
Week 2

Continuity (continuation)

Definition (Uniform continuity). Let (X, dX) and (Y, dY ) be metric spaces and f : X → Y . We
say that f is uniformly continuous on X if

∀ε > 0 ∃δ > 0 s.t.
(
dX(x, x′) < δ =⇒ dY

(
f(x), f(x′)

)
< ε
)

for all x, x′ ∈ X.

Equivalently: the same δ = δ(ε) works simultaneously for all pairs x, x′ in X.

Remark (Negation (quantifiers made explicit)). The negation of uniform continuity is:

∃ ε0 > 0 such that ∀ δ > 0 ∃x, x′ ∈ X with dX(x, x′) < δ and dY
(
f(x), f(x′)

)
≥ ε0.

Remark (Equivalent “constructive” failure). Equivalently, f fails to be uniformly continuous iff
there exist ε0 > 0 and two sequences {xn}, {x′n} ⊂ X such that

dX(xn, x
′
n) −−−→n→∞

0 but dY
(
f(xn), f(x

′
n)
)
≥ ε0 for all n.

This rephrasing is often handier in proofs.

Intuition. Uniform continuity asks for a δ that works globally (same δ for the whole domain) once
ε is fixed. In ordinary continuity at a point x∗, the admissible δ may depend on both ε and the
base point x∗. The negation highlights that, if uniform continuity fails, you can zoom in (δ ↓ 0)
and still find pairs x, x′ arbitrarily close whose images stay separated by at least some fixed ε0.

x

f

f(x∗) + ε

f(x∗)− ε

x∗

δ δ

Figure 1: Uniform continuity: one δ(ε) works everywhere in the domain.

Remark (On the dependence of x, x′ in the negation). In the negation, the “bad” points x, x′ may
(and typically do) depend on ε0 and on the chosen δ. There is no single pair that witnesses failure
for all δ; instead, you can find a violating pair for every δ > 0.

Remark (Two sequence facts used repeatedly). Let {an} ⊂ R.

(a) If an → a∗, then lim infn→∞ an = lim supn→∞ an = a∗.

(b) If lim infn→∞ an = lim supn→∞ an ∈ R, then {an} converges and its limit equals that common
value.
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Theorem 1 (Intermediate Value Theorem). Let f : [x, x] → R be continuous. For any y∗ between
f(x) and f(x) (i.e., either f(x) ≤ y∗ ≤ f(x) or f(x) ≤ y∗ ≤ f(x)), there exists x∗ ∈ [x, x] such
that f(x∗) = y∗.

Intuition. A continuous graph on a closed interval cannot “jump over” a horizontal level y∗: if the
endpoint values lie on opposite sides of y∗ (or one equals it), the graph must cross the line y = y∗

somewhere in between.

x

y

x x

y∗
x∗

[x, x]

Figure 2: IVT: a continuous function on [x, x] crosses every intermediate level.

x

y

y∗

discontinuity: no x with f(x) = y∗

Figure 3: If f is not continuous, an intermediate value y∗ may fail to be attained.

Remark (Restriction trick for IVT). Let f : R → R be continuous and let [x, x] ⊂ R. Consider the
restriction

g := f
∣∣
[x,x]

: [x, x] → R, g(x) = f(x).

If y∗ ∈ R is such that either f(x) ≤ y∗ ≤ f(x) or f(x) ≤ y∗ ≤ f(x), then, since g is continuous
on the closed interval [x, x], the Intermediate Value Theorem applied to g yields ∃x∗ ∈ [x, x] with
f(x∗) = y∗.

Intuition. You do not need any global property of f beyond continuity: restricting a continuous f
to [x, x] keeps it continuous there, so IVT applies to the restricted function g.

Theorem 2 (Extreme Value (Weierstrass)). Let (X, d) be a compact metric space and let f : X → R
be continuous. Then f attains a maximum and a minimum on X, i.e., there exist x, x ∈ X such
that

f(x) ≤ f(x) ≤ f(x) for all x ∈ X.
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restriction to [x, x]

Figure 4: Apply IVT to g = f |[x,x].

Definition (Attainment of extrema). Fix f : X → R.

• f attains a maximum if ∃x ∈ X such that f(x) ≥ f(x) for all x ∈ X.

• f attains a minimum if ∃x ∈ X such that f(x) ≤ f(x) for all x ∈ X.

Intuition. Compactness rules out “escaping to infinity” and “missing boundary points.” Continuity
prevents jumps. Together they force the sup and inf to be achieved.

Example (Identity map and the role of the domain). Let f(x) = x (identity) and X ⊆ R.

(a) If X = R, then f has no maximum (unbounded above).

(b) If X = [0, 12), then f has no maximum: supX f = 1
2 but it is not attained because 1/2 /∈ X

(domain not closed).

(c) If X is a finite disjoint union of closed intervals,

X =

K⋃
k=1

[xk, yk], x1 < y1 < x2 < y2 < · · · < xK < yK ,

then X is compact (finite union of compact sets), hence by Weierstrass f attains both extrema;
in fact, maxX f = yK and minX f = x1.

xx1 y1 x2 y2 x3 y3

max = f(y3) = y3

Figure 5: Finite union of closed intervals ⇒ compact set ⇒ extrema attained by f(x) = x.

Example (Compact domain without continuity: no maximum). Let s > 0 and define f : [0, 1] → R
by

f(x) =

{
s x, x ∈ [0, 12),

0, x ∈ [12 , 1].
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Then f is not continuous at x = 1
2 , and f has no maximum on [0, 1]: the supremum is s/2, but it

is not attained since the left branch does not include x = 1
2 and the right branch equals 0.

x

f(x)

0 1
2

1

sup f = s/2 (not attained)

Figure 6: Discontinuity at x = 1
2 breaks EVT: compact domain alone is not enough.

A useful version for constrained optimization

Let (X, d) be a metric space, C ⊆ X a constraint set, and f : X → R.

Problem: max
x∈C

f(x).

Definition (Solution / maximizer on C). A solution (or maximizer) is any x ∈ C such that f(x) ≥
f(y) for all y ∈ C. The set of all solutions is the arg max,

argmaxx∈C f(x) := {x ∈ C : f(x) ≥ f(y) for all y ∈ C }.

Remark. In Example with f(x) = x:

• If (X, d) = (R, du) and C = R, then argmaxx∈C f(x) = ∅.

• If (X, d) = ([0, 1], du) and C = [0, 1], then argmaxx∈C f(x) = {1}.

Proposition. If f : X → R is continuous and C ⊆ X is compact, then argmaxx∈C f(x) is nonempty
and compact.

Proof. Needs double check with page 4 of class notes week two.
Step 1 (restriction). Let g : C → R be the restriction g(x) = f(x) for x ∈ C. Then g is

continuous on C.
Step 2 (existence). By Weierstrass, the continuous image g(C) ⊆ R is compact, hence closed

and bounded, so it contains its maximum. Let y∗ = max g(C) ∈ g(C). Then the arg max can be
written as a level set:

argmaxx∈C f(x) = argmaxx∈C g(x) = g−1({y∗}),

which is nonempty because y∗ ∈ g(C).
Step 3 (compactness). Since singletons {y∗} are closed in R and g is continuous, g−1({y∗}) is

closed in C. A closed subset of a compact set is compact; hence argmaxx∈C f(x) is compact.
Alternative (sequences). Let (xn) ⊆ argmaxx∈C g(x). Any limit point x∗ ∈ C of (xn) satisfies,

by continuity of g, g(xn) = y∗ for all n =⇒ g(xn) → g(x∗) = y∗, hence x∗ ∈ argmaxx∈C g(x).
Therefore the arg max is closed in C and thus compact.
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Lemma (Continuous image of a compact set). Let (X, d) be compact and consider (R, du). If
f : X → R is continuous, then f(X) ⊆ R is compact.

Lemma (Singletons are closed). In (R, du), every singleton {y∗} is closed.

Lemma (Closed-set characterization of continuity). Let (X, dX) and (Y, dY ) be metric spaces and
f : X → Y . Then f is continuous iff for every closed set F ⊆ Y the preimage f−1(F ) ⊆ X is
closed.

Function spaces

Definition (Real-valued function space). Let (X, d) be a metric space and (R, du) the real line with
its usual metric. We denote by

F(X,R) := { f : X → R }

the set of all real-valued functions on X.

Remark (Prominent examples).

(a) f : R → R given by f(x) = x2.

(b) f : R2 → R given by f(x1, x2) = 10x1 x
2
2 .

(c) (Operator on a function space) T : F(X,R) → F(X,R) defined by

(Tg)(x) = 1
2 g(x) for all x ∈ X.

Thus T ∈ F(F(X,R), F(X,R)).

