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Convex: every chord stays inside.

Figure 1: Geometric intuition of convexity.

Week 3 — Convexity

1. Basic definitions

Definition (Convex set). Let X ⊆ RJ be nonempty. We call X convex if for every x, y ∈ X and
every α ∈ [0, 1],

αx+ (1− α)y ∈ X.

The point αx+ (1− α)y is the line segment point between x and y.

Definition (Convex combination). Given points x1, . . . , xk ∈ RJ , a vector

z =

k∑
i=1

αix
i

is a convex combination of the xi if αi ≥ 0 for all i and
∑k

i=1 αi = 1.

Definition (Convex hull). For S ⊆ RJ , the convex hull conv(S) is the set of all finite convex
combinations of points in S.

Remark. Geometrically, conv(S) is “everything in S plus exactly the extra line-segment pieces
needed to make it convex.”

2. Convex subsets of R are exactly intervals

Theorem 1. A nonempty set X ⊆ R is convex if and only if it is an interval.

What we need to show.

• (⇒) If X is convex, then whenever a < b are in X, the whole [a, b] ⊆ X.

• (⇐) If X is an interval, then for any x, y ∈ X and α ∈ [0, 1], the point αx+ (1− α)y is still
in X.

Proof. (⇒) Take a < b in X. For any t ∈ [0, 1], convexity gives ta+ (1− t)b ∈ X. As t runs from 0
to 1 this sweeps [b, a] = [a, b] (reversing orientation), hence [a, b] ⊆ X.

(⇐) Suppose X is an interval and take x, y ∈ X. Without loss of generality x ≤ y. For α ∈ [0, 1],

αx+ (1− α)y ∈ [x, y] ⊆ X,

since intervals contain every point between their endpoints. Thus X is convex.
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Disk: convex

Chord exits the set ⇒ not convex

Figure 2: Convex vs. non-convex geometry.

Remark (Contrapositive method you saw in class). If X ⊆ R is not an interval, there exist x < x̄
in X and a z ∈ (x, x̄) with z /∈ X. Define f(α) = αx+ (1− α)x̄, a continuous map from [0, 1] onto
[x, x̄]. The Intermediate Value Theorem yields α∗ ∈ (0, 1) with f(α∗) = z. If X were convex, z
would have to be in X; contradiction.

3. Canonical examples and non-examples

• Convex: any line segment; any Euclidean ball (disk) {x : ∥x − x0∥2 ≤ r}; any halfspace
{x : a⊤x ≤ b}; the epigraph of a convex function {(x, t) : t ≥ f(x)}.

• Non-convex: an annulus; a “crescent” shape; a set with a “hole”; the hypograph of a convex
(i.e., not concave) function.

4. Structural properties of convex sets

Proposition (Intersection). The intersection of any family of convex sets is convex. In particular,
X1 ∩X2 is convex (or empty).

X1 ∩X2

Figure 3: Intersection stays convex.

2



X1

X2

X1 +X2

Figure 4: Minkowski sum: X1 + X2 = (c + rB2) + X2. (Rounded corners have radius r and the
whole shape is translated by c.)

For x, y in the intersection and for α ∈ [0, 1], the convex combination lies in each set, hence in
their intersection.

Proof. Let {Cλ}λ∈Λ be convex. Fix x, y ∈ ∩λCλ and α ∈ [0, 1]. For each λ, convexity of Cλ gives
αx+ (1− α)y ∈ Cλ. Therefore αx+ (1− α)y ∈ ∩λCλ.

Proposition (Linear images). If X is convex and A is a linear map, then AX is convex. If b is a
vector, then AX + b is convex as well (affine image).

Proof. For x, y ∈ X,

α(Ax+ b) + (1− α)(Ay + b) = A
(
αx+ (1− α)y

)
+ b ∈ AX + b.

Proposition (Scalar multiples and sums). If X is convex and λ ∈ R, then λX = {λx : x ∈ X} is
convex. If X1, X2 are convex, then the Minkowski sum

X1 +X2 = {x1 + x2 : x1 ∈ X1, x2 ∈ X2}

is convex. More generally, for any scalars λ1, λ2 ∈ R, the set λ1X1 + λ2X2 is convex.

Proof idea before writing it. Use linearity and convexity in each component, then regroup.

Proof. Let zi = λ1xi + λ2yi with xi ∈ X1, yi ∈ X2 for i = 1, 2. For α ∈ [0, 1],

αz1 + (1− α)z2 = λ1
(
αx1 + (1− α)x2

)
+ λ2

(
αy1 + (1− α)y2

)
.

