A)$, where $\text{tr}(A) = \sum_{i=1}^I a_{ii}$.

Example.

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \implies A - \lambda I_2 = \begin{bmatrix} 2 - \lambda & 0 \\ 0 & 2 - \lambda \end{bmatrix}, \quad \det(A - \lambda I_2) = (2 - \lambda)^2 = 0,$$

so $\lambda = 2$ *twice* (double eigenvalue).

Remark (many eigenvectors for one eigenvalue). If λ is an eigenvalue of $A \in \mathbb{R}^{I \times I}$ with eigenvector $\mathbf{x} \neq \mathbf{0}$, then there are *infinitely many* eigenvectors associated with λ :

$$(A - \lambda I_I)(\alpha \mathbf{x}) = \alpha (A - \lambda I_I)\mathbf{x} = \mathbf{0} \quad \text{for any } \alpha \in \mathbb{R} \setminus \{0\}.$$

(Back to the “singular matrix” remark: if $B \in \mathbb{R}^{I \times I}$ is singular, then $B\mathbf{z} = \mathbf{0}$ has infinitely many solutions; and $B\mathbf{z} = \mathbf{y}$ has either no solutions or infinitely many.)

Proposition. (eigenvectors for distinct eigenvalues) Let $A \in \mathbb{R}^{I \times I}$ have I distinct eigenvalues $\lambda_1, \dots, \lambda_I$ with associated eigenvectors $\mathbf{x}_1, \dots, \mathbf{x}_I$. Then $\{\mathbf{x}_1, \dots, \mathbf{x}_I\}$ is linearly independent.

Example. (back to the 2×2 case) Let

$$A = \begin{pmatrix} 2 & 0 \\ 1 & 5 \end{pmatrix}.$$

For $\lambda = 2$:

$$A - 2I = \begin{pmatrix} 0 & 0 \\ 1 & 3 \end{pmatrix}, \quad (A - 2I) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \implies x_1 + 3x_2 = 0.$$

Eigenvectors: $\{(-3t, t) : t \neq 0\}$.

For $\lambda = 5$:

$$A - 5I = \begin{pmatrix} -3 & 0 \\ 1 & 0 \end{pmatrix}, \quad (A - 5I) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \implies x_1 = 0, x_2 \neq 0.$$

Eigenvectors: $\{(0, t) : t \neq 0\}$.

Thus each eigenvalue has infinitely many eigenvectors (different scalar multiples), and the two eigenvector *directions* $(-3, 1)$ and $(0, 1)$ are linearly independent (*note: not necessarily orthogonal*).

Example. (Jordan block / repeated eigenvalue) Let

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad B(\lambda) = A - \lambda I = \begin{pmatrix} 1 - \lambda & 1 \\ 0 & 1 - \lambda \end{pmatrix}.$$

$$\det B(\lambda) = (1 - \lambda)^2 \Rightarrow \lambda = 1 \text{ (double root).}$$

Solve $A\mathbf{x} = \lambda\mathbf{x}$ with $\lambda = 1$:

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \implies x_1 + x_2 = x_1 \Rightarrow x_2 = 0.$$

Eigenvectors: $\{(t, 0) : t \neq 0\}$. Here the (algebraic) multiplicity is 2 but there is only *one* independent eigenvector direction (the eigenvectors are all scalar multiples of each other).

Check note (to check). If we take two eigenvectors that come from the *same* eigenvalue, they are (claimed to be) linearly dependent. If they come from *different* eigenvalues, they are linearly independent.

Idea of the spectral theorem

Fix a symmetric matrix $A \in \mathbb{R}^{I \times I}$.

- There exists an *orthonormal basis* of \mathbb{R}^I consisting of I eigenvectors of A .
- In that ON basis, A acts by scaling each basis vector:

$$A \mathbf{e}_i = \lambda_i \mathbf{e}_i \implies [A]_{\text{ON basis}} = \text{diag}(\lambda_1, \dots, \lambda_I).$$

(Eigenvalues may repeat; e.g., $A = I$.)

- If $\lambda_i \neq \lambda_j$, the corresponding eigenvectors in this ON basis are orthogonal (hence linearly independent).
- Equivalently, A is orthogonally diagonalizable:

$$A = Q \Lambda Q^T, \quad Q^T Q = I, \quad \Lambda = \text{diag}(\lambda_1, \dots, \lambda_I),$$

where the columns of Q form the orthonormal eigenbasis.

