Week 2

Continuity (continuation)

Definition (Uniform continuity). Let (X,dx) and (Y, dy) be metric spaces and f : X — Y. We
say that f is uniformly continuous on X if

Ve >036 >0s.t. (dx(z,2") <d = dy(f(z), f(z)) <e) forall z,2’ € X.
Equivalently: the same § = §(¢) works simultaneously for all pairs x, 2’ in X.
Remark (Negation (quantifiers made explicit)). The negation of uniform continuity is:
Jeo > 0 such that V4§ > 0 3z,2" € X with dx(z,2") <6 and dy (f(z), f(z')) > 0.

Remark (Equivalent “constructive” failure). Equivalently, f fails to be uniformly continuous iff
there exist g9 > 0 and two sequences {z,},{z),} C X such that

dx (zp,2),) —— 0 but dy(f(zn), f(z),)) > eo for all n.

n—oo

This rephrasing is often handier in proofs.

Intuition. Uniform continuity asks for a é that works globally (same § for the whole domain) once
¢ is fixed. In ordinary continuity at a point z*, the admissible § may depend on both ¢ and the
base point x*. The negation highlights that, if uniform continuity fails, you can zoom in (§ | 0)
and still find pairs z, 2’ arbitrarily close whose images stay separated by at least some fixed &q.

Figure 1: Uniform continuity: one d(¢) works everywhere in the domain.

Remark (On the dependence of z, 2’ in the negation). In the negation, the “bad” points x, x’ may
(and typically do) depend on €p and on the chosen §. There is no single pair that witnesses failure
for all §; instead, you can find a violating pair for every § > 0.

Remark (Two sequence facts used repeatedly). Let {a,} C R.
(a) If ap, — a*, then liminf,,_, a, = limsup,,_, . a, = a*.

(b) If liminf,, . a, = limsup,,_,., a, € R, then {a,} converges and its limit equals that common
value.



Theorem 1 (Intermediate Value Theorem). Let f : [x,Z] — R be continuous. For any y* between
f(z) and f(T) (i.e., either f(z) < y* < f(T) or f(T) < y* < f(x)), there exists x* € [x,T] such
that f(z*) = y*.

Intuition. A continuous graph on a closed interval cannot “jump over” a horizontal level y*: if the
endpoint values lie on opposite sides of y* (or one equals it), the graph must cross the line y = y*
somewhere in between.

]
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[z, 7]

Figure 2: IVT: a continuous function on [z, Z| crosses every intermediate level.

*

* discontinuity: no z with f(z) =y

o

Figure 3: If f is not continuous, an intermediate value y* may fail to be attained.

Remark (Restriction trick for IVT). Let f : R — R be continuous and let [z,7] C R. Consider the
restriction
9= flya TSR (o) = ).

If y* € R is such that either f(z) < y* < f(7) or f(Z) < y* < f(x), then, since g is continuous
on the closed interval [z, 7], the Intermediate Value Theorem applied to g yields Iz* € [z, T] with

fl@*) =y

Intuition. You do not need any global property of f beyond continuity: restricting a continuous f
to [z, T] keeps it continuous there, so IVT applies to the restricted function g.

Theorem 2 (Extreme Value (Weierstrass)). Let (X, d) be a compact metric space and let f : X — R
be continuous. Then f attains a mazximum and a minimum on X, i.e., there exvist T,z € X such
that

f@) < f(@) < f(@) forallz e X.



restriction to [z, T]

Figure 4: Apply IVT to g = f’@@.

Definition (Attainment of extrema). Fix f: X — R.

e [ attains a mazimum if 37 € X such that f(z) > f(x) for all z € X.

o f attains a minimum if 3z € X such that f(z) < f(z) for all x € X.

Intuition. Compactness rules out “escaping to infinity” and “missing boundary points.” Continuity
prevents jumps. Together they force the sup and inf to be achieved.

Example (Identity map and the role of the domain). Let f(z) = x (identity) and X C R.

(a) If X =R, then f has no maximum (unbounded above).

(b) If X = [0, 3), then f has no maximum: supy f = 1 but it is not attained because 1/2 ¢ X
(domain not closed).

(c) If X is a finite disjoint union of closed intervals,

K
X:U[xkvyk]a T <y1 <T2<Yy2 < <ITK <YK,
k=1

then X is compact (finite union of compact sets), hence by Weierstrass f attains both extrema;
in fact, maxx f = yx and miny f = x;.

max = f(y3) = y3
T U1 T2 Y2 T3 ys T

Figure 5: Finite union of closed intervals = compact set = extrema attained by f(z) =«

Example (Compact domain without continuity: no maximum). Let s > 0 and define f : [0,1] — R
by



Then f is not continuous at z = %, and f has no maximum on [0, 1]: the supremum is s/2, but it

is not attained since the left branch does not include z = % and the right branch equals 0.

f(z)

o sup f = s/2 (not attained)

1 1%
2

Figure 6: Discontinuity at x = % breaks EVT: compact domain alone is not enough.

A useful version for constrained optimization
Let (X, d) be a metric space, C C X a constraint set, and f: X — R.

Problem: .
roblem I;leaé(f(x)

Definition (Solution / maximizer on C). A solution (or mazimizer) is any x € C such that f(z) >
f(y) for all y € C. The set of all solutions is the arg maxz,

argmax,co () = {2 €C: f(2) > [(y) forall y e C}.
Remark. In Example with f(z) = z:

o If (X,d) = (R,d,) and C' =R, then argmax .- f(z) = @.

e If (X,d) =([0,1],d,) and C = [0, 1], then argmax, .- f(z) = {1}.

Proposition. If f : X — R is continuous and C C X is compact, then argmax,cc f(z) is nonempty
and compact.

Proof. Needs double check with page 4 of class notes week two.

Step 1 (restriction). Let g : C' — R be the restriction g(z) = f(z) for x € C. Then g is
continuous on C.

Step 2 (existence). By Weierstrass, the continuous image g(C') € R is compact, hence closed
and bounded, so it contains its maximum. Let y* = max g(C) € ¢g(C). Then the arg maz can be
written as a level set:

argmax, f(z) = argmax, o g(z) = ¢ ({y*}),

which is nonempty because y* € g(C).
Step 3 (compactness). Since singletons {y*} are closed in R and g is continuous, g~!({y*}) is
closed in C. A closed subset of a compact set is compact; hence argmax,co f(z) is compact.

Alternative (sequences). Let (z,,) C argmax,c- ¢g(x). Any limit point z* € C of () satisfies,
by continuity of g, g(z,) = y* for all n = g(z,) = g(z*) = y*, hence z* € argmax, o g(x).
Therefore the arg max is closed in C and thus compact. O



Lemma (Continuous image of a compact set). Let (X,d) be compact and consider (R,d,). If
f: X — R is continuous, then f(X) C R is compact.

Lemma (Singletons are closed). In (R, d,), every singleton {y*} is closed.

Lemma (Closed-set characterization of continuity). Let (X,dx) and (Y,dy) be metric spaces and
f: X =Y. Then f is continuous iff for every closed set F C'Y the preimage f~1(F) C X is
closed.

Function spaces

Definition (Real-valued function space). Let (X, d) be a metric space and (R, d,,) the real line with
its usual metric. We denote by

FX,R) = {f: X >R}
the set of all real-valued functions on X.
Remark (Prominent examples).
(a) f:R — R given by f(z) = 22.
(b) f:R? — R given by f(x1,22) = 1021 3.
(c) (Operator on a function space) T': F(X,R) — F(X,R) defined by
(Tg)(z) = $g(x) for all z € X.
Thus T € F(F(X,R), F(X,R)).
(d) (Functional) Let
7 = {g € F(R,R): g is (Lebesgue/Riemann) integrable on R }.
Define I : 7 — R by
I(g) = / g(x)dz.
R
This is a map I € F(Z,R); it is well-defined only when the integral is finite (not £00).