Convexity of X1 and X2 gives αx1 + (1−α)x2 ∈ X1 and αy1 + (1−α)y2 ∈ X2. Hence the sum lies
in λ1X1 + λ2X2.

x1

x2

convX1

convX2
x
x′

x′′ Cartesian product
of convex sets
is also convex.
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x1
x2

x3

ξ

ζ

w

Figure 5: Two-stage convex mixing inside a triangle.

Proposition (Cartesian products). If X1 ⊆ Rn1 and X2 ⊆ Rn2 are convex, then X1×X2 ⊆ Rn1+n2

is convex.

Proof outline. Take (x1, y1), (x2, y2) ∈ X1 ×X2 and α ∈ [0, 1]. Then

α(x1, y1) + (1− α)(x2, y2) =
(
αx1 + (1− α)x2, αy1 + (1− α)y2

)
∈ X1 ×X2,

by convexity of each coordinate set.

5. Working with convex combinations (the triangle picture)

Proposition (Two-stage mixing produces arbitrary barycentric weights). Fix three points x1, x2, x3 ∈
RJ . Every point in conv{x1, x2, x3} can be written as

w = α ξ + (1− α) ζ, ξ = ϕx1 + (1− ϕ)x2, ζ = ψ x1 + (1− ψ)x3,

for some α, ϕ, ψ ∈ [0, 1]. Conversely, any such choice yields a convex combination w =
∑3

i=1 λix
i

with λi ≥ 0,
∑

i λi = 1.

Before the algebra. The picture: first choose a point ξ on the edge [x1, x2], then a point ζ on
the edge [x1, x3]; and finally mix ξ and ζ. This fills exactly the triangle.

Proof. Expand:

w = α
(
ϕx1 + (1− ϕ)x2

)
+ (1− α)

(
ψx1 + (1− ψ)x3

)
=
(
αϕ+ (1− α)ψ

)︸ ︷︷ ︸
λ1

x1 + α(1− ϕ)︸ ︷︷ ︸
λ2

x2 + (1− α)(1− ψ)︸ ︷︷ ︸
λ3

x3.

Each coefficient is nonnegative and λ1 + λ2 + λ3 = αϕ+ (1− α)ψ + α(1− ϕ) + (1− α)(1− ψ) = 1.
Thus w is a convex combination. The converse (recovering (α, ϕ, ψ) from λ1, λ2, λ3 ≥ 0, sum 1) can
be done, e.g., by taking

α = λ2 + λ3, ϕ =
λ1

λ1 + λ2
, ψ =

λ1
λ1 + λ3

when λ1 + λ2 > 0, and a symmetric choice when it is 0.
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Figure 6: Epigraph of a convex f : convex set

6. Characterizations of the convex hull

Proposition. For any S ⊆ RJ ,

conv(S) =
⋂

{C ⊆ RJ : C is convex and S ⊆ C }.

Moreover, conv(S) is convex, contains S, and is the smallest convex set that contains S.

What we need to show.

1. Every convex set C containing S contains all finite convex combinations of S (closed under
chords), hence it contains conv(S).

2. The intersection of convex sets is convex (Prop. ).

Proof. Immediate from Proposition and the fact that each convex C ⊇ S contains every chord
between points of S, then every chord between points already added, etc. That recursive closure is
exactly “finite convex combinations.”

7. Quick gallery of standard closure properties (one-liners)

• If X is convex and a ∈ RJ , then X + a = {x+ a : x ∈ X} is convex (translation).

• If X is convex and A is linear, then A−1(X) = {z : Az ∈ X} is convex (inverse image under
linear maps).

• If f is convex, then epi(f) = {(x, t) : t ≥ f(x)} is convex. If f is concave, hypo(f) = {(x, t) :
t ≤ f(x)} is convex.

8. (Optional) nice compact proofs to keep handy

Lemma (Chord test). A set X is convex if and only if it contains the entire chord between every
two of its points.

Proof. This is the definition unpacked: [x, y] = {αx+(1−α)y : α ∈ [0, 1]} ⊆ X for all x, y ∈ X.

Lemma (Products are convex again). Already proved in Proposition ; keep it nearby: it is used
constantly when moving between goods and prices, or states and controls.
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Convex and concave functions

Standing assumptions and notation

Let X ⊆ Rn be nonempty and convex. Let f : X → R.

• The graph of f is graph(f) := {(x, y) ∈ X × R : f(x) = y}.

• For x1, x2 ∈ X and α ∈ [0, 1], write

xα := αx1 + (1− α)x2, cα := αf(x1) + (1− α)f(x2)

for the point on the line segment in the domain (xα) and the corresponding value on the chord
(cα).

A

B
cα = αf(x1) + (1− α)f(x2)

x

y

Figure 7: Given x1, x2 ∈ X and α ∈ [0, 1], the point (xα, f(xα)) may lie below the chord (point A)
or above the chord (point B). Convexity/concavity will rule out one of these possibilities.