(d) (Functional) Let

I :=
{
g ∈ F(R,R) : g is (Lebesgue/Riemann) integrable on R

}
.

Define I : I → R by

I(g) =

∫
R
g(x) dx.

This is a map I ∈ F(I,R); it is well-defined only when the integral is finite (not ±∞).

Intuition. Items (c) and (d) emphasize two common kinds of maps involving function spaces:
operators T : F(X,R) → F(X,R) that return a new function, and functionals I : F(X,R) → R
that return a number from a function.

Definition (Sequence of functions). A sequence of functions on X is a family {fm}m∈N ⊆ F(X,R).

Remark (What do we mean by “convergence of functions”?). Up to now we often fixed a function
f and studied numeric sequences like {f(xn)}n∈N when xn → x∗; then f(xn) → f(x∗) if f is
continuous at x∗. That is not the same question as asking whether the functions fm themselves
converge to some new function f on X. In the sequel we will work inside F(X,R) and make precise
notions of convergence (e.g., pointwise vs. uniform).
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Pointwise convergence

Definition (Pointwise convergence). Let {fn}n∈N ⊆ F(X,R). We say that fn converges pointwise
to a function f ∈ F(X,R) if

∀x ∈ X : lim
n→∞

fn(x) = f(x).

Equivalently: for each fixed x ∈ X, the numeric sequence {fn(x)}n∈N converges in R, and we define
f(x) to be that limit. Formally:

∀x ∈ X ∀ε > 0 ∃N = N(x, ε) ∈ N such that ∀n ≥ N : |fn(x)− f(x)| < ε.

Remark. Pointwise convergence is checked point-by-point. It does not control how fast the conver-
gence occurs across different x’s, and it does not preserve continuity in general.

Example (A continuous-to-discontinuous pointwise limit). Let X = [0, 1] and fn : X → R be
fn(x) = xn. Each fn is continuous (even differentiable). For any fixed x ∈ [0, 1) we have xn → 0,
while 1n → 1. Hence

fn −−−−−→
pointwise

f, f(x) =

{
0, x ∈ [0, 1),

1, x = 1,

and f is discontinuous at x = 1 (thus non-differentiable there).

0.5 1

0.5

1

lim
n

xn = 0 for x ∈ [0, 1)

limn x
n = 1 at x = 1

x

y

x

x2

x5

Figure 7: Pointwise limit of fn(x) = xn on [0, 1]: a discontinuous function.

Remark (What if the domain is R+?). If we take X = R+ and fn(x) = xn, then for x > 1 we
have xn → +∞ (no finite limit in R), for x ∈ [0, 1) we have xn → 0, and at x = 1 we have 1n → 1.
Therefore {fn} is not pointwise convergent as a sequence in F(R+,R). (Allowing extended reals
would give a limit taking value +∞ on (1,∞), which lies outside R.)

Intuition. This example shows that a sequence of continuous (even smooth) functions may con-
verge pointwise to a function that is discontinuous and non-differentiable. Pointwise convergence
alone is too weak to preserve regularity properties—this motivates stronger notions (e.g., uniform
convergence).
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More on pointwise convergence: examples and a warning

Example (Bounded functions converging to an unbounded function). Let X = R+ and define
fn : X → R by

fn(x) =

{
x, x ≤ n,

0, x > n.

Each fn is bounded (indeed supx∈R+
|fn(x)| ≤ n). Fix x ∈ R+. Then (f1(x), f2(x), . . . ) =(

0, 0, . . . , 0, x, x, x, . . .︸ ︷︷ ︸
from n≥⌈x⌉

)
, so limn→∞ fn(x) = x. Hence fn

pointwise−−−−−→ f with f(x) = x on R+, and

the limit f is unbounded. Pointwise limits need not inherit boundedness.

Example (Pointwise convergence does not preserve limits/continuity). Recall the sequential char-
acterization: for g : X → R and x∗ ∈ X, limx→x∗ g(x) = y∗ iff for every sequence (xm) with xm ̸= x∗

and xm → x∗ we have g(xm) → y∗.
Let X = [0, 1] and fn(x) = xn. We know fn

pointwise−−−−−→ f where

f(x) =

{
0, x ∈ [0, 1),

1, x = 1.

Fix the sequence xm = 1− 1
m ↑ 1 with xm ̸= 1. For each fixed n,

lim
m→∞

fn(xm) = lim
m→∞

(1− 1
m)n = 1.

Thus all fn have left-limit 1 at x∗ = 1. But along the same sequence,

lim
m→∞

f(xm) = lim
m→∞

0 = 0 ̸= 1.

Therefore the limit function f does not preserve that limit at x∗ (indeed, f is discontinuous at 1)
even though each fn is continuous. Pointwise convergence is too weak to preserve limits/continuity.

Uniform versus pointwise

Definition (Uniform convergence). Let {fn}n∈N ⊆ F(X,R) and f ∈ F(X,R). We say that fn → f
uniformly on X if

∀ε > 0 ∃N ∈ N s.t. ∀n ≥ N, ∀x ∈ X : |fn(x)− f(x)| < ε.

or in another way (more helpful for exercises sometimes):

∀ε > 0 ∃N = N(ε) ∈ N such that ∀x ∈ X ∀n ≥ N : |fn(x)− f(x)| < ε.

In this case, call f the uniform limit of (fn : n ∈ N)

Intuition: The important thing here is the order of the quantifiers. In uniform convergence
the index can be chosen as N = N(ε) (the same N works for all x). By contrast, in pointwise
convergence one only has N = N(x, ε). Equivalently: uniform ⇐⇒ (∀ε)(∃N)(∀x)(∀n ≥ N).

Proposition (Uniform ⇒ pointwise). If fn → f uniformly on X, then fn → f pointwise on X.
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Proof. Given x ∈ X and ε > 0, choose N such that for all n ≥ N , supy∈X |fn(y) − f(y)| < ε. In
particular |fn(x)− f(x)| < ε for all n ≥ N , hence fn(x) → f(x).

Remark. To analyze a sequence (fn):

(i) First, figure out to which f it converges pointwise.

(ii) Then, check whether the convergence is uniform.

Example (Back to Example : not uniform). For fn(x) = xn on [0, 1] with pointwise limit f = 1{1}
on the endpoint, we have

sup
x∈[0,1]

|fn(x)− f(x)| = max
{

sup
x∈[0,1)

xn, |1n − 1|
}
= sup

x∈[0,1)
xn = 1 for every n.

(Indeed, xn ↑ 1 as x ↑ 1.) In particular, the sup norm does not go to 0, so the convergence is not
uniform. A quantitative lower bound is obtained by xn = (1− 1

n), for which xnn → e−1 > 0.

Remark (Negation). Failure of uniform convergence means:

∃ ε0 > 0 s.t. ∀N ∈ N ∃n ≥ N, ∃x ∈ X with |fn(x)− f(x)| ≥ ε0.

Here the “bad” x may depend on n (and on N).

Proposition (Sup-norm criterion). Let ∥g∥∞,X := supx∈X |g(x)|. Then

fn → f uniformly on X ⇐⇒ ∥fn − f∥∞,X −−−→
n→∞

0.

Example (fn(x) = xn on [0, 1] is not uniform). The pointwise limit is f(x) = 0 for x ∈ [0, 1) and
f(1) = 1. For ε = 1

4 and any N , choose n = N and x = (14)
1/n ∈ (0, 1). Then f(x) = 0 and

|fn(x)− f(x)| = |xn − 0| = 1
4 ≥ ε.

By the negation, fn ̸→ f uniformly on [0, 1]. Equivalently, ∥fn− f∥∞,[0,1] = supx∈[0,1) x
n = 1 for all

n.

Example (fn = 1[0,n] · id on R+ is not uniform). Recall fn(x) = x for x ≤ n and fn(x) = 0 for
x > n, so fn → f pointwise with f(x) = x. Take ε = 1. For any N , pick n = N and x = 2N > n.
Then fn(x) = 0 while f(x) = 2N , hence

|fn(x)− f(x)| = 2N ≥ ε.

Thus the convergence is not uniform on R+.

Example (fn(x) = x/n).

(a) On X = [0,K] the limit is f ≡ 0 and

∥fn − f∥∞,[0,K] = sup
x∈[0,K]

x

n
=

K

n
−−−→
n→∞

0,

so fn → 0 uniformly on [0,K]. In ε–N form: given ε > 0, take N > K
ε ; then for n ≥ N and

all x ∈ [0,K], |fn(x)− 0| = x
n ≤ K

n < ε.
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(b) On X = R+ the convergence to 0 is not uniform. Indeed, fix ε > 0. For any N choose n = N
and x = Nε. Then |fn(x)− 0| = x

n = ε, so the sup-norm never falls below ε.