Quadratic Forms

We now move *beyond* linear maps. Functions like

$$f : \mathbb{R} \rightarrow \mathbb{R}, f(x) = x^2$$

or

$$f : \mathbb{R}^2 \rightarrow \mathbb{R}, f(x_1, x_2) = x_1^2 + 2x_1x_2 + x_2^2$$

are *not* linear. Quadratic forms are a systematic way to study such “square” expressions.

Definition (Quadratic form). A function $Q : \mathbb{R}^I \rightarrow \mathbb{R}$ is a *quadratic form* if there exists a real matrix $A = (a_{ij}) \in \mathbb{R}^{I \times I}$ such that

$$Q(\mathbf{x}) = \sum_{i=1}^I \sum_{j=1}^I a_{ij} x_i x_j = \mathbf{x}^\top A \mathbf{x}, \quad \mathbf{x} = (x_1, \dots, x_I)^\top.$$

Low-dimensional expansions. Writing out the sum shows explicitly where squares and cross terms come from.

- $I = 1$: $Q(x_1) = a_{11}x_1^2$. In particular, $a_{11} > 0 \Rightarrow Q(\mathbf{x}) > 0$ for all $\mathbf{x} \neq \mathbf{0}$, and $a_{11} < 0 \Rightarrow Q(\mathbf{x}) < 0$ for all $\mathbf{x} \neq \mathbf{0}$.

- $I = 2$:

$$Q(x_1, x_2) = a_{11}x_1^2 + (a_{12} + a_{21})x_1x_2 + a_{22}x_2^2.$$

- $I = 3$:

$$\begin{aligned} Q(x_1, x_2, x_3) &= a_{11}x_1^2 + a_{22}x_2^2 + a_{33}x_3^2 \\ &\quad + (a_{12} + a_{21})x_1x_2 + (a_{13} + a_{31})x_1x_3 + (a_{23} + a_{32})x_2x_3. \end{aligned}$$

With $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ and $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$,

$$A\mathbf{x} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 \\ a_{21}x_1 + a_{22}x_2 \end{bmatrix} \quad (\text{linear in } \mathbf{x}; \text{ we are “missing” squares}),$$

and left-multiplying by \mathbf{x}^\top produces the quadratic terms:

$$\mathbf{x}^\top A \mathbf{x} = [x_1 \ x_2] \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = a_{11}x_1^2 + (a_{12} + a_{21})x_1x_2 + a_{22}x_2^2.$$

Only the symmetric part matters. For any A , let $S = \frac{1}{2}(A + A^\top)$. Then

$$\mathbf{x}^\top A \mathbf{x} = \mathbf{x}^\top S \mathbf{x} = \sum_i a_{ii}x_i^2 + \sum_{i < j} (a_{ij} + a_{ji})x_i x_j,$$

so a quadratic form is determined by the symmetric coefficients a_{ii} and $a_{ij} + a_{ji}$.

Quadratic forms: symmetric representation and definiteness

Matrix representation. Given a quadratic form $q : \mathbb{R}^I \rightarrow \mathbb{R}$, there exists a *unique* symmetric matrix $A \in \mathbb{R}^{I \times I}$ such that

$$q(\mathbf{x}) = \mathbf{x}^\top A \mathbf{x} \quad \forall \mathbf{x} \in \mathbb{R}^I. \quad (1)$$

Conversely, every symmetric $A \in \mathbb{R}^{I \times I}$ induces a quadratic form via $q(\mathbf{x}) = \mathbf{x}^\top A \mathbf{x}$.

Definition. Definiteness (for symmetric matrices). Fix a symmetric $A \in \mathbb{R}^{I \times I}$.

1. **Positive definite (PD):** A is PD iff $\mathbf{x}^\top A \mathbf{x} > 0$ for every $\mathbf{x} \neq \mathbf{0}$.
2. **Negative definite (ND):** A is ND iff $\mathbf{x}^\top A \mathbf{x} < 0$ for every $\mathbf{x} \neq \mathbf{0}$.
3. **Positive semidefinite (PSD):** A is PSD iff $\mathbf{x}^\top A \mathbf{x} \geq 0$ for every $\mathbf{x} \in \mathbb{R}^I$.
4. **Negative semidefinite (NSD):** A is NSD iff $\mathbf{x}^\top A \mathbf{x} \leq 0$ for every $\mathbf{x} \in \mathbb{R}^I$.
5. **Indefinite:** A is indefinite if it is neither PSD nor NSD (i.e., $\exists \mathbf{x}, \mathbf{y} \neq \mathbf{0}$ with $\mathbf{x}^\top A \mathbf{x} > 0$ and $\mathbf{y}^\top A \mathbf{y} < 0$).