Intuition. Items (c¢) and (d) emphasize two common kinds of maps involving function spaces:
operators T : F(X,R) — F(X,R) that return a new function, and functionals I : F(X,R) — R
that return a number from a function.

Definition (Sequence of functions). A sequence of functions on X is a family { fm }men € F(X,R).

Remark (What do we mean by “convergence of functions”?). Up to now we often fixed a function
f and studied numeric sequences like {f(x,)}nen when x, — x*; then f(z,) — f(z*) if f is
continuous at x*. That is not the same question as asking whether the functions f,, themselves
converge to some new function f on X. In the sequel we will work inside F(X,R) and make precise
notions of convergence (e.g., pointwise vs. uniform).



Pointwise convergence

Definition (Pointwise convergence). Let {f, }neny C F(X,R). We say that f,, converges pointwise
to a function f € F(X,R) if
Vee X : lim fp(x) = f(z).
n—oo

Equivalently: for each fixed x € X, the numeric sequence { f,,(x)}nen converges in R, and we define
f(x) to be that limit. Formally:

Vo € X Ve > 03N = N(x,¢) € Nsuch that Vn > N : |f,(z) — f(z)| < e.

Remark. Pointwise convergence is checked point-by-point. It does not control how fast the conver-
gence occurs across different x’s, and it does not preserve continuity in general.

Example (A continuous-to-discontinuous pointwise limit). Let X = [0,1] and f, : X — R be
fn(x) = 2™ Each f, is continuous (even differentiable). For any fixed x € [0,1) we have 2 — 0,

while 1" — 1. Hence
0, ze€|0,1),
1 f(x)z{ o
pointwise 17 T = 1’

and f is discontinuous at z = 1 (thus non-differentiable there).

Yy
1+t lim
0.5 1 — =z
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Figure 7: Pointwise limit of f,,(z) = 2™ on [0, 1]: a discontinuous function.

Remark (What if the domain is Ry7?). If we take X = Ry and f,(z) = 2", then for z > 1 we
have 2" — 400 (no finite limit in R), for x € [0,1) we have 2™ — 0, and at z = 1 we have 1" — 1.
Therefore {f,} is not pointwise convergent as a sequence in F(Ry,R). (Allowing extended reals
would give a limit taking value +00 on (1,00), which lies outside R.)

Intuition. This example shows that a sequence of continuous (even smooth) functions may con-
verge pointwise to a function that is discontinuous and non-differentiable. Pointwise convergence
alone is too weak to preserve regularity properties—this motivates stronger notions (e.g., uniform
convergence).



More on pointwise convergence: examples and a warning

Example (Bounded functions converging to an unbounded function). Let X = Ry and define

fn: X = Rby
r, x<n,
n\T) =
Jn(@) {O, T >n.

Each f, is bounded (indeed sup,cg, [fn(z)| < n). Fix z € Ry. Then (fi(), fo(2),...) =
(0,0,...,O,x,x,x,...), so limy, 00 fn(x) = x. Hence f, pomtwise f with f(z) =  on Ry, and
f >[a]

the limit f is unbounded. Pointwise limits need not inherit boundedness.

Example (Pointwise convergence does not preserve limits/continuity). Recall the sequential char-
acterization: for g : X — R and 2* € X, lim, .~ g(x) = y* iff for every sequence (x,,) with z,, # z*
and x,, — x* we have g(x,,) = y*.

Let X =1[0,1] and f,(z) = 2™. We know f,

)0, xz€l0,1),
f(x)_{L z=1.

pointwise

f where

Fix the sequence x,, = 1 — % 11 with z,,, # 1. For each fized n,

. R _1yn _

Thus all f,, have left-limit 1 at * = 1. But along the same sequence,
ik (Fm) = [ 0 =021

Therefore the limit function f does not preserve that limit at z* (indeed, f is discontinuous at 1)
even though each f,, is continuous. Pointwise convergence is too weak to preserve limits/continuity.

Uniform versus pointwise

Definition (Uniform convergence). Let { f, }nen € F(X,R) and f € F(X,R). We say that f,, — f
uniformly on X if

Ve >03IN eNst.Vn> N, Ve e X : |fu(z) — f(2)] <e.
or in another way (more helpful for exercises sometimes):
Ve > 03N = N(e) € Nsuch that Ve € X Vn > N : |fn(x) — f(x)| <e.

In this case, call f the uniform limit of (f,, : n € N)

Intuition: The important thing here is the order of the quantifiers. In uniform convergence
the index can be chosen as N = N(¢) (the same N works for all z). By contrast, in pointwise
convergence one only has N = N(x, ). Equivalently: uniform <= (Ve)(3N)(Vz)(Vn > N).

Proposition (Uniform = pointwise). If f, — f uniformly on X, then f, — f pointwise on X.



Proof. Given x € X and € > 0, choose N such that for all n > N, sup,cx|fu(y) — f(y)| <e. In
particular |f,(z) — f(x)| < e for all n > N, hence f,(x) — f(x). O

Remark. To analyze a sequence (fy,):
(i) First, figure out to which f it converges pointwise.
(ii) Then, check whether the convergence is uniform.

Example (Back to Example : not uniform). For f,,(z) = 2™ on [0, 1] with pointwise limit f = 14,
on the endpoint, we have

sup |fu(x) — f(z)| = max{ sup z", [1" — 1|} = sup z" =1 for every n.
z€[0,1] z€[0,1) z€[0,1)

(Indeed, 2™ 1 1 as = 1 1.) In particular, the sup norm does not go to 0, so the convergence is not
uniform. A quantitative lower bound is obtained by z, = (1 — %), for which 27 — e~ > 0.

Remark (Negation). Failure of uniform convergence means:

deg > 0s.t. VN € N3n > N, 3z € X with |f,(x) — f(x)] > <o.
Here the “bad” x may depend on n (and on N).
Proposition (Sup-norm criterion). Let ||g||loo,x = sup,cx|g(z)|. Then

fo = [ uniformly on X <= ||fn = flloo,x —— 0.
n—o0

Example (f,(z) = 2™ on [0,1] is not uniform). The pointwise limit is f(z) = 0 for z € [0,1) and
f(1) =1. For e = 1 and any N, choose n = N and z = ()!/" € (0,1). Then f(z) = 0 and

Fal@) = f@) = " —0] = 1 > <.

By the negation, f,, /# f uniformly on [0, 1]. Equivalently, || f, — fllsc,j0,1] = Supgefo,1) ¢ = 1 for all
n.

Example (f, = 1j, -id on Ry is not uniform). Recall f,(z) = z for ¥ < n and f,(x) = 0 for
x >n, so f, = f pointwise with f(x) = x. Take e = 1. For any N, pick n = N and x = 2N > n.
Then f,(x) =0 while f(xz) = 2N, hence

(@) = f(2)] = 2N > .
Thus the convergence is not uniform on R .
Example (f,(z) =x/n).
(a) On X = [0, K] the limit is f = 0 and

K

X
[ fo = flloojjo,.x] = sup — = — ——0,
z€[0,K] 1 n n—oo

so fn — 0 uniformly on [0, K|. In e-N form: given ¢ > 0, take N > %; then for n > N and
all z € [0, K], [fa(z) -0 =2 < K <.

z
n



(b) On X =R the convergence to 0 is not uniform. Indeed, fix ¢ > 0. For any N choose n = N
and x = Ne. Then |f,(z) — 0] = & = ¢, so the sup-norm never falls below &.