Intuition. Uniformity requires that a single N work simultaneously for all x in the domain. In
unbounded domains (such as R+), it is typical that we can “push” x toward the region where the
error becomes large again, breaking uniformity.

Restriction and preservation properties

Proposition (Restriction preserves uniform convergence). Let (fn)n∈N ⊂ F(X,R) converge uni-
formly to f on X. If E ⊆ X and we denote by fn|E and f |E the restrictions to E, then (fn|E)
converges uniformly to f |E on E.

Proof. Done in a PS I think.

Remark (Uniform continuity: what is preserved?).

(a) Heine–Cantor. If X is compact and f : X → R is continuous, then f is uniformly continuous.

(b) Linear operations. If f, g : X → R are uniformly continuous and c ∈ R, then f ± g and c f
are uniformly continuous.

(c) Absolute value, max, min. If f, g are uniformly continuous, then |f |, max{f, g}, and
min{f, g} are uniformly continuous.

(d) Composition. If f : (X, dX) → (Y, dY ) and g : (Y, dY ) → (Z, dZ) are uniformly continuous,
then g ◦ f is uniformly continuous on X.

(e) Product: not preserved in general. Even if f and g are uniformly continuous, the product
f · g may fail to be uniformly continuous on non-compact domains.

(f) Division: not preserved in general. Even if f and g ̸= 0 are uniformly continuous, the
product f · g may fail to be uniformly continuous on non-compact domains.

Example (Product counterexample on R+). Let g(x) = x on R+. Then g is 1-Lipschitz (hence
uniformly continuous). But f = g · g = x2 is not uniformly continuous on R+: take xn = n, yn =
n+ 1

2n ; then |xn−yn| = 1
2n → 0 while |f(xn)−f(yn)| = |y2n−x2n| = (xn+yn)|yn−xn| ≥ 2n · 1

2n = 1.

Uniform limits of continuous functions

Proposition. Let (fn)n∈N ⊂ F(X,R) converge uniformly to f on X.

(a) If for each n the function fn is continuous at a point x∗ ∈ X, then f is continuous at x∗.

(b) If each fn is continuous on X, then f is continuous on X.

Proof. (a) Fix ε > 0. By uniform convergence choose N with ∥fN − f∥∞,X < ε/3. Since fN is
continuous at x∗, there exists δ > 0 such that dX(x, x∗) < δ implies |fN (x)− fN (x∗)| < ε/3. Then,
for dX(x, x∗) < δ,

|f(x)− f(x∗)| = |f(x)− fN (x) + fN (x)− fN (x∗) + fN (x∗)− f(x∗)|
≤ |f(x)− fN (x)|+ |fN (x)− fN (x∗)|+ |fN (x∗)− f(x∗)| < ε.

(b) Apply (a) at each x∗ ∈ X.
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Uniform limits live in the bounded space and the sup metric

Definition (Bounded function space and sup metric). Let

FB(X,R) := { f ∈ F(X,R) : ∥f∥∞,X := sup
x∈X

|f(x)| < ∞}.

On FB(X,R) define the metric

d∞(f, g) := sup
x∈X

|f(x)− g(x)| = ∥f − g∥∞,X .

Proposition (Uniform limit of bounded functions is bounded). Let (fn)n∈N ⊂ FB(X,R) converge
uniformly to f ∈ F(X,R). Then f ∈ FB(X,R).

Proof. Beyond the scope.

Proposition (Uniform ⇐⇒ d∞-convergence). Let (fn)n∈N ⊂ FB(X,R) and let f ∈ FB(X,R).
Then the following are equivalent:

(a) fn → f uniformly on X;

(b) d∞(fn, f) = ∥fn − f∥∞,X → 0 as n → ∞.

Proof. Beyond the scope.

Intuition. The metric d∞ “measures” the worst error uniformly across the entire domain. Therefore,
uniform convergence and convergence in d∞ are the same thing; and if any (in fact, all) of the fn
are bounded, the uniform limit is also bounded.
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Vector spaces and norms

Intuition. A vector space is an abstract set of objects equipped with two operations (vector addition
and scalar multiplication) that obey precise rules. In the background there is a field of scalars (in
this course we usually take R, but any field works).

Definition (Vector space). Let F be a field (typically R). A vector space over F is a triple (V,+, ·)
where:

• V is a set (its elements are called vectors);

• + is a binary operation V × V → V (vector addition);

• · is an operation F× V → V (scalar multiplication, (α, v) 7→ αv);

satisfying the following axioms for all u, v, w ∈ V and all α, β ∈ F:

(1) Addition is commutative: v + w = w + v.

(2) Addition is associative: u+ (v + w) = (u+ v) + w.

(3) Additive identity: there exists 0 ∈ V (the zero vector) such that 0 + v = v + 0 = v.

(4) Additive inverses: for each v ∈ V there exists w ∈ V (denoted −v) with v + w = 0.

(5) Multiplicative identity: 1 · v = v.

(6) Compatibility with field multiplication: α(βv) = (αβ)v.

(7) Distributivity over vector addition: α(v + w) = αv + αw.

(8) Distributivity over scalar addition: (α+ β)v = αv + βv.

Example (A vector space of bounded functions). Fix a set X. Let

FB(X,R) = {f : X → R : f is bounded}.

Define the operations pointwise:

(f + g)(x) = f(x) + g(x), (αf)(x) = α f(x) (α ∈ R).

Let 0 ∈ FB(X,R) be the zero function 0(x) = 0 and for f ∈ FB(X,R) define its additive inverse
by (−f)(x) = −f(x). Then (FB(X,R),+, ·) is a vector space over R.

Remark. A vector space axiomatizes addition of vectors and scalar multiplication. It does not
prescribe a rule to multiply two vectors with each other. Any notion of “multiplying vectors” (dot
product, cross product, matrix product, convolution, etc.) is extra structure that depends on the
environment we are working in.

Definition (Dot product on RI). For I ∈ N, the dot product on RI is

⟨x,y⟩ =
I∑

i=1

xi yi ∈ R, x = (x1, . . . , xI), y = (y1, . . . , yI) ∈ RI .

Note that ⟨x,y⟩ is a scalar, not a vector.
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Lemma (Basic properties of the dot product). For all x,y, z ∈ RI and all α ∈ R:

(a) Nonnegativity and definiteness: ⟨x,x⟩ ≥ 0, and ⟨x,x⟩ = 0 iff x = 0.

(b) Symmetry: ⟨x,y⟩ = ⟨y,x⟩.

(c) Additivity in the second entry: ⟨x,y + z⟩ = ⟨x,y⟩+ ⟨x, z⟩.

(d) Homogeneity in the second entry: ⟨x, αy⟩ = α ⟨x,y⟩.

(e) Equivalently, linearity in the first entry also holds by symmetry:

⟨x+ y,x+ y⟩ = ⟨x,x⟩+ 2 · ⟨x,y⟩+ ⟨y,y⟩.

Sketch. (a) ⟨x,x⟩ =
∑I

i=1 x
2
i ≥ 0 and it is zero only when each xi = 0. (b)

∑
i xiyi =

∑
i yixi. (c)

Expand componentwise:
∑

i xi(yi + zi) =
∑

i xiyi +
∑

i xizi. (d) Likewise,
∑

i xi(αyi) = α
∑

i xiyi.

Subspaces

Remark. If W ⊆ V , then (W,+, ·) need not be a vector space by itself. Here we are talking about
subspaces.

Proposition (Subspace test). Let W ⊆ V . Then (W,+, ·) is a vector space iff for every v, w ∈ W
and every scalars λ1, λ2 ∈ R,

λ1v + λ2w ∈ W.

Corollary. Under the subspace test, 0 ∈ W (e.g., take λ1 = λ2 = 0).

Remark (Notation). When the operations + and · are clear, we simply write V for the vector space
(V,+, ·).

Definition (Norm). Fix a vector space V . A norm on V is a function ∥ · ∥ : V → R such that, for
all v, w ∈ V and α ∈ R,

1. (Nonnegativity) ∥v∥ ≥ 0.

2. (Definiteness) ∥v∥ = 0 iff v = 0.

3. (Homogeneity) ∥αv∥ = |α| ∥v∥.

4. (Triangle inequality) ∥v + w∥ ≤ ∥v∥+ ∥w∥.

The Euclidean norm on RI

Let x = (x1, . . . , xI) ∈ RI . With the standard inner product

x · y =
I∑

i=1

xiyi,

the Euclidean norm is

∥x∥2 =
√
x · x =

( I∑
i=1

x2i

)1/2
.
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Norm properties.

(1) ∥x∥2 ≥ 0 for all x (sum of squares).

(2) ∥x∥2 = 0 ⇐⇒ x = 0.

(3) Homogeneity: for any scalar λ ∈ R,

∥λx∥2 =
√
(λx) · (λx) =

√
λ2 x · x = |λ| ∥x∥2.