Example. Two examples:

- $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Then $\mathbf{x}^\top A \mathbf{x} = x_1^2 + x_2^2 > 0$ for all $\mathbf{x} \neq \mathbf{0}$, hence A is PD.
- $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. Then $\mathbf{x}^\top A \mathbf{x} = x_1^2 \geq 0$ for all \mathbf{x} , and $\mathbf{x}^\top A \mathbf{x} = 0$ for any nonzero vector of the form $(0, x_2)$. Hence A is PSD (but not PD).

Proposition. *Eigenvalue characterization.* Let $A \in \mathbb{R}^{I \times I}$ be symmetric with eigenvalues $\lambda_1, \dots, \lambda_I$.

1. A is PD $\iff \lambda_i > 0$ for all i . A is ND $\iff \lambda_i < 0$ for all i .
2. A is PSD $\iff \lambda_i \geq 0$ for all i . A is NSD $\iff \lambda_i \leq 0$ for all i .
3. Otherwise (mixed signs), A is indefinite.

Why “all eigenvalues > 0 ” \Rightarrow PD (symmetric case). Let $A \in \mathbb{R}^{I \times I}$ be symmetric with eigenpairs $\{(\lambda_i, \mathbf{v}_i)\}_{i=1}^I$. For an eigenvector $\mathbf{v}_i \neq \mathbf{0}$,

$$\mathbf{v}_i^\top A \mathbf{v}_i = \mathbf{v}_i^\top (\lambda_i \mathbf{v}_i) = \lambda_i \mathbf{v}_i^\top \mathbf{v}_i = \lambda_i \|\mathbf{v}_i\|^2.$$

Hence $\lambda_i > 0 \Rightarrow \mathbf{v}_i^\top A \mathbf{v}_i > 0$.

Key step (spectral theorem). Because A is symmetric, there exists an *orthonormal* eigenbasis $\{\mathbf{v}_i\}_{i=1}^I$ of \mathbb{R}^I . Any $\mathbf{z} \in \mathbb{R}^I$ can be written as $\mathbf{z} = \sum_{i=1}^I c_i \mathbf{v}_i$ with $c_i = \mathbf{v}_i^\top \mathbf{z}$. Then

$$\mathbf{z}^\top A \mathbf{z} = \left(\sum_i c_i \mathbf{v}_i \right)^\top A \left(\sum_j c_j \mathbf{v}_j \right) = \sum_{i=1}^I \lambda_i c_i^2 \quad (\text{orthogonality}).$$

Therefore:

$$\lambda_i > 0 \ \forall i \Rightarrow \mathbf{z}^\top A \mathbf{z} > 0 \ \forall \mathbf{z} \neq \mathbf{0} \implies A \text{ is PD.}$$

Analogously, if $\lambda_i < 0$ for all i , then A is ND; if $\lambda_i \geq 0$ (respectively ≤ 0) for all i , then A is PSD (respectively NSD).

Why symmetry is necessary (counterexample). Let

$$A = \begin{bmatrix} 1 & 10 \\ 0 & 1 \end{bmatrix} \quad (\text{not symmetric}).$$

Its characteristic polynomial is $(1 - \lambda)^2$, so the only eigenvalue is $\lambda = 1 > 0$. However the quadratic form

$$\mathbf{z}^T A \mathbf{z} = [x_1 \ x_2] \begin{bmatrix} 1 & 10 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1^2 + 10x_1x_2 + x_2^2$$

is *indefinite*: $\mathbf{z} = (1, 1) \Rightarrow \mathbf{z}^T A \mathbf{z} = 12 > 0$ but $\mathbf{z} = (1, -1) \Rightarrow \mathbf{z}^T A \mathbf{z} = -8 < 0$. Thus “all eigenvalues $> 0 \Rightarrow \text{PD}$ ” fails without symmetry.

Corollary (symmetric A). Let $A \in \mathbb{R}^{I \times I}$ be symmetric.