Intuition. Uniformity requires that a single N work simultaneously for all « in the domain. In
unbounded domains (such as R, ), it is typical that we can “push” z toward the region where the
error becomes large again, breaking uniformity.

Restriction and preservation properties

Proposition (Restriction preserves uniform convergence). Let (fn)nen C F(X,R) converge uni-
formly to f on X. If E C X and we denote by fn|p and f|g the restrictions to E, then (fn|E)
converges uniformly to f|g on E.

Proof. Done in a PS I think. O

Remark (Uniform continuity: what is preserved?).
(a) Heine—Cantor. If X is compact and f : X — R is continuous, then f is uniformly continuous.

(b) Linear operations. If f,g: X — R are uniformly continuous and ¢ € R, then f 4+ ¢ and ¢ f
are uniformly continuous.

(c) Absolute value, max, min. If f g are uniformly continuous, then |f|, max{f, g}, and
min{ f, g} are uniformly continuous.

(d) Composition. If f: (X,dx) = (Y,dy) and g : (Y,dy) — (Z,dy) are uniformly continuous,
then g o f is uniformly continuous on X.

(e) Product: not preserved in general. Even if f and g are uniformly continuous, the product
- g may fail to be uniformly continuous on non-compact domains.
g may fail to b iformly ti pact d i

(f) Division: not preserved in general. Even if f and g # 0 are uniformly continuous, the
product f - g may fail to be uniformly continuous on non-compact domains.

Example (Product counterexample on R, ). Let g(x) = x on Ry. Then g is 1-Lipschitz (hence
uniformly continuous). But f = g-g = x? is not uniformly continuous on R, : take x, = n, y, =
n—+ ﬁQ then |z, —yn| = % — 0 while | f(zy,) — f(yn)| = \yﬁ—x%\ = (Tn +Yn)|[Yn —Tn| > 2”'% =1L
Uniform limits of continuous functions

Proposition. Let (fn)nen C F(X,R) converge uniformly to f on X.

(a) If for each n the function f, is continuous at a point x* € X, then f is continuous at x*.

(b) If each f,, is continuous on X, then f is continuous on X.

Proof. (a) Fix € > 0. By uniform convergence choose N with || fx — fllco,x < €/3. Since fy is
continuous at x*, there exists 6 > 0 such that dx (z,z*) < ¢ implies |fy(z) — fn(z*)| < &/3. Then,
for dx(x,z*) < 0,
[f(@) = f(@%)] = [f(2) = fn(2) + fn(e) = fa(a®) + fn(@®) = fz7)]
<[f() = fnv(@)| + v (@) = ()] + [fn (@) — f@)] <e.

(b) Apply (a) at each z* € X. O



Uniform limits live in the bounded space and the sup metric

Definition (Bounded function space and sup metric). Let

FBX,R) == {f € F(X,R): |flloox = sg§|f(x)\ <0}

On FB(X,R) define the metric

doo(f,9) = sup |f(z) — g(z)| = || f — glloo,x-
rxeX

Proposition (Uniform limit of bounded functions is bounded). Let (f,)nen € FZ(X,R) converge
uniformly to f € F(X,R). Then f € FB(X,R).

Proof. Beyond the scope. O

Proposition (Uniform <= dy-convergence). Let (fn)nen C FEB(X,R) and let f € FB(X,R).
Then the following are equivalent:

(a) fn — f uniformly on X;
(b) doo(fm f) = an - f”oo,X — 0 as n — 0.
Proof. Beyond the scope. =

Intuition. The metric d, “measures” the worst error uniformly across the entire domain. Therefore,
uniform convergence and convergence in d, are the same thing; and if any (in fact, all) of the f,
are bounded, the uniform limit is also bounded.

10



Vector spaces and norms

Intuition. A vector space is an abstract set of objects equipped with two operations (vector addition
and scalar multiplication) that obey precise rules. In the background there is a field of scalars (in
this course we usually take R, but any field works).

Definition (Vector space). Let I be a field (typically R). A vector space over I is a triple (V, +,-)
where:

o V is a set (its elements are called vectors);

e -+ is a binary operation V' x V' — V (vector addition);

e - is an operation F x V' — V' (scalar multiplication, (o, v) — av);
satisfying the following axioms for all u,v,w € V and all o, 8 € F:

1) Addition is commutative: v+ w = w + v.
2) Addition is associative: u + (v + w) = (u +v) + w.
3) Additive identity: there exists 0 € V' (the zero vector) such that 0 +v =v+ 0 = v.
5) Multiplicative identity: 1-v = v.
6) Compatibility with field multiplication: «a(fv) = (af)v.

7

(1)
(2)
(3)
(4) Additive inverses: for each v € V there exists w € V' (denoted —v) with v +w = 0.
(5)
(6)
(7) Distributivity over vector addition: a(v + w) = av + aw.

(8)

8) Distributivity over scalar addition: (a + f)v = av + fv.
Example (A vector space of bounded functions). Fix a set X. Let
FB(X,R)={f:X —R: fisbounded}.
Define the operations pointwise:
(f +9)(x) = f(2) +g(x),  (af)(z) =af(z) (aeR).

Let 0 € FB(X,R) be the zero function 0(z) = 0 and for f € FP(X,R) define its additive inverse
by (—f)(z) = —f(z). Then (FB(X,R),+,-) is a vector space over R.

Remark. A vector space axiomatizes addition of vectors and scalar multiplication. It does not
prescribe a rule to multiply two vectors with each other. Any notion of “multiplying vectors” (dot
product, cross product, matrix product, convolution, etc.) is extra structure that depends on the
environment we are working in.

Definition (Dot product on RY). For I € N, the dot product on R’ is

1
(x,y) = Zﬂfiyi € R, x=(z1,...,271), y=(y1,...,y1) € RL.
i=1
Note that (x,y) is a scalar, not a vector.

11



Lemma (Basic properties of the dot product). For all ,y,z € R! and all o € R:
(a) Nonnegativity and definiteness: (x,x) >0, and (x,x) =0 iff = 0.
(b) Symmetry: (z,y) = (y, ).

(c) Additivity in the second entry: (z,y + z) = (z,y) + (x, ).
(d) Homogeneity in the second entry: (x,ay) = a(x,y).

(e) Equivalently, linearity in the first entry also holds by symmetry:

(x+y,z+y)=(z,x)+2 (,y9) + (y,9)

Sketch. (a) (@, ) = 321, 22 > 0 and it is zero only when each z; = 0. (b) Yo Tl = > Yixi. (¢)

i=1""1
Expand componentwise: Y. z;(y; + 2) = >, xiyi + »_; x5z (d) Likewise, Y. zi(ay;) = a ), zy;.
O

Subspaces

Remark. If W C V| then (W, +, ) need not be a vector space by itself. Here we are talking about
subspaces.

Proposition (Subspace test). Let W C V. Then (W,+,:) is a vector space iff for every v,w € W
and every scalars A1, Ao € R,
AU+ Xw € W.

Corollary. Under the subspace test, 0 € W (e.g., take A\; = Ay = 0).

Remark (Notation). When the operations 4+ and - are clear, we simply write V' for the vector space

Definition (Norm). Fix a vector space V. A norm on V is a function || - || : V' — R such that, for
all v,w € V and a € R,

1. (Nonnegativity) ||v]| > 0.

2. (Definiteness) ||v|| =0 iff v =0.
3. (Homogeneity) |lav| = |af ||v]|.
4. (Triangle inequality) [|v 4+ w]|| < ||v]| + ||w]|.