(4) Triangle inequality: for any v, w ∈ RI ,

∥v + w∥2 ≤ ∥v∥2 + ∥w∥2.

A direct coordinate expansion gives

∥v + w∥22 = (v + w) · (v + w) = ∥v∥22 + 2 v · w + ∥w∥22,

which does not by itself yield the inequality unless one controls v ·w. Using Cauchy–Schwarz,
|v · w| ≤ ∥v∥2∥w∥2, hence

∥v + w∥22 ≤ ∥v∥22 + 2∥v∥2∥w∥2 + ∥w∥22 = (∥v∥2 + ∥w∥2)2,

and taking square roots proves (4).

Amanda’s proof (triangle inequality ⇔ Cauchy–Schwarz).

∥x+ y∥2 ≤ ∥x∥2 + ∥y∥2 ⇐⇒ ∥x+ y∥22 ≤ (∥x∥2 + ∥y∥2)2

⇐⇒ (x+ y) · (x+ y) ≤ ∥x∥22 + 2∥x∥2∥y∥2 + ∥y∥22
⇐⇒ x · x+ 2x · y + y · y ≤ ∥x∥22 + 2∥x∥2∥y∥2 + ∥y∥22
⇐⇒ x · y ≤ ∥x∥2∥y∥2,

which is precisely the Cauchy–Schwarz inequality
I∑

i=1

xiyi ≤
( I∑

i=1

x2i

)1/2( I∑
i=1

y2i

)1/2
.

Thus Cauchy–Schwarz implies (and is equivalent to, through the chain above) the triangle
inequality for ∥ · ∥2.

The sup–norm on bounded functions. Let V = FB(X,R) be the vector space of all bounded
real–valued functions on X. For f ∈ V define the sup–norm

∥f∥∞ := sup
x∈X

|f(x)|.

Axioms (1) nonnegativity and (2) ∥f∥∞ = 0 ⇐⇒ f ≡ 0 are immediate. For the other two axioms:
(3) Absolute homogeneity. For every λ ∈ R,

∥λf∥∞ = sup
x∈X

|λf(x)| = |λ| sup
x∈X

|f(x)| = |λ| ∥f∥∞.

(4) Triangle inequality. For f, g ∈ V ,

∥f + g∥∞ = sup
x∈X

|f(x) + g(x)| ≤ sup
x∈X

(
|f(x)|+ |g(x)|

)
≤ sup

x∈X
|f(x)|+ sup

x∈X
|g(x)| = ∥f∥∞ + ∥g∥∞.

Hence ∥ · ∥∞ is a norm on FB(X,R).
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Remark 4 (Every norm induces a metric). If (V, ∥ · ∥) is a normed vector space, then

d(v, w) := ∥v − w∥

defines a metric on V . (Nonnegativity and symmetry are clear, d(v, w) = 0 ⇐⇒ v = w by the
norm axiom, and the triangle inequality follows from ∥v − w∥ ≤ ∥v − z∥+ ∥z − w∥.)

Examples.

• On Rt with the Euclidean norm ∥ · ∥2: deuc(v, w) = ∥v − w∥2.

• On FB(X,R) with the sup–norm: d∞(f, g) = ∥f − g∥∞.

Key idea to remember: a norm measures the length of a vector; a metric measures the distance
between two points.

Vectors in R2 as points and as displacements

• We begin by focusing on the vector space R2.

• Pictorially, a vector in R2 can be seen in two (equivalent) ways:

1. as a point (x1, x2) in the plane, or

2. as a displacement (an arrow) with a length and a direction.

Let x = (x1, x2) and y = (y1, y2). The displacement that carries x to y is

z = y − x = (y1 − x1, y2 − x2).

Equivalently, x+ z = y.

Key idea. Thinking of vectors as displacements, two arrows are equivalent if they have the same
length and the same direction. Thus the arrow drawn from the origin to z is equivalent to the
arrow drawn from x to y. The arrow w = x− y = −(y − x) has the same length but the opposite
direction, so it is not equivalent to z.

x1

x2

x

y
z = y − x

z

w = x− y

x

y

(x1, x2)

(y1, y2)

Figure 8: Vectors as points and as displacements: x + z = y with z = y − x. The dashed orange
arrow is equivalent to the solid orange arrow (same length and direction).
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Two viewpoints on R2

• As a set of points: elements are (x1, x2).

• As a set of displacements: elements are arrows with length and direction; two displacements
are equivalent iff they share the same length and direction.

Remarks on notation

• We often write a vector x in coordinates as x = (x1, . . . , xJ). When it is helpful to stress
“column” form we use

x =

x1
...
xJ

 ∈ RJ×1.

• For a scalar λ ∈ R we may use the constant vector

λ̄ = (λ, . . . , λ).

• The zero vector is denoted by 0 = (0, . . . , 0).

Scaling a vector

Let x ∈ Rj and λ ∈ R \ {0}. Scaling by λ produces the vector λx:
λ > 1 : stretches x in the same direction,

0 < λ < 1 : shrinks x in the same direction,

λ < 0 : reverses direction and scales by |λ|.

x1

x2

x

0 < λ < 1

λ > 1

λ < 0

Inner product and the angle between vectors

In Rj with the standard (Euclidean) inner product and norm,

⟨x,y⟩ =
j∑

i=1

xiyi, ∥x∥2 =
√

⟨x,x⟩.
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By the law of cosines applied to the triangle with sides x, y, and y − x,

∥y − x∥22 = ∥x∥22 + ∥y∥22 − 2 ∥x∥2 ∥y∥2 cos θ.

On the other hand,

∥y − x∥22 = ⟨y − x,y − x⟩ = ∥x∥22 + ∥y∥22 − 2 ⟨x,y⟩ .

Equating the two expressions gives the fundamental link between angle and inner product:

cos θ =
⟨x,y⟩

∥x∥2 ∥y∥2

Hence ⟨x,y⟩ = 0 ⇐⇒ cos θ = 0 ⇐⇒ θ = 90◦ (the vectors are perpendicular).

x

y

y − x

θ

Orthogonality and orthonormality

• Two vectors x,y ∈ Rj are orthogonal if ⟨x,y⟩ = 0.

• A vector x is orthogonal to a set X ⊆ Rj if ⟨x,y⟩ = 0 for every y ∈ X.

• The zero vector satisfies ⟨0,y⟩ = 0 for all y, so 0 is orthogonal to every vector.

• A set {u1, . . . ,um} ⊂ Rj is orthonormal if the vectors are pairwise orthogonal and each has
Euclidean norm 1:

⟨ui,uk⟩ = 0 (i ̸= k), ∥ui∥2 = 1.

Example. Let x = (3, 1) and y = (−1, 3). Then

⟨x,y⟩ = 3(−1) + 1 · 3 = −3 + 3 = 0 ⇒ x ⊥ y.

If we scale y by 1
2 , z := 1

2y =
(
−1

2 ,
3
2

)
, then

⟨x, z⟩ = 1
2 ⟨x,y⟩ = 0,

so x ⊥ z as well. (For comparison, w = (−2, 3) gives ⟨x,w⟩ = 3(−2) + 1 · 3 = −3 ̸= 0, hence not
orthogonal.)

Example. Let x = (1, 0) and y = (0, 2). Then ⟨x,y⟩ = 0 so they are orthogonal. However,

∥x∥2 = 1, ∥y∥2 = 2,

so the pair is not orthonormal (the second vector does not have unit length).
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Linear combinations and span

Definition (Linear combination). Let V be a vector space and let X = {v1, . . . ,vk} ⊂ V be
finite. A vector v ∈ V is a linear combination of X if there exist scalars λ1, . . . , λk ∈ R such that

v =
k∑

j=1

λj vj .

Coordinate form in RJ . Write x1, . . . ,xk ∈ RJ with xr = (xr1, . . . , xrJ). A vector x =
(x1, . . . , xJ) ∈ RJ is a linear combination of {x1, . . . ,xk} iff there exist λ1, . . . , λk ∈ R with

xi =
k∑

r=1

λr xri for each i = 1, . . . , J.

Definition (Span). For W ⊂ V define the span of W by

span(W ) =


m∑
j=1

λj wj : wj ∈ W, λj ∈ R, m ∈ N

 .

Equivalently, v ∈ span(W ) iff there exists a finite subset Ŵ ⊂ W such that v is a linear combination
of vectors in Ŵ .

Remark. 0 ∈ V is a linear combination of any finite set (take all coefficients λj = 0). For two
vectors x1,x2 ∈ V , any vector of the form x3 = λ1x1 + λ2x2 is reached by scaling and then adding.

x

y

x1

x2

λ1x1

λ2x2

x3 = λ1x1 + λ2x2

0 < λ1 < 1

λ2 > 1

Basic facts. For any W ⊂ V ,
W ⊂ span(W ).