1. If A is PD or ND, then A is invertible. (all eigenvalues are nonzero)
2. If A is PD (resp. ND), then A^{-1} is also PD (resp. ND). (eigenvalues of A^{-1} are $1/\lambda_i$)
3. If A is PSD or NSD but not PD/ND, then A is *not* invertible. (some $\lambda_i = 0$)

Principal minors: another trick (Sylvester's criteria)

For $A \in \mathbb{R}^{I \times I}$ and $r \in \{1, \dots, I\}$, let

$$A_{[r]} := A(1:r, 1:r) \quad \text{and} \quad \Delta_r := \det(A_{[r]})$$

be the *leading* $r \times r$ principal submatrix and its determinant (the leading principal minor of order r). More generally, if $S \subseteq \{1, \dots, I\}$ with $|S| = r$, the (general) principal submatrix is $A_{S,S}$ and its principal minor is $\det(A_{S,S})$.

Handy identity. For any $r \times r$ matrix B ,

$$\det(-B) = (-1)^r \det(B).$$

Consequently, if A is PD then $-A$ is ND, because $\det((-A)_{[r]}) = (-1)^r \Delta_r$.

Proposition. (Sylvester's criteria for symmetric matrices). Fix a symmetric matrix $A \in \mathbb{R}^{I \times I}$.

1. **Positive definite (PD).**

$$A \text{ is PD} \iff \Delta_r > 0 \quad \text{for all } r = 1, \dots, I.$$

2. **Negative definite (ND).**

$$A \text{ is ND} \iff (-1)^r \Delta_r > 0 \quad \text{for all } r = 1, \dots, I,$$

i.e., each Δ_r has the sign of $(-1)^r$.

3. **Positive semidefinite (PSD).**

$$A \text{ is PSD} \iff \det(A_{S,S}) \geq 0 \quad \text{for every principal submatrix } A_{S,S}.$$

4. Negative semidefinite (NSD).

A is NSD $\iff (-1)^{|S|} \det(A_{S,S}) \geq 0$ for every principal submatrix $A_{S,S}$,
equivalently: each principal minor is either 0 or has the sign of $(-1)^{|S|}$.

Example (2×2). Two examples:

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \quad \Delta_1 = \det \begin{bmatrix} 2 \end{bmatrix} = 2 > 0, \Delta_2 = \det(A) = 2 \cdot 2 - (-1)^2 = 4 - 1 = 3 > 0, \\ \text{all leading principal minors are positive } \Rightarrow A \text{ is PD.}$$

$$A = \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix} \quad \Delta_1 = -2 \text{ (same sign as } (-1)^1\text{)}, \Delta_2 = \det(A) = (-2)(-2) - 1 = 3 > 0 \text{ (same sign as } (-1)^2\text{)}, \\ (-1)^r \Delta_r > 0 \ (r = 1, 2) \Rightarrow A \text{ is ND.}$$

Corollary. If A is symmetric and PD (respectively ND), then A is invertible. Moreover, if A is PD (ND), then A^{-1} is also PD (ND).

If A is PSD or NSD but not PD/ND, then A is not invertible.

Lower-triangular matrices. A matrix $B \in \mathbb{R}^{I \times I}$ is *lower triangular* if $b_{ij} = 0$ for all $i < j$, i.e.

$$B = \begin{bmatrix} b_{11} & 0 & \cdots & 0 \\ b_{21} & b_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ b_{I1} & \cdots & b_{II-1} & b_{II} \end{bmatrix}.$$

If B is upper or lower triangular, then

$$\det(B) = \prod_{i=1}^I b_{ii}.$$

In particular, if every diagonal entry $b_{ii} \neq 0$ (e.g., all $b_{ii} > 0$) then B is invertible.

Definition. (Cholesky decomposition). A matrix $A \in \mathbb{R}^{I \times I}$ admits a Cholesky decomposition if there exists a lower-triangular B with strictly positive diagonal entries such that

$$A = B B^T.$$

Proposition. A symmetric matrix $A \in \mathbb{R}^{I \times I}$ is **positive definite (PD)** iff it admits a Cholesky decomposition.

Proof. Sketch proof: **Need to build intuition**

- If $A = B B^T$ with B lower triangular and $\text{diag}(B) > 0$, then for any $x \in \mathbb{R}^I$,

$$x^T A x = x^T (B B^T) x = (B^T x)^T (B^T x) = \|B^T x\|_2^2 \geq 0.$$

Let $k := B^T x$. Since B is invertible (positive diagonal), $k = 0$ iff $x = 0$. Hence $x^T A x > 0$ for all $x \neq 0$, i.e., A is PD.

- Conversely, if A is symmetric PD, then there exists a unique¹ lower-triangular B with positive diagonal such that $A = BB^T$ (the Cholesky factor).

□

¹Uniqueness holds with the convention that the diagonal of B is strictly positive.