The Euclidean norm on R

Let x = (z1,...,27) € R, With the standard inner product

I
Ty = Z-Ti?/ia
i=1
the Euclidean norm is

lelle = vaz = (3 a2)"



Norm properties.

(1) ||z|l2 > 0 for all z (sum of squares).
@ el =0 = z=0.
(3) Homogeneity: for any scalar A € R,
IAzllz = V(Az) - (Ax) = VA2 2 -z = |A| 2.

(4) Triangle inequality: for any v,w € R,
[0+ wll2 < [|vll2 + [lwl|2-
A direct coordinate expansion gives
lv+wlf3 = (v+w) - (v +w) = [|v]3+ 20w+ [Jw]3,

which does not by itself yield the inequality unless one controls v - w. Using Cauchy—Schwarz,
v+ w| < J|vfl2]lwll2, hence

lv +wl3 < oll3 + 2lvll2llwll2 + [w]3 = ([vll2 + flwll2)?,

and taking square roots proves (4).

Amanda’s proof (triangle inequality < Cauchy—Schwarz).
lz +yll2 < llzll2 + [lylls = llz +yll3 < (lzll2 + [ly]l2)?
= (2 +y) - (@+y) <l2l3+ 2llzll2llyllz + 13

= z-o+2z-y+y-y <|zl3+2)zlallylz + i3
= z-y < zll2/lyll2;

which is precisely the Cauchy—Schwarz inequality

]“ 121/2121/2
S = (55 (5) "

i=1 i=1
Thus Cauchy—Schwarz implies (and is equivalent to, through the chain above) the triangle
inequality for || - ||2.

The sup—norm on bounded functions. Let V = FB(X,R) be the vector space of all bounded
real-valued functions on X. For f € V define the sup—norm

[flloc := sup [f ()]
zeX

Axioms (1) nonnegativity and (2) || f|lcc =0 <= f =0 are immediate. For the other two axioms:

(3) Absolute homogeneity. For every A € R,
[Aflloo = sup [Af(z)] = [Alsup [f(z)] = [A[]|floo-
zeX zeX

(4) Triangle inequality. For f,g € V|

1+ glloe = sup | f(z) + g(x)] < sup (|f(z)] + [g(2)]) < sup |f(z)] + sup |9(z)] = || flloo + [|g]loo-
zeX zeX zeX zeX

Hence || - ||so is @ norm on FB(X,R).
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Remark 4 (Every norm induces a metric). If (V.| -||) is a normed vector space, then
d(v,w) = v —w|

defines a metric on V. (Nonnegativity and symmetry are clear, d(v,w) = 0 <= v = w by the
norm axiom, and the triangle inequality follows from ||[v — w|| < [Jv — z|| + ||z — w]|.)
Ezxamples.

e On R! with the Euclidean norm || - ||2: deuc(v, w) = [Jv — w]|2.
e On FB(X,R) with the sup-norm: d(f,9) = || f — glloo-
Key idea to remember: a norm measures the length of a vector; a metric measures the distance
between two points.
Vectors in R? as points and as displacements
e We begin by focusing on the vector space R?.
e Pictorially, a vector in R? can be seen in two (equivalent) ways:
1. as a point (x1,x2) in the plane, or
2. as a displacement (an arrow) with a length and a direction.
Let x = (z1,22) and y = (y1,y2). The displacement that carries x to y is
z=y—-x=(y1 — 21, Y2 — T2).

Equivalently, x +z = y.

Key idea. Thinking of vectors as displacements, two arrows are equivalent if they have the same
length and the same direction. Thus the arrow drawn from the origin to z is equivalent to the
arrow drawn from x to y. The arrow w = x —y = —(y — x) has the same length but the opposite
direction, so it is not equivalent to z.

(z1,22)

Figure 8: Vectors as points and as displacements: x + z = y with z = y — x. The dashed orange
arrow is equivalent to the solid orange arrow (same length and direction).
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Two viewpoints on R?

o As a set of points: elements are (z1,22).

o As a set of displacements: elements are arrows with length and direction; two displacements
are equivalent iff they share the same length and direction.

Remarks on notation

e We often write a vector x in coordinates as x = (z1,...,z7). When it is helpful to stress
“column” form we use
T
x=|: | er/¥L
T

e For a scalar A € R we may use the constant vector

A=(\...,A).
e The zero vector is denoted by 0 = (0, ...,0).

Scaling a vector

Let x € R/ and A € R\ {0}. Scaling by A produces the vector \x:

A>1: stretches x in the same direction,
0 < A< 1: shrinks x in the same direction,

A<O0: reverses direction and scales by |A|.

Z2

A>1

1
A<O0

Inner product and the angle between vectors

In R? with the standard (Euclidean) inner product and norm,

(y) =D i, Ixly = Vixx).
i=1
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By the law of cosines applied to the triangle with sides x, y, and y — x,
2 2 2
ly = xllz = [Ixllz + Iyl = 2 [l lylly coso.
On the other hand,
2 2 2
ly =xl3=(—-xy—x) =[x+ lyll; -2 (x,y).

Equating the two expressions gives the fundamental link between angle and inner product:

(x,y)

cos = —————F—
[1%[l2 [yl

Hence (x,y) =0 <= cosf =0 <= 6 =90° (the vectors are perpendicular).

Orthogonality and orthonormality

e Two vectors x,y € R7 are orthogonal if (x,y) = 0.

A vector x is orthogonal to a set X C R/ if (x,y) = 0 for every y € X.

The zero vector satisfies (0,y) = 0 for all y, so 0 is orthogonal to every vector.

A set {uy,...,u,,} C R/ is orthonormal if the vectors are pairwise orthogonal and each has
Euclidean norm 1:

(uj,ug) =0 (i # k), uill, = 1.

Example. Let x = (3,1) and y = (—1,3). Then

—~

x,y)=3(-1)+1-3=-34+3=0 = xLly.

If we scale y by %, z .= %y = (—%, %), then

so x | z as well. (For comparison, w = (—2,3) gives (x,w) = 3(—2) +1-3 = =3 # 0, hence not
orthogonal.)

Example. Let x = (1,0) and y = (0,2). Then (x,y) = 0 so they are orthogonal. However,
Ixlla =1, lyll, =2,

so the pair is not orthonormal (the second vector does not have unit length).
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Linear combinations and span

Let V be a vector space and let X = {vy,...,vix} C V be

Definition (Linear combination).
..., Ar € R such that

finite. A vector v € V is a linear combination of X if there exist scalars \i,

k
vV = Z)\] Vj.
j=1

S Try). A vector x =

Coordinate form in R7. Write x',...,x* € R/ with x" = (2,1,
.oy A € R with

(z1,...,27) € R’ is a linear combination of {x!, ..., x*} iff there exist Ay,

k
:L“Z-:Z)\rajri foreachi=1,...,J.
r=1

Definition (Span). For W C V define the span of W by

m
span(W) = Z)\jwj cw; eW, A eR, meN
j=1
Equivalently, v € span(W) iff there exists a finite subset W C W such that v is a linear combination

of vectors in W.

Remark. 0 € V is a linear combination of any finite set (take all coefficients \; = 0). For two
vectors x1,x92 € V, any vector of the form x3 = A\1x1 + Aoxs is reached by scaling and then adding.

X3 = A\1X1 + \aXo

y N/

AoXo ™ . ///
Ay > /

/ Xl
2\ <A1X1
T
Basic facts. For any W C V,
W C span(W).

Example. If W = {(1,0,0),(0,1,0)} C R3, then

span(W) = {(z1,22,0) : 21,22 € R} (the zy-plane).