Example. If W = {(1, 0, 0), (0, 1, 0)} ⊂ R3, then

span(W ) = {(z1, z2, 0) : z1, z2 ∈ R} (the xy-plane).

Also, is true that {0 } = span({0}) and V = span(V ).
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Example (Collinear pair). Let x = (4, 2) and y = (2, 1). Then y = 1
2 x, so

1
2 x− y = 0.

Hence {x,y} is linearly dependent and

span{x,y} = {λx : λ ∈ R } = {µy : µ ∈ R },

the line through the origin with direction x (equivalently, y).

Example (Not a rescaling). Let x = (4, 2) and y = (2, 12). If y were a scalar multiple of x, we
would have

(2, 12) = t(4, 2) =⇒ 2 = 4t and 1
2 = 2t,

which forces t = 1
2 and t = 1

4 , a contradiction. Thus y is not a rescaling of x, and in particular x
is not a linear combination of the single vector y. (Here span{y} = { s(2, 12) : s ∈ R } is a different
line.)

Example (All linear combinations of {x,y}). With x = (4, 2) and y = (2, 12), a vector z is a linear
combination of {x,y} iff there exist λx, λy ∈ R such that

z = λxx+ λyy =
(
4λx + 2λy, 2λx +

1
2λy

)
.

Since det

(
4 2

2 1
2

)
= 4 · 1

2 − 2 · 2 = −2 ̸= 0, the pair {x,y} is linearly independent and therefore

span{x,y} = R2. Equivalently, given z = (u, v) ∈ R2 there are unique scalars

λx = v − u

4
, λy = u− 2v

such that z = λxx+ λyy.

Remark (Nontrivial relation ⇒ one vector depends on the others). In general, if λxx+λyy+λzz = 0
with at least one coefficient nonzero, then one of the vectors is a linear combination of the other
two. For instance, if λz ̸= 0, then

z = −λx

λz
x− λy

λz
y.

Definition (Linear dependence and independence). Let V be a vector space and let W = {v1, . . . , vk} ⊂
V be a finite set.

(i) W is linearly dependent if there exist scalars λ1, . . . , λk ∈ R, not all zero, such that

k∑
i=1

λi vi = 0.

(ii) W is linearly independent if for every choice of scalars λ1, . . . , λk ∈ R,

k∑
i=1

λi vi = 0 =⇒ λ1 = · · · = λk = 0.

Remark. Intuition: a linear dependence is a non-trivial way to obtain the zero vector; equivalently,
we have two different ways to “get 0”, so the set should be called dependent.
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Example. Let W ⊂ V be finite and suppose 0 ∈ W . Write W = {v1, . . . , vk,0}. Then

1 · 0+
k∑

i=1

0 · vi = 0

is a non-trivial linear relation among the vectors in W . Hence W is linearly dependent.

Proposition. Let W ⊆ V be a finite set of vectors.

(a) If W contains a linearly dependent subset, then W is linearly dependent.

(b) If W is linearly independent, then every nonempty subset of W is linearly independent.

Proof. (a) Let Ŵ = {v1, . . . , vj} ⊆ W be linearly dependent. Then there exist scalars λ1, . . . , λj ,
not all zero, with

j∑
i=1

λi vi = 0.

Write W = {v1, . . . , vj , vj+1, . . . , vℓ} and extend the list of scalars by λj+1 = · · · = λℓ = 0. Then

ℓ∑
i=1

λi vi = 0

with some λi ̸= 0, so W is linearly dependent.
(b) This is the contrapositive of (a). If a nonempty subset of W were linearly dependent, then

(a) would force W to be dependent as well, contrary to the hypothesis. Hence every nonempty
subset is linearly independent.

Remark (Convention). The empty set ∅ is considered linearly independent.

Proposition. Let X = {x1, . . . ,xk} ⊂ Rt be a set of nonzero, pairwise orthogonal vectors (i.e.,
⟨xi,xj⟩ = 0 for i ̸= j). Then {x1, . . . ,xk} is linearly independent.

Proof. Suppose
∑k

i=1 λi xi = 0. Fix j ∈ {1, . . . , k} and take the inner product with xj :

0 =
〈
xj ,

k∑
i=1

λi xi

〉
=

k∑
i=1

λi ⟨xj ,xi⟩ = λj ⟨xj ,xj⟩ = λj ∥xj∥2.

Since xj ̸= 0, we have ∥xj∥2 > 0, hence λj = 0. Because j was arbitrary, all λi = 0, so the set is
linearly independent.

Example (Back to Example 7). Take x = (4, 2) and y = (2, 12) in R2. They are not orthogonal
because

⟨x,y⟩ = 4 · 2 + 2 · 1
2 = 8 + 1 ̸= 0.

Nevertheless they are linearly independent: if αx+ βy = 0 then{
4α+ 2β = 0,

2α+ 1
2β = 0.

Multiplying the second equation by 4 gives 8α+2β = 0; subtracting 2 times the first equation yields
−2β = 0, so β = 0, and then α = 0. Hence {x,y} is LI. This shows orthogonality is sufficient but
not necessary for linear independence.
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Definition (Basis). Let W ≤ V be a vector subspace. A finite set B = {v1, . . . , vk} ⊂ W is a basis
of W iff

1. B is linearly independent, and

2. span(B) = W .

Equivalently, a basis is a minimal generating set of W (no vector of B lies in the span of the others).

Example (Standard basis of RJ). Define ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ RJ with 1 in the i-th position.
Then E = {e1, . . . , eJ} is a basis of RJ :

• LI: If
∑J

i=1 λiei = 0, then every coordinate equals 0, hence λi = 0 for all i.

• Spanning: For x = (x1, . . . , xJ) ∈ RJ we have x =
∑J

i=1 xiei.

Example (A non-standard basis of R2). Let x = (4, 2) and y = (2, 12). The matrix with columns
x,y is

A =

(
4 2

2 1
2

)
, detA = 4 · 1

2 − 2 · 2 = −2 ̸= 0.

Hence {x,y} is linearly independent and therefore a basis of R2; consequently span{x,y} = R2.
(Another basis is the standard one {e1, e2}; both bases have two elements.)

Invariance of basis size If B and B′ are both bases of the same subspace W , then |B| = |B′|
(they have the same number of elements). This number is called the dimension of W and is denoted
dimW .

Example (A 2-dimensional subspace of R3). Let

W = {(z1, z2, z3) ∈ R3 : z3 = 0}.

Then W = span{(1, 0, 0), (0, 1, 0)} and these two vectors are LI, so {(1, 0, 0), (0, 1, 0)} is a basis of
W . Hence dimW = 2 (the xy-plane).

Linear transformation and matrices

Definition (Linear transformation). A map L : V → W between vector spaces is linear if, for
all u,v ∈ V and all λ ∈ R,

(Additivity) L(u+ v) = L(u) + L(v), (Homogeneity) L(λv) = λL(v).

Characterizing linear maps L : Rt → R

Proposition. A function L : Rt → R is linear iff there exists a vector v = (v1, . . . , vt) ∈ Rt such
that, for every x = (x1, . . . , xt) ∈ Rt,

L(x) = v·x =

t∑
i=1

vi xi.

In particular, the representing vector is unique and equals v =
(
L(e1), . . . , L(et)

)
, where {e1, . . . , et}

is the standard basis of Rt.
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Proof. (⇒) Assume L is linear. Any x ∈ Rt can be written as x =
∑t

i=1 xi ei. By linearity,

L(x) = L

(
t∑

i=1

xi ei

)
=

t∑
i=1

xi L(ei).

Set vi := L(ei) and v = (v1, . . . , vt); then L(x) =
∑t

i=1 vixi = v·x.
(⇐) Conversely, suppose L(x) = v·x for some fixed v. Then for all x,y ∈ Rt and λ ∈ R,

L(x+ y) = v·x+ y = v·x+ v·y = L(x) + L(y),

L(λx) = v·λx = λv·x = λL(x),

so L is linear. Uniqueness of v follows by evaluating at the basis vectors ei.

Checks. If L(x) = v·x, then

L(x+ y) = v·x+ y = v·x+ v·y = L(x) + L(y), L(λx) = v·λx = λv·x = λL(x).

Consequences.

• A linear functional L : Rt → R is completely determined by its values on the standard basis:
vi = L(ei).

• In coordinates, L(x1, . . . , xt) =
∑t

i=1 vixi.

Characterizing linear transformations L : RI → RJ

Let L : RI → RJ be linear. For each j = 1, . . . , J define the linear functional Lj : RI → R by
L(x) =

(
L1(x), . . . , LJ(x)

)
. For every j set

vj :=
(
Lj(e1), Lj(e2), . . . , Lj(eI)

)
∈ RI .

Then, for all x ∈ RI ,

Lj(x) = ⟨vj , x⟩ and L(x) =
(
⟨v1, x⟩ , . . . , ⟨vJ , x⟩

)
∈ RJ .

Matrix viewpoint. When we regard inputs/outputs as column vectors,

x =

x1
...
xI

 , L(x) =

⟨v1, x⟩
...

⟨vJ , x⟩

 =

v⊤
1
...
v⊤
J


︸ ︷︷ ︸
A∈RJ×I

x.

Thus every linear map L : RI → RJ is represented by the (unique) matrix A whose j-th row is v⊤
j ,

and L(x) = Ax for all x ∈ RI .

Example (From linear forms to the matrix of L). Let L : R3 → R2 be

L(x1, x2, x3) =
(
x1 + 2x2 + 3x3︸ ︷︷ ︸

ℓ1(x)

, 4x1 + 5x2 + 6x3︸ ︷︷ ︸
ℓ2(x)

)
, x = (x1, x2, x3).
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Define v1 = (1, 2, 3) and v2 = (4, 5, 6). Then

ℓ1(x) = ⟨v1,x⟩, ℓ2(x) = ⟨v2,x⟩,

so L(x) = (⟨v1,x⟩, ⟨v2,x⟩).
Viewing L as a J × I = 2× 3 matrix,

A =

(
1 2 3
4 5 6

)
=

(
v⊤
1

v⊤
2

)
, Ax =

(
x1 + 2x2 + 3x3
4x1 + 5x2 + 6x3

)
= L(x).

Equivalently, if (e1, e2, e3) is the standard basis of R3, the columns of A are L(e1), L(e2), L(e3),
and

L(x) =
3∑

i=1

xi L(ei).

Proposition (Standard matrix of a linear map). Let L : RI → RJ be linear. Its (unique) standard
matrix AL ∈ RJ×I is

AL =
[
L(e1) L(e2) · · · L(eI)

]
,

so that for every x ∈ RI ,

L(x) = AL x and L(x) =
I∑

i=1

xi L(ei).

Conversely, given any A ∈ RJ×I there is a (unique) linear map LA : RI → RJ defined by LA(x) =
Ax for all x.

Example (Dropping a coordinate vs. projection matrix). Take L : R3 → R2 given by L(x1, x2, x3) =
(x1, x2) = (ℓ1(x), ℓ2(x)), where ℓ1(x) = x1 and ℓ2(x) = x2. Then

L(e1) = (1, 0)⊤, L(e2) = (0, 1)⊤, L(e3) = (0, 0)⊤,

and the standard matrix is

AL =

(
1 0 0
0 1 0

)
, AL

x1
x2
x3

 =

(
x1
x2

)
= L(x).

Remark. AL is not a “projection matrix” in the usual sense because it is not square. The (orthog-
onal) projection in R3 onto the subspace span{e1, e2} is the 3× 3 matrix

P =

1 0 0

0 1 0

0 0 0

 , P 2 = P (idempotent), P⊤ = P (symmetric).

Example (Identity map). Let L : RI → RI be the identity: L(x) = x for all x ∈ RI . Then for the
standard basis (e1, . . . , eI) we have L(ei) = ei, and the standard matrix is the identity matrix

AL = II =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 .
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Remark (Square case). Very often we consider L : RI → RI . In that case the standard matrix AL

is square, i.e., AL ∈ RI×I .

Definition (Kernel and rank). Let L : V → W be linear between vector spaces.

• The kernel (null space) of L is

kerL = { v ∈ V : L(v) = 0 } = L−1({0}).

• The rank of L is
rankL = dim

(
L(V )

)
,

i.e., the dimension of the image (a subspace of W ). Equivalently: the number of elements in
a basis of L(V ).

Proposition (Column dimension equals rank). Let L : RI → RJ be linear and let AL ∈ RJ×I be
its standard matrix. Then

rankL = dim
(
L(RI)

)
= dim

(
col(AL)

)
= #{linearly independent columns of AL}.

Corollary (Image and kernel are subspaces). For any linear map L : V → W ,

L(V ) ⊆ W is a vector subspace of W, kerL ⊆ V is a vector subspace of V.

Proposition. Let L : V → W be a linear transformation.

(1) L(0) = 0 in W .

(2) If L is invertible, then the inverse map L−1 : W → V is a linear transformation.

(3) L is injective (one-to-one) if and only if kerL = {0}.

(4) Let {v1, . . . , vk} be a basis of V . Then

L : V → W is surjective ⇐⇒ span
(
L(v1), . . . , L(vk)

)
= W.

(5) If {v1, . . . , vk} are linearly dependent in V , then
(
L(v1), . . . , L(vk)

)
is linearly dependente in

W .

Intuition. About point (3):
You need the set of v that map to 0 is only 0. If some nonzero u satisfies L(u) = 0, then

L(u) = L(0): two different inputs (u ̸= 0) collapse to the same output, so L is not injective.
Conversely, if Lx = Ly with x ̸= y, then L(x − y) = 0 with x − y ̸= 0, meaning that the kernel is
not trivial.

About point (4):
Every x ∈ V is written as a linear combination x =

∑
i λivi; by linearity, L(x) =

∑
i λi L(vi).

Then L “reaches” a w ∈ W if and only if that w is a linear combination of the images L(vi).
Therefore, L is surjective exactly when {L(vi)} generates W .

Proposition. Fix a linear map L : RI → RJ and its standard matrix AL ∈ RJ×I .

(1) L is injective iff the homogeneous system AL z = 0 has the unique solution z = 0 (i.e.,
kerAL = {0}).
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(2) L is surjective iff the columns of AL span RJ :

span
(
AL[∗, 1], . . . , AL[∗, I]

)
= RJ .

(Matrix translation of Prop. (4)).

(3) L is bijective iff I = J and there exists B ∈ RI×I with

ALB = BAL = II×I (the identity matrix).

Proposition (Rank–Nullity). Let L : RI → RJ be linear. Then

dim(kerL) + rankL = I.

Equivalently, for the standard matrix AL,

nullity(AL) + rank(AL) = #columns of AL (= I).

Consequences (useful translations):

• L injective ⇐⇒ rankL = I (i.e., columns linearly independent).

• L surjective ⇐⇒ rankL = J .

• If I = J , then L bijective ⇐⇒ rankL = I = J ⇐⇒ AL is invertible.

Proposition (Square matrix). Fix a linear map L : RI → RI and its associated square matrix
AL ∈ RI×I .

(1) L is injective if and only if it is surjective.

(2) AL is invertible if and only if there is a unique z ∈ RI with ALz = 0 (equivalently kerL = {0};
i.e., injective).

Remark.

• Same input/output dimension ⇒ injective ⇔ surjective.

• Practical takeaway: for a square matrix, to check invertibility it suffices to check
injectivity (or, equivalently, surjectivity).

Remark. Let L : RI → RI induce a singular square matrix AL.

• Then kerL contains at least two points (0 and some nonzero vector).

• kerL is a vector subspace (it need not be all of RI).

• Hence kerL is infinite; in particular, there are infinitely many x ∈ RI with ALx = 0.

Proposition. Let AL be singular. For any y ∈ RI , the system ALx = y has either no solutions or
infinitely many solutions.

Idea only. If x∗ solves ALx = y and x∗∗ ∈ kerAL (exists since AL is singular), then AL(x
∗+x∗∗) =

y + 0 = y. Since kerAL is infinite, you obtain infinite solutions by adding different vectors from
the kernel. If, on the other hand, there is no first solution, the system simply has no solutions.

Remark (Invertible case). If A is invertible (i.e., non-singular), then L is bijective and for each y
there exists a unique x with Ax = y.
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Determinants and invertibility

Definition. Fix a square matrix A ∈ R1×1, then A = [a11] and det(A) = a11

Proposition. Fix a square matrix A ∈ RI×I . Then

A is singular (non-invertible) ⇐⇒ det(A) = 0, A is non-singular (invertible) ⇐⇒ det(A) ̸= 0.

Definition (Minor and cofactor). Let A ∈ RI×I . For j, i ∈ {1, . . . , I}, the Mji matrix is obtained
from A by deleting the j-th row and the i-th column; hence Mji ∈ R(I−1)×(I−1).

The corresponding cofactor-ji is

cji = (−1) j+i det(Mji).

Definition (Determinant). Let A = (aji) ∈ RI×I and let cji = (−1)j+i det(Mji) be the cofactor
obtained by deleting the j-th row and i-th column. For any fixed j ∈ {1, . . . , I},

det(A) =

I∑
i=1

aji cji.

It does not matter which row j you choose—the final value is the same.

Example. 2×2 check. For A =

(
a11 a12
a21 a22

)
:

for j = 1 : det(A) = a11 a22 − a12 a21,

for j = 2 : det(A) = − a21 a12 + a22 a11.