Also, is true that {0} = span({0}) and V' = span(V).
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Example (Collinear pair). Let x = (4,2) and y = (2,1). Then y = 3 x, so
% x—y=0.
Hence {x,y} is linearly dependent and

span{x,y} ={ x: A eR}={puy:neR},
the line through the origin with direction x (equivalently, y).

Example (Not a rescaling). Let x = (4,2) and y = (2,1). If y were a scalar multiple of x, we

would have

(2,4)=t(4,2) = 2=4t and =2t
1
4
is not a linear combination of the single vector y. (Here span{y} = {s(2,1):s € R} is a different
line.)

which forces t = % and t = 7, a contradiction. Thus y is not a rescaling of x, and in particular x

Example (All linear combinations of {x,y}). With x = (4,2) and y = (2, ), a vector z is a linear
combination of {x,y} iff there exist A;, Ay € R such that

Z= XX+ A\yy = (4)\95 + 20y, 2X; + %)\y).

4 2
Since det <2 5) =4. % — 2.2 = -2 +# 0, the pair {x,y} is linearly independent and therefore
span{x,y} = R?. Equivalently, given z = (u,v) € R? there are unique scalars
)\Z:v—%, Ay =u—20v

such that z = A\, x + \y.

Remark (Nontrivial relation = one vector depends on the others). In general, if \;x+Ayy+X,z =0
with at least one coefficient nonzero, then one of the vectors is a linear combination of the other
two. For instance, if A, # 0, then

Ae Ay
Z=——X— Y.
xnoaY
Definition (Linear dependence and independence). Let V be a vector space and let W = {vy,..., v} C
V be a finite set.
(i) W is linearly dependent if there exist scalars A1,..., \x € R, not all zero, such that
k
Z )\7; vV = 0
i=1
(ii) W is linearly independent if for every choice of scalars Aj,..., \x € R,
k
Z)\Z’UZ‘ZO — Alz'“:)\k:O.

i=1

Remark. Intuition: a linear dependence is a non-trivial way to obtain the zero vector; equivalently,
we have two different ways to “get 07, so the set should be called dependent.
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Example. Let W C V be finite and suppose 0 € W. Write W = {vy,...,vk,0}. Then

k
1-0+> 0-v; =0
i=1
is a non-trivial linear relation among the vectors in W. Hence W is linearly dependent.
Proposition. Let W CV be a finite set of vectors.
(a) If W contains a linearly dependent subset, then W is linearly dependent.

(b) If W is linearly independent, then every nonempty subset of W is linearly independent.

Proof. (a) Let W = {v1,...,v;} € W be linearly dependent. Then there exist scalars Ai,...,\;,
not all zero, with

J
Z >\z‘ V; = 0.
i=1

Write W = {v1,...,vj,0j41,...,v,} and extend the list of scalars by Aj;1 =--- = A, =0. Then
l
Z /\i v; = 0
i=1

with some \; # 0, so W is linearly dependent.

(b) This is the contrapositive of (a). If a nonempty subset of W were linearly dependent, then
(a) would force W to be dependent as well, contrary to the hypothesis. Hence every nonempty
subset is linearly independent. O

Remark (Convention). The empty set & is considered linearly independent.

Proposition. Let X = {x1,...,X;} C R" be a set of nonzero, pairwise orthogonal vectors (i.e.,
(xi,%x5) =0 fori#j). Then {x1,...,Xy} is linearly independent.

Proof. Suppose Ele Xix; =0. Fix j € {1,...,k} and take the inner product with x;:

k k
0= <Xj7 Z)\z Xi> = Z)\z <Xj7xz'> = )\j <Xj,Xj> = )‘j ‘|XjH2‘
i=1 =1

Since x; # 0, we have |x;]|? > 0, hence A\; = 0. Because j was arbitrary, all A\; = 0, so the set is
linearly independent. O

Example (Back to Example 7). Take x = (4,2) and y = (2, 3) in R?. They are not orthogonal
because
(x,y)=4-2+2- 3 =8+1#0.

Nevertheless they are linearly independent: if ax + Sy = 0 then
4o+ 26 =0,
200 + %B =0.

Multiplying the second equation by 4 gives 8a+ 23 = 0; subtracting 2 times the first equation yields
—28 =0, s0 8 =0, and then a« = 0. Hence {x,y} is LI. This shows orthogonality is sufficient but
not necessary for linear independence.

19



Definition (Basis). Let W < V be a vector subspace. A finite set B = {v1,...,vx} C W is a basis
of W iff

1. B is linearly independent, and
2. span(B) = W.
Equivalently, a basis is a minimal generating set of W (no vector of B lies in the span of the others).

Example (Standard basis of R7). Define ¢; = (0,...,0,1,0,...,0) € R’ with 1 in the i-th position.
Then E = {ey,...,es} is a basis of R”:

o LI: If Z{Zl Aie; = 0, then every coordinate equals 0, hence A\; = 0 for all :.
e Spanning: For z = (z1,...,7;) € R’ we have x = 25:1 Zi€;.

Example (A non-standard basis of R?). Let x = (4,2) and y = (2, 5). The matrix with columns
X,y is

9 1

4 2
A:( ) det A=4-3-2-2=-2#0.
2

Hence {x,y} is linearly independent and therefore a basis of R?; consequently span{x,y} = R2.
(Another basis is the standard one {ej, ea}; both bases have two elements.)

Invariance of basis size If B and B’ are both bases of the same subspace W, then |B| = |B’|

(they have the same number of elements). This number is called the dimension of W and is denoted
dim W.

Example (A 2-dimensional subspace of R?). Let
W = {(z1,22,23) € R®: 23 =0}.

Then W = span{(1,0,0),(0,1,0)} and these two vectors are LI, so {(1,0,0),(0,1,0)} is a basis of
W. Hence dim W = 2 (the xy-plane).

Linear transformation and matrices

Definition (Linear transformation). A map L:V — W between vector spaces is linear if, for
allu,v € V and all A € R,

(Additivity) L(u+v) = L(u) + L(v), (Homogeneity) L(Av) = AL(v).

Characterizing linear maps L : R — R

Proposition. A function L : R — R is linear iff there exists a vector v = (vy,...,v¢) € R' such
that, for every x = (x1,...,24) € RY,

¢
L(x)=v-x= Zvi x;.
i=1

In particular, the representing vector is unique and equals v = (L(el), .. ,L(et)), where {e1, ..., e}
is the standard basis of RY.
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Proof. (=) Assume L is linear. Any x € R? can be written as x = 22:1 z; e;. By linearity,

t t
i=1 i=1

Set v; := L(e;) and v = (v1,...,v;); then L(x) = >.\_ viz; = v-x.

(<) Conversely, suppose L(x) = v-x for some fixed v. Then for all x,y € R! and A € R,

Lix+y)=vx+y=vx+vy=L(x)+L(y),
L(Ax) =v-Ax = Av-x = A L(x),
so L is linear. Uniqueness of v follows by evaluating at the basis vectors e;. O
Checks. If L(x) = v-x, then
Lix+y)=vx+y=v-x+vy=L(x)+ L(y), L(Ax) =v-Ax = Av-x = AL(x).

Consequences.

e A linear functional L : R® — R is completely determined by its values on the standard basis:
v; = L(e;).

: ¢
e In coordinates, L(x1,...,z¢) = >, v;%;.