(Same value; only the order/sign pattern changes.)

Determinant in R3

Let

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33


Using the cofactor expansion along the first row (any fixed row/column gives the same final value),

det(A) = a11 det(M11)− a12 det(M12) + a13 det(M13),

where the minors are

det(M11) = a22a33 − a23a32, det(M12) = a21a33 − a31a23, det(M13) = a21a32 − a22a31.

Equivalently,

det(A) = a11(a22a33 − a23a32)− a12(a21a33 − a31a23) + a13(a21a32 − a22a31)

Definition. Properties of determinants (column-wise formulation) Throughout, A,B,C ∈ RI×I

and A[∗, i] denotes the i-th column of A.

1. Transpose: det(A) = det(AT).
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2. Identity: det(II) = 1.

3. Duplicate column ⇒ zero: If A[∗, i] = A[∗, ℓ] for some i ̸= ℓ, then det(A) = 0.

4. Swap two columns flips the sign: If

A[∗, k] = B[∗, ℓ], A[∗, ℓ] = B[∗, k] (k ̸= ℓ), and A[∗, i] = B[∗, i] ∀ i /∈ {k, ℓ},

then det(A) = −det(B).

5. Homogeneity in one column: If

A[∗, ℓ] = cB[∗, ℓ] and A[∗, i] = B[∗, i] ∀ i ̸= ℓ,

then det(A) = c det(B).

6. Additivity in one column: If

A[∗, ℓ] = B[∗, ℓ] + C[∗, ℓ] and A[∗, i] = B[∗, i] = C[∗, i] ∀ i ̸= ℓ,

then det(A) = det(B) + det(C).

Also useful:

• Multiplicativity: det(AB) = det(A) det(B).

• Triangular/diagonal: If A is triangular, then det(A) =
∏I

i=1 aii.

• Zero column: If some A[∗, ℓ] = 0, then det(A) = 0 (special case of (5) with c = 0).

Eigenvalues and eigenvectors

Let L : RI → RI be linear. We call λ ∈ R an eigenvalue of L if there exists a nonzero vector x ̸= 0
such that

L(x) = λx,

and any such x is an eigenvector associated with λ.

Example. With

A =

[
2 0

1 5

]
, x =

[
x1
x2

]
,

we have

Ax =

[
2x1

x1 + 5x2

]
,

which is typically not parallel to x (so not an eigenvector in general).
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Remark. We require x ̸= 0 because L(0) = 0 for any linear map; eigenvectors capture directions
that the transformation sends to a parallel vector (possibly scaled).

Example. Projection Let

A =

1 0 0

0 1 0

0 0 0

 .

Starting from x = (1, 1, 1)⊤ gives Ax = (1, 1, 0)⊤ (down to the plane z = 0 in R3). There is no
single λ with Ax = λx for arbitrary x ∈ R3, so we look inside the plane: for any y = (y1, y2, 0)

⊤,

Ay = y ⇒ λ = 1 with eigenvectors in the plane z = 0.

Vectors orthogonal to that plane give the other eigenvalue:

A

 0
0
x3

 =

00
0

 = 0 ·

 0
0
x3

 , λ = 0 with eigenvectors along the z-axis.

Example. Permutation Matrix

A =

[
0 1

1 0

]
, A

[
x1
x2

]
=

[
x2
x1

]
= λ

[
x1
x2

]
.

Hence: {
x1 = x2 ̸= 0 ⇒ λ = 1, eigenvectors {(1, 1)};
x1 = −x2 ̸= 0 ⇒ λ = −1, eigenvectors {(1,−1)}.

Eigenvalues and eigenvectors: general approach

• First, solve for eigenvalues. Then use them to obtain the corresponding eigenvectors.

• We look for nonzero vectors x⃗ ̸= 0⃗ and scalars λ such that

Ax⃗ = λx⃗ ⇐⇒ (A− λII)x⃗ = 0⃗.

Denote B := A− λII .

• If B were invertible, the only solution would be x⃗ = 0⃗ for every λ ∈ R. But we want a nonzero
solution, so B must be non-invertible (singular).

• Therefore we search for the unknown λ from the single scalar equation

det(A− λII) = 0.

Corollary. A scalar λ ∈ R is an eigenvalue of A ∈ RI×I if and only if

det(A− λII) = 0.

Side note: the polynomial pA(λ) := det(A− λII) is the characteristic polynomial.
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Example (back to the 2× 2 case). For

A =

[
2 0

1 5

]
, B = A− λI2 =

[
2− λ 0

1 5− λ

]
,

we get
det(B) = (2− λ)(5− λ) = 0 ⇒ λ ∈ {2, 5}.

Basic spectral facts (no proofs)

Proposition. Fix A ∈ RI×I .

1. A has I eigenvalues (counted with algebraic multiplicity), possibly complex.

2. If A is symmetric (A = AT), then all eigenvalues are real.

3. det(A) =

I∏
i=1

λi (product of the eigenvalues, with multiplicity).

4.
I∑

i=1

λi = tr(A), where tr(A) =
∑I

i=1 aii.

Example.

A =

[
2 0

0 2

]
=⇒ A− λI2 =

[
2− λ 0

0 2− λ

]
, det(A− λI2) = (2− λ)2 = 0,

so λ = 2 twice (double eigenvalue).

Remark (many eigenvectors for one eigenvalue). If λ is an eigenvalue of A ∈ RI×I with eigenvector
x ̸= 0, then there are infinitely many eigenvectors associated with λ:

(A− λII)(αx) = α (A− λII)x = 0 for any α ∈ R \ {0}.

(Back to the “singular matrix” remark: if B ∈ RI×I is singular, then Bz = 0 has infinitely many
solutions; and Bz = y has either no solutions or infinitely many.)

Proposition. (eigenvectors for distinct eigenvalues) Let A ∈ RI×I have I distinct eigenvalues
λ1, . . . , λI with associated eigenvectors x1, . . . ,xI . Then {x1, . . . ,xI} is linearly independent.

Example. (back to the 2× 2 case) Let

A =

(
2 0

1 5

)
.

For λ = 2:

A− 2I =

(
0 0

1 3

)
, (A− 2I)

(
x1
x2

)
=

(
0

0

)
=⇒ x1 + 3x2 = 0.

Eigenvectors: { (−3t, t) : t ̸= 0 }.
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For λ = 5:

A− 5I =

(
−3 0

1 0

)
, (A− 5I)

(
x1
x2

)
=

(
0

0

)
=⇒ x1 = 0, x2 ̸= 0.

Eigenvectors: { (0, t) : t ̸= 0 }.
Thus each eigenvalue has infinitely many eigenvectors (different scalar multiples), and the two

eigenvector directions (−3, 1) and (0, 1) are linearly independent (note: not necessarily orthogonal).

Example. (Jordan block / repeated eigenvalue) Let

A =

(
1 1

0 1

)
, B(λ) = A− λI =

(
1− λ 1

0 1− λ

)
.

detB(λ) = (1− λ)2 ⇒ λ = 1 (double root).

Solve Ax = λx with λ = 1:(
1 1

0 1

)(
x1
x2

)
=

(
x1
x2

)
=⇒ x1 + x2 = x1 ⇒ x2 = 0.

Eigenvectors: { (t, 0) : t ̸= 0 }. Here the (algebraic) multiplicity is 2 but there is only one indepen-
dent eigenvector direction (the eigenvectors are all scalar multiples of each other).

Check note (to check). If we take two eigenvectors that come from the same eigenvalue, they
are (claimed to be) linearly dependent. If they come from different eigenvalues, they are linearly
independent.

Idea of the spectral theorem

Fix a symmetric matrix A ∈ RI×I .

• There exists an orthonormal basis of RI consisting of I eigenvectors of A.

• In that ON basis, A acts by scaling each basis vector:

A ei = λi ei =⇒ [A]ON basis = diag(λ1, . . . , λI).

(Eigenvalues may repeat; e.g., A = I.)

• If λi ̸= λj , the corresponding eigenvectors in this ON basis are orthogonal (hence linearly
independent).

• Equivalently, A is orthogonally diagonalizable:

A = QΛQT, QTQ = I, Λ = diag(λ1, . . . , λI),

where the columns of Q form the orthonormal eigenbasis.
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Quadratic Forms

We now move beyond linear maps. Functions like

f : R → R, f(x) = x2

or
f : R2 → R, f(x1, x2) = x21 + 2x1x2 + x22

are not linear. Quadratic forms are a systematic way to study such “square” expressions.

Definition (Quadratic form). A function Q : RI → R is a quadratic form if there exists a real
matrix A = (aij) ∈ RI×I such that

Q(x) =
I∑

i=1

I∑
j=1

aij xixj = xTAx, x = (x1, . . . , xI)
T.