Characterizing linear transformations L : Rl — R’

Let L : Rl — R” be linear. For each j = 1,...,J define the linear functional L; : R/ — R by
L(x) = (L1(x), ..., Ly(x)). For every j set

Vo= (Lj(el), Lj(eg), ceey Lj(e[)) S RY.
Then, for all x € R,

Lj(x) = (vj, x) and L(x)= ({(vi,x), ..., (v, x)) € R’

Matrix viewpoint. When we regard inputs/outputs as column vectors,

1 (v1, x) vlT
x=1 "1, L(x) = : = ol x.
Ty (vy, X) v}
AeRJXI

T

Thus every linear map L : Rl — R” is represented by the (unique) matrix A whose j-th row is v,

and L(x) = Ax for all x € R.

Example (From linear forms to the matrix of L). Let L : R® — R? be

L(z1,29,23) = (21 + 239 + 3z3, 421 + 5zo + 623 ), X = (w1, 22, 73).
6(x) lr(x)

21



Define v = (1,2,3) and v = (4,5,6). Then
EI(X) = <V17X>7 gQ(X) = <V2,X>,

so L(x) = ({(v1,%), (v, x)).
Viewing L as a J x I = 2 x 3 matrix,

(1 2 3\ vlT [ x4+ 2x90 + 313\
A_<4 5 6)_<V;>’ AX_<4:E1+5$2+61:3 = Lix).

Equivalently, if (e1,eo,e3) is the standard basis of R3, the columns of A are L(e;), L(es), L(e3),
and

3
L(x) =Yz L(e;).
=1

Proposition (Standard matrix of a linear map). Let L : Rl — R be linear. Its (unique) standard
matriz A, € R s
A= [Ler) Llen) - Lfen)]

s0 that for every x € RY,
I
L(x)=Arx and  L(x)= sz L(e;).
i=1
Conversely, given any A € R7*! there is a (unique) linear map Ly : RT — R defined by L(x) =

Ax for all x.

Example (Dropping a coordinate vs. projection matrix). Take L : R — R? given by L(x1, 22, 23) =
(z1,22) = (£1(x), l2(x)), where ¢1(x) = 1 and f2(x) = z3. Then

L(er) = (1,0)", L(ez) =(0,1)T, L(es) =(0,0)",
and the standard matrix is
x1
(1 .0 0 _(m)
() af2) ()
3

Remark. Ay is not a “projection matrix” in the usual sense because it is not square. The (orthog-
onal) projection in R? onto the subspace span{ey, es} is the 3 x 3 matrix

1 00
P=101 01, P? = P (idempotent), P’ = P (symmetric).
000
Example (Identity map). Let L : Rl — R! be the identity: L(x) = x for all x € R!. Then for the
standard basis (eq,...,es) we have L(e;) = e;, and the standard matrix is the identity matrix
10 - 0
01 --- 0
A =11 = )
0 0 1

22



Remark (Square case). Very often we consider L : Rl — R!. In that case the standard matrix Az,
is square, i.e., A;, € RIX,

Definition (Kernel and rank). Let L : V' — W be linear between vector spaces.
e The kernel (null space) of L is
kerL = {veV:L)=0} = L7'{0}).
e The rank of L is
rank L = dim (L(V)),

i.e., the dimension of the image (a subspace of W). Equivalently: the number of elements in
a basis of L(V).

Proposition (Column dimension equals rank). Let L : RT — RY be linear and let A;, € R7*T be
its standard matriz. Then

rank L = dim (L(R")) = dim (col(A)) = #{linearly independent columns of Ar}.
Corollary (Image and kernel are subspaces). For any linear map L : V — W,
L(V) CW is a vector subspace of W, ker L C V' is a vector subspace of V.

Proposition. Let L : V — W be a linear transformation.
(1) L(0) =0 in W.
(2) If L is invertible, then the inverse map L™ : W — V is a linear transformation.
(3) L is injective (one-to-one) if and only if ker L = {0}.
(4) Let {v1,...,vx} be a basis of V. Then

L:V — W is surjective <= span(L(v1),...,L(vg)) = W.

(5) If {v1,..., vk} are linearly dependent in V, then (L(v1),...,L(vy)) is linearly dependente in
w.

Intuition. About point (3):

You need the set of v that map to 0 is only 0. If some nonzero u satisfies L(u) = 0, then
L(u) = L(0): two different inputs (u # 0) collapse to the same output, so L is not injective.
Conversely, if Lx = Ly with « # y, then L(z — y) = 0 with x — y # 0, meaning that the kernel is
not trivial.

About point (4):

Every x € V is written as a linear combination x = ), A\jv;; by linearity, L(x) = >, i L(v;).
Then L “reaches” a w € W if and only if that w is a linear combination of the images L(v;).
Therefore, L is surjective exactly when {L(v;)} generates W.

Proposition. Fiz a linear map L : RT — R and its standard matriz A;, € R7*1,

(1) L is injective iff the homogeneous system Apz = 0 has the unique solution z = 0 (i.e.,
ker A;, = {0}).
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(2) L is surjective iff the columns of Ar span RY:
span(AL[*, 1,..., Ar[*, I]) =R’
(Matrix translation of Prop. (4)).
(8) L is bijective iff I = J and there exists B € R with
Ap B=BAp =11« (the identity matriz).

Proposition (Rank-Nullity). Let L : Rl — R be linear. Then
dim(ker L) + rankL = I.
Equivalently, for the standard matriz Ay,
nullity(Ar) + rank(Ar) = #columns of Ar, (= 1I).
Consequences (useful translations):
o L injective <= rank L =1 (i.e., columns linearly independent).
o L surjective <= rankL = J.

o IfI =J, then L bijective <= rankL =1 =J <= Ay is invertible.

Proposition (Square matrix). Fiz a linear map L : R — R! and its associated square matriz
Ap € RIXT,

(1) L is injective if and only if it is surjective.

(2) Ap is invertible if and only if there is a unique z € R! with Apz = 0 (equivalently ker L = {0};
i.e., injective).

Remark.
e Same input/output dimension = injective < surjective.

e Practical takeaway: for a square matrix, to check invertibility it suffices to check
injectivity (or, equivalently, surjectivity).

Remark. Let L : RY — R! induce a singular square matrix Ay,
e Then ker L contains at least two points (0 and some nonzero vector).
e ker L is a vector subspace (it need not be all of RY).

e Hence ker L is infinite; in particular, there are infinitely many x € R! with A;x = 0.

Proposition. Let Aj, be singular. For anyy € R!, the system Apx =y has either no solutions or
infinitely many solutions.

Idea only. If x* solves Apx =y and x** € ker Ay, (exists since Ay, is singular), then A (x* +x*™*) =
y + 0 = y. Since ker A;, is infinite, you obtain infinite solutions by adding different vectors from
the kernel. If, on the other hand, there is no first solution, the system simply has no solutions. [

Remark (Invertible case). If A is invertible (i.e., non-singular), then L is bijective and for each y
there exists a unique x with Ax =y.
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Determinants and invertibility

Definition. Fix a square matrix A € R, then A = [a1;] and det(A4) = ay;
Proposition. Fiz a square matriz A € R Then
A is singular (non-invertible) <= det(A) =0, A is non-singular (invertible) <= det(A) # 0.

Definition (Minor and cofactor). Let A € R™*!. For j,i € {1,...,I}, the Mj; matriz is obtained
from A by deleting the j-th row and the i-th column; hence Mj; € RU-DxI-1),

The corresponding cofactor-ji is
Cjz' = (—1)j+i det(Mji).

Definition (Determinant). Let A = (aj;) € R™*! and let ¢;; = (—1)7**det(Mj;) be the cofactor
obtained by deleting the j-th row and i-th column. For any fixed j € {1,...,1},

I
det(A) = Z Qji Cji-
i=1
It does not matter which row j you choose—the final value is the same.

Example. 2x2 check. For A = (all a12>:
a1 a2

fOl"j =1: det(A) = aj1 a2 — a120a21,
for j =2: det(A) = —ag1 a2 + azai.

(Same value; only the order/sign pattern changes.)

Determinant in R3

Let
ail a2 a3
A= laa ax a3

azy asz2 as3

Using the cofactor expansion along the first row (any fixed row /column gives the same final value),
det(A) = ayy det(My1) — ai2 det(Mi2) + ar3 det(Mis),
where the minors are
det(M11) = agnass — agsazz, det(Miz) = aziazs — asiazs, det(Mi3) = agiass — azaz:.

Equivalently,

‘ det(A) = a11(a2za33 - 61230032) - a12(a21a33 - a31a23) + a13(a2la32 - a22a31) ‘

Definition. Properties of determinants (column-wise formulation) Throughout, A, B,C € R/*!
and A[*, 1] denotes the i-th column of A.

1. Transpose: det(A) = det(AT).
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2. Identity: det(I7) = 1.
3. Duplicate column = zero: If A[*,i] = A[x, /] for some i # ¢, then det(A) = 0.
4. Swap two columns flips the sign: If
Al*, k] = B[, €], Alx,l] = Blx, k] (k#1¢), and A[x,i] = B[x,i|Vi¢ {k,(},

then det(A) = — det(B).

5. Homogeneity in one column: If
Alx, 0] = ¢ B[*,f] and Alx,i] = B[x,i] Vi # ¢,

then det(A) = ¢ det(B).

6. Additivity in one column: If
Alx, 0] = Bl*,l] + C[x,£] and A[x,i] = B[*,i] = C[*,i] Vi # ¢,

then det(A) = det(B) + det(C).

Also useful:
e Multiplicativity: det(AB) = det(A) det(B).
e Triangular/diagonal: If A is triangular, then det(A) = []_, as.

e Zero column: If some A[x, (] = 0, then det(A) = 0 (special case of (5) with ¢ = 0).

Eigenvalues and eigenvectors

Let L:R! — R! be linear. We call A € R an eigenvalue of L if there exists a nonzero vector x # 0
such that
L(x) = \x,

and any such x is an eigenvector associated with A.

Example. With

2 0
A= , X = 1 ,
1 5 T2
we have
Ax:{ 211 ],
1 + bxe

which is typically not parallel to x (so not an eigenvector in general).
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Remark. We require x # 0 because L(0) = 0 for any linear map; eigenvectors capture directions
that the transformation sends to a parallel vector (possibly scaled).

Example. Projection Let

1
A= |0
0

o = O
o O O

Starting from x = (1,1,1)" gives Ax = (1,1,0)" (down to the plane z = 0 in R3). There is no
single \ with Ax = Ax for arbitrary x € R?, so we look inside the plane: for any y = (y1,42,0) ",

Ay =y = )\ =1 with eigenvectors in the plane z = 0.

Vectors orthogonal to that plane give the other eigenvalue:

0 0 0
Al0| =10l =0-]0{, A =0 with eigenvectors along the z-axis.
I3 0 T3

Example. Permutation Matrix
[0 1] 7 |:w1:| |:x2:| A |:.171:| '
1 0 T2 T X9

1 =297#0 = A=1, eigenvectors {(1,1)};
r1 = —xg # 0= X\ = —1, eigenvectors {(1,—1)}.

Hence:

Eigenvalues and eigenvectors: general approach

First, solve for eigenvalues. Then use them to obtain the corresponding eigenvectors.

We look for nonzero vectors Z # 0 and scalars A such that
AT =)\7 <= (A-\)Z=0.
Denote B := A — \IJ.

e If B were invertible, the only solution would be Z = 0 for every A € R. But we want a nonzero
solution, so B must be non-invertible (singular).

Therefore we search for the unknown A from the single scalar equation

det(A - )\I]) =0.

Corollary. A scalar X € R is an eigenvalue of A € R’*! if and only if
det(A — )\I[) =0.

Side note: the polynomial pg(\) := det(A — A1) is the characteristic polynomial.
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Example (back to the 2 x 2 case). For

2 2 —

15 5—A

we get

det(B) = (2= M\)(5-A) =0 = A€ {2,5}.

Basic spectral facts (no proofs)

Proposition. Fix A4 € RI*/,
1. A has I eigenvalues (counted with algebraic multiplicity), possibly complez.

2. If A is symmetric (A = AT), then all eigenvalues are real.

I
3. det(A) = H Ai  (product of the eigenvalues, with multiplicity).
=1

1
4. Z Ai = tr(A), where tr(A4) = 0 ay.
i=1

Example.

2—A 0
0 2-A

2 0
0 2

A=

] — AMQ:[ ] det(A— L) =(2—-N?=0,

so A = 2 twice (double eigenvalue).

Remark (many eigenvectors for one eigenvalue). If \ is an eigenvalue of A € R’/ with eigenvector
x # 0, then there are infinitely many eigenvectors associated with \:

(A= XMj)(ax)=a(A=A[)x=0 for any o € R\ {0}.

)

(Back to the “singular matrix” remark: if B € R’*! is singular, then Bz = 0 has infinitely many
solutions; and Bz =y has either no solutions or infinitely many.)

Proposition. (eigenvectors for distinct eigenvalues) Let A € R™! have I distinct eigenvalues
AL, ..., A1 with associated eigenvectors X1, ...,xr. Then {Xi,...,x1} is linearly independent.

)
1 5

0 0 T 0
A—QI—(l 3>, (A_21)<x2>_<0> = 21+ 322 =0.

Eigenvectors: { (=3¢, t): t #0}.

Example. (back to the 2 x 2 case) Let

For A = 2:

28



For A\ =5:

A—5I:<_13 8) (A—5I)<2>:<8) — 2, =0, 23 #£0.

Eigenvectors: {(0,¢): t #0}.
Thus each eigenvalue has infinitely many eigenvectors (different scalar multiples), and the two
eigenvector directions (—3,1) and (0, 1) are linearly independent (note: not necessarily orthogonal).

Example. (Jordan block / repeated eigenvalue) Let

1 1 1—A 1
(1) a0

det B(A\) = (1 — X\)? = X\ =1 (double root).
Solve Ax = Ax with A = 1:

1 1 X1 T1
= — T +T9 =21 = 29 =0.
0 1 T2 T2

Eigenvectors: { (¢,0) : ¢ # 0}. Here the (algebraic) multiplicity is 2 but there is only one indepen-
dent eigenvector direction (the eigenvectors are all scalar multiples of each other).

Check note (to check). If we take two eigenvectors that come from the same eigenvalue, they
are (claimed to be) linearly dependent. If they come from different eigenvalues, they are linearly
independent.

Idea of the spectral theorem

Fix a symmetric matrix A € R[>/,
e There exists an orthonormal basis of R! consisting of I eigenvectors of A.
e In that ON basis, A acts by scaling each basis vector:
Ae;=)ie; = [AJoN basis = diag(A1,..., A1)
(Eigenvalues may repeat; e.g., A =1.)

e If \; # )j, the corresponding eigenvectors in this ON basis are orthogonal (hence linearly
independent).

e Equivalently, A is orthogonally diagonalizable:
A=QAQ", QTQ=1, A=diag(,...,\r),

where the columns of () form the orthonormal eigenbasis.
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Quadratic Forms

We now move beyond linear maps. Functions like

f:R=R, f(zx) =22

or
I R? - R, f(z1,22) = m% 4 2x179 —I-x%

are not linear. Quadratic forms are a systematic way to study such “square” expressions.