Low–dimensional expansions. Writing out the sum shows explicitly where squares and cross
terms come from.

• I = 1: Q(x1) = a11x
2
1. In particular, a11 > 0 ⇒ Q(x) > 0 for all x ̸= 0, and a11 < 0 ⇒

Q(x) < 0 for all x ̸= 0.

• I = 2:
Q(x1, x2) = a11x

2
1 + (a12 + a21)x1x2 + a22x

2
2.

• I = 3:
Q(x1, x2, x3) = a11x

2
1 + a22x

2
2 + a33x

2
3

+ (a12 + a21)x1x2 + (a13 + a31)x1x3 + (a23 + a32)x2x3.

With A =

[
a11 a12
a21 a22

]
and x =

[
x1
x2

]
,

Ax =

[
a11x1 + a12x2
a21x1 + a22x2

]
(linear in x; we are “missing” squares),

and left–multiplying by xT produces the quadratic terms:

xTAx = [x1 x2]

[
a11 a12
a21 a22

] [
x1
x2

]
= a11x

2
1 + (a12 + a21)x1x2 + a22x

2
2.

Only the symmetric part matters. For any A, let S = 1
2(A+AT). Then

xTAx = xTSx =
∑
i

aiix
2
i +

∑
i<j

(aij + aji)xixj ,

so a quadratic form is determined by the symmetric coefficients aii and aij + aji .

30



Quadratic forms: symmetric representation and definiteness

Matrix representation. Given a quadratic form q : RI → R, there exists a unique symmetric
matrix A ∈ RI×I such that

q(x) = x⊤Ax ∀x ∈ RI . (1)

Conversely, every symmetric A ∈ RI×I induces a quadratic form via q(x) = x⊤Ax.

Definition. Definiteness (for symmetric matrices). Fix a symmetric A ∈ RI×I .

1. Positive definite (PD): A is PD iff x⊤Ax > 0 for every x ̸= 0.

2. Negative definite (ND): A is ND iff x⊤Ax < 0 for every x ̸= 0.

3. Positive semidefinite (PSD): A is PSD iff x⊤Ax ≥ 0 for every x ∈ RI .

4. Negative semidefinite (NSD): A is NSD iff x⊤Ax ≤ 0 for every x ∈ RI .

5. Indefinite: A is indefinite if it is neither PSD nor NSD (i.e., ∃x,y ̸= 0 with x⊤Ax > 0 and
y⊤Ay < 0).

Example. Two examples:

• A =

[
1 0

0 1

]
. Then x⊤Ax = x21 + x22 > 0 for all x ̸= 0, hence A is PD.

• A =

[
1 0

0 0

]
. Then x⊤Ax = x21 ≥ 0 for all x, and x⊤Ax = 0 for any nonzero vector of the

form (0, x2). Hence A is PSD (but not PD).

Proposition. Eigenvalue characterization. Let A ∈ RI×I be symmetric with eigenvalues λ1, . . . , λI .

1. A is PD ⇐⇒ λi > 0 for all i. A is ND ⇐⇒ λi < 0 for all i.

2. A is PSD ⇐⇒ λi ≥ 0 for all i. A is NSD ⇐⇒ λi ≤ 0 for all i.

3. Otherwise (mixed signs), A is indefinite.

Why “all eigenvalues > 0” ⇒ PD (symmetric case). Let A ∈ RI×I be symmetric with
eigenpairs {(λi,vi)}Ii=1. For an eigenvector vi ̸= 0,

vT
i Avi = vT

i (λivi) = λi v
T
i vi = λi∥vi∥2.

Hence λi > 0 ⇒ vT
i Avi > 0.

Key step (spectral theorem). Because A is symmetric, there exists an orthonormal eigen-
basis {vi}Ii=1 of RI . Any z ∈ RI can be written as z =

∑I
i=1 ci vi with ci = vT

i z. Then

zTAz =
(∑

i

civi

)T
A
(∑

j

cjvj

)
=

I∑
i=1

λi c
2
i (orthogonality).

Therefore:
λi > 0 ∀i ⇒ zTAz > 0 ∀z ̸= 0 =⇒ A is PD.

Analogously, if λi < 0 for all i, then A is ND; if λi ≥ 0 (respectively ≤ 0) for all i, then A is PSD
(respectively NSD).
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Why symmetry is necessary (counterexample). Let

A =

[
1 10

0 1

]
(not symmetric).

Its characteristic polynomial is (1−λ)2, so the only eigenvalue is λ = 1 > 0. However the quadratic
form

zTAz =
[
x1 x2

] [1 10

0 1

][
x1

x2

]
= x21 + 10x1x2 + x22

is indefinite: z = (1, 1) ⇒ zTAz = 12 > 0 but z = (1,−1) ⇒ zTAz = −8 < 0. Thus “all eigenvalues
> 0 ⇒ PD” fails without symmetry.

Corollary (symmetric A). Let A ∈ RI×I be symmetric.

1. If A is PD or ND, then A is invertible. (all eigenvalues are nonzero)

2. If A is PD (resp. ND), then A−1 is also PD (resp. ND). (eigenvalues of A−1 are 1/λi)

3. If A is PSD or NSD but not PD/ND, then A is not invertible. (some λi = 0)

Principal minors: another trick (Sylvester’s criteria)

For A ∈ RI×I and r ∈ {1, . . . , I}, let

A[r] := A(1:r, 1:r) and ∆r := det(A[r])

be the leading r × r principal submatrix and its determinant (the leading principal minor of order
r). More generally, if S ⊆ {1, . . . , I} with |S| = r, the (general) principal submatrix is AS,S and its
principal minor is det(AS,S).

Handy identity. For any r × r matrix B,

det(−B) = (−1)r det(B).

Consequently, if A is PD then −A is ND, because det((−A)[r]) = (−1)r∆r.

Proposition. (Sylvester’s criteria for symmetric matrices). Fix a symmetric matrix A ∈ RI×I .

1. Positive definite (PD).

A is PD ⇐⇒ ∆r > 0 for all r = 1, . . . , I.

2. Negative definite (ND).

A is ND ⇐⇒ (−1)r ∆r > 0 for all r = 1, . . . , I,

i.e., each ∆r has the sign of (−1)r.

3. Positive semidefinite (PSD).

A is PSD ⇐⇒ det(AS,S) ≥ 0 for every principal submatrix AS,S .
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4. Negative semidefinite (NSD).

A is NSD ⇐⇒ (−1)|S| det(AS,S) ≥ 0 for every principal submatrix AS,S ,

equivalently: each principal minor is either 0 or has the sign of (−1)|S|.

Example (2× 2). Two examples:

A =

[
2 −1

−1 2

]
∆1 = det

[
2
]
= 2 > 0,∆2 = det(A) = 2 · 2− (−1)2 = 4− 1 = 3 > 0,

all leading principal minors are positive ⇒ A is PD.

A =

[
−2 1

1 −2

]
∆1 = −2 (same sign as (−1)1),∆2 = det(A) = (−2)(−2)− 1 = 3 > 0 (same sign as (−1)2),

(−1)r∆r > 0 (r = 1, 2) ⇒ A is ND.

Corollary. If A is symmetric and PD (respectively ND), then A is invertible. Moreover, if A is PD
(ND), then A−1 is also PD (ND).

If A is PSD or NSD but not PD/ND, then A is not invertible.

Lower–triangular matrices. A matrix B ∈ RI×I is lower triangular if bij = 0 for all i < j, i.e.

B =


b11 0 · · · 0

b21 b22
. . .

...
...

. . . . . . 0
bI1 · · · bI I−1 bII

 .

If B is upper or lower triangular, then

det(B) =
I∏

i=1

bii.

In particular, if every diagonal entry bii ̸= 0 (e.g., all bii > 0) then B is invertible.

Definition. (Cholesky decomposition). A matrix A ∈ RI×I admits a Cholesky decomposition if
there exists a lower–triangular B with strictly positive diagonal entries such that

A = BBT.

Proposition. A symmetric matrix A ∈ RI×I is positive definite (PD) iff it admits a Cholesky
decomposition.

Proof. Sketch proof: Need to build intuition

• If A = BBT with B lower triangular and diag(B) > 0, then for any x ∈ RI ,

xTAx = xT(BBT)x = (BTx)T(BTx) = ∥BTx∥22 ≥ 0.

Let k := BTx. Since B is invertible (positive diagonal), k = 0 iff x = 0. Hence xTAx > 0 for
all x ̸= 0, i.e., A is PD.
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• Conversely, if A is symmetric PD, then there exists a unique1 lower–triangular B with positive
diagonal such that A = BBT (the Cholesky factor).

1Uniqueness holds with the convention that the diagonal of B is strictly positive.

34