Definition (Quadratic form). A function @ : R! — R is a quadratic form if there exists a real
matrix A = (a;;) € RI*! such that

I I
Q(X):Zzamle‘j = XTAX7 X:(xla"wx[)—r'
=1 j=1

Low—dimensional expansions. Writing out the sum shows explicitly where squares and cross
terms come from.

e I =1 Q(x1) = ap1x?. In particular, a;; > 0 = Q(x) > 0 for all x # 0, and a;; < 0 =
Q(x) < 0 for all x # 0.

o [ =2:
Q(x1,72) = a1125 + (a1 + as1)T129 + a3,

o | =3:
_ 2 2 2
Q(z1, 2, x3) = aney + axers; + a33r;

+ (a12 + a21)z122 + (@13 + as1)xi1xs + (a3 + aze)raws.

_|ennzr + aipx2
Ax =

(linear in x; we are “missing” squares),
G211 + A22%2

and left-multiplying by x' produces the quadratic terms:

T ailp aiz2| |* 2 2
X' Ax = [z1 2] = a1z + (a12 + ag21)z1x2 + agrs.
a1 Q| |T2

Only the symmetric part matters. For any A, let S = %(A + AT). Then

T T 2
X Ax=x Sx = g a;;x; + Z(aij + aji)xixja
i

1<j

so a quadratic form is determined by the symmetric coefficients a;; and a;; + aj; -
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Quadratic forms: symmetric representation and definiteness

Matrix representation. Given a quadratic form ¢ : R — R, there exists a unique symmetric
matrix A € RI*! such that

¢(x) = x'Ax  VxeRL (1)
Conversely, every symmetric A € R’/ induces a quadratic form via ¢(x) = x" Ax.
Definition. Definiteness (for symmetric matrices). Fix a symmetric A € R7*/,
1. Positive definite (PD): A is PD iff x " Ax > 0 for every x # 0.
2. Negative definite (ND): A is ND iff x" Ax < 0 for every x # 0.
3. Positive semidefinite (PSD): A is PSD iff x" Ax > 0 for every x € R.
4. Negative semidefinite (NSD): A is NSD iff x" Ax < 0 for every x € R,

5. Indefinite: A is indefinite if it is neither PSD nor NSD (i.e., 3x,y # 0 with x" Ax > 0 and
y ' Ay <0).

Example. Two examples:

10
o A= 0 1l Then x" Ax = 22 + 23 > 0 for all x # 0, hence A is PD.
1
o A= 0 . Then x"Ax = 22 > 0 for all x, and x" Ax = 0 for any nonzero vector of the

form (0,z2). Hence A is PSD (but not PD).

Proposition. Eigenvalue characterization. Let A € R™! be symmetric with eigenvalues \1, ..., 1.

1. Ais PD <= X, >0 foralli. Ais ND < X\; <0 for alli.

2. Ais PSD < X\, >0 foralli. A is NSD < \; <0 for all 1.

3. Otherwise (mized signs), A is indefinite.
Why “all eigenvalues > 0” = PD (symmetric case). Let A € R/ be symmetric with
eigenpairs {(\;, v;)}/_;. For an eigenvector v; # 0,

v;rAvi = V;r()\ivl-) =\ V;I-Vi = )\i||v7;||2.

Hence \; > 0= VZTAVi > 0.
Key step (spectral theorem). Because A is symmetric, there exists an orthonormal eigen-
basis {vi}le of RI. Any z € R! can be written as z = Zle ¢; v; with ¢; = v;rz. Then

I

-

z' Az = < Z civi> A ( Z cjvj> = Z A\ic?  (orthogonality).
i j i=1

Therefore:
AN>0Vi = 2'Az>0Vz#0 = AisPD.

Analogously, if A\; < 0 for all i, then A is ND; if \; > 0 (respectively < 0) for all i, then A is PSD
(respectively NSD).
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Why symmetry is necessary (counterexample). Let

1 10
0 1

A=

] (not symmetric).

Its characteristic polynomial is (1 — \)?2, so the only eigenvalue is A = 1 > 0. However the quadratic
form

1 10
7' Az = [ml .CEQ] - m% + 10x129 + a:%
0 1 i)

is indefinite: z = (1,1) = 2" Az =12 >0but z = (1,—1) = z' Az = —8 < 0. Thus “all eigenvalues
> 0 = PD?” fails without symmetry.

Corollary (symmetric A). Let A € R/ be symmetric.

1. If Ais PD or ND, then A is invertible. (all eigenvalues are nonzero)
2. If A'is PD (resp. ND), then A~! is also PD (resp. ND). (eigenvalues of A~! are 1/);)
3. If Ais PSD or NSD but not PD/ND, then A is not invertible. (some \; = 0)

Principal minors: another trick (Sylvester’s criteria)

For Ac R™ and r € {1,...,I}, let
Apyy = AL, Lor) and A, = det(Ay)

be the leading r X r principal submatrix and its determinant (the leading principal minor of order
r). More generally, if S C {1,...,I} with |S| = r, the (general) principal submatrix is Ag g and its
principal minor is det(Ag ).

Handy identity. For any r x r matrix B,
det(—B) = (—1)" det(B).

Consequently, if A is PD then —A is ND, because det((—A4);)) = (=1)"A,.
Proposition. (Sylvester’s criteria for symmetric matrices). Fix a symmetric matriz A € RT>*1,

1. Positive definite (PD).

Ais PD <= A, >0 forallr=1,... 1.
2. Negative definite (ND).
Ais ND <= (-1)"A, >0 forallr=1,...,1,

i.e., each A, has the sign of (—1)".

3. Positive semidefinite (PSD).

A is PSD <= det(Ass) >0 for every principal submatriz Ag g.
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4. Negative semidefinite (NSD).
A is NSD <= (—1)I5I det(Ass) >0 for every principal submatriz Ag,s,
IS1.

equivalently: each principal minor is either O or has the sign of (—1)

Example (2 x 2). Two examples:

2 -1
a=1" A1:®%4:2>QAy:®m®:22—C%f:4—1:3>Q
i i all leading principal minors are positive = A is PD.
[—2 1] ) 1 : 2
A= . ) A = —2 (same sign as (—1)"), Ay = det(A4) = (—2)(—2) — 1 = 3 > 0 (same sign as (—1)“),

(-D)"A, >0 (r=1,2) = Ais ND.
Corollary. If A is symmetric and PD (respectively ND), then A is invertible. Moreover, if A is PD

(ND), then A~! is also PD (ND).
If A is PSD or NSD but not PD/ND, then A is not invertible.

Lower—triangular matrices. A matrix B € R'*! is lower triangular if bjj =0 for all ¢ < j, i.e.

b1 O 0
B 5?1 b2z
: 0
bri brr-1 brr
If B is upper or lower triangular, then
I
=1

In particular, if every diagonal entry b; # 0 (e.g., all b;; > 0) then B is invertible.

Definition. (Cholesky decomposition). A matrix A € R*! admits a Cholesky decomposition if
there exists a lower—triangular B with strictly positive diagonal entries such that

A= BBT.

Proposition. A symmetric matriz A € RI*! is positive definite (PD) iff it admits a Cholesky
decomposition.

Proof. Sketch proof: Need to build intuition

e If A= BB" with B lower triangular and diag(B) > 0, then for any z € R/,
2T Az =2 (BBN)x = (B"x)"(BTz) = |BTz|)3 > 0.

Let k := BTx. Since B is invertible (positive diagonal), k = 0 iff 2 = 0. Hence " Az > 0 for
all z # 0, i.e., Ais PD.
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e Conversely, if A is symmetric PD, then there exists a uniqueﬂ lower—triangular B with positive
diagonal such that A = BBT (the Cholesky factor).

O

!Uniqueness holds with the convention that the diagonal of B is strictly positive.

34