Definition. Let X ⊆ Rn be nonempty and convex. Let f : X → R. Then:

1. f is convex if for each x, y ∈ X and each α ∈ [0, 1],

f
(
αx+ (1− α)y

)
≤ αf(x) + (1− α)f(y).

2. f is concave if for each x, y ∈ X and each α ∈ [0, 1],

f
(
αx+ (1− α)y

)
≥ αf(x) + (1− α)f(y).

3. f is strictly convex if for each distinct x, y ∈ X and each α ∈ (0, 1),

f
(
αx+ (1− α)y

)
< αf(x) + (1− α)f(y).

4. f is strictly concave if for each distinct x, y ∈ X and each α ∈ (0, 1),

f
(
αx+ (1− α)y

)
> αf(x) + (1− α)f(y).

Remark. Any (affine) linear function x 7→ a+ b ·x is both convex and concave, since the inequality
above holds with equality for all x, y and α.
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x

y

(strictly) convex

x

y

(strictly) concave

Figure 8: Convex versus concave: the function lies below (resp. above) every chord.

One-dimensional criteria

Epigraph and hypograph

We first fix a one-dimensional setting: let X ⊆ R be a nonempty interval and f : X → R. Define
the epigraph and hypograph as subsets of R2:

epi(f) := {(x, y) ∈ X × R : y ≥ f(x)}, hypo(f) := {(x, y) ∈ X × R : y ≤ f(x)}.

Proposition (Epigraph/hypograph criterion). Let X ⊆ R be an interval and f : X → R. Then f
is convex on X iff epi(f) ⊂ R2 is a convex set. Dually, f is concave on X iff hypo(f) is convex.

Intuition. Points of the epigraph are simply points (x, y) above the graph. Take two such points
(x1, y1) and (x2, y2) with yi ≥ f(xi). For α ∈ [0, 1], the convex combination

(xα, yα) :=
(
αx1 + (1− α)x2, αy1 + (1− α)y2

)
belongs to epi(f) precisely when yα ≥ f(xα). Using yα ≥ αf(x1) + (1 − α)f(x2), this reduces to
the convexity inequality

f(xα) ≤ αf(x1) + (1− α)f(x2).

For concavity, reverse the inequalities and use the hypograph.

graph point

epigraph points

x

y

Figure 9: In R → R, epi(f) consists of the points lying above the graph.

Proposition. One-dimensional derivative criteria Let f : R → R be differentiable.
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• f is concave if and only if f ′ is nonincreasing.

• f is convex if and only if f ′ is nondecreasing.

• f is strictly concave if and only if f ′ is strictly decreasing.

• f is strictly convex if and only if f ′ is strictly increasing.

Moreover, if f is twice differentiable, then

f is concave (convex) ⇐⇒ f ′′(x) ≤ 0 (≥ 0) for all x.

If, in addition, f ′′(x) < 0 (resp. > 0) for all x, then f is strictly concave (resp. strictly convex).
The converses need not hold: strict concavity/convexity allows f ′′ to vanish at isolated points (e.g.,
f(x) = −x4 at x = 0).

Example. (One-dimensional case and derivatives) Consider f : R → R, f(x) = −x2. Here A = [−1]
is negative definite, so f is strictly concave. Moreover,

f ′(x) = −2x is nonincreasing in x, f ′′(x) = −2 < 0.

x
y

Figure 10: Example f(x) = −x2: concave, with decreasing slopes (tangent lines).

Multi-dimensional criteria

Proposition. Let X ⊆ Rn be nonempty and convex, and let f : X → R.

1. f is convex if and only if its epigraph

epi(f) := {(x, y) ∈ X × R : y ≥ f(x)}

is a convex set.

2. f is concave if and only if its hypograph

hypo(f) := {(x, y) ∈ X × R : y ≤ f(x)}

is a convex set.
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Recall. (Quadratic forms) A quadratic form on Rn can be written as

f(x) = x⊤Ax,

for some symmetric matrix A ∈ Rn×n.

Proposition (Convexity/concavity via definiteness). Let f(x) = x⊤Ax with A = A⊤.

1. f is strictly convex iff A is positive definite (PD).

2. f is strictly concave iff A is negative definite (ND).

3. f is convex iff A is positive semidefinite (PSD).

4. f is concave iff A is negative semidefinite (NSD).

Proof. Fix x, y ∈ Rn and α ∈ [0, 1]. Let xα := αx+ (1− α)y. Then

f(xα) = (αx+ (1− α)y)⊤A(αx+ (1− α)y)

= α2 x⊤Ax + α(1− α)x⊤Ay + α(1− α) y⊤Ax + (1− α)2 y⊤Ay

= α2 x⊤Ax + 2α(1− α)x⊤Ay + (1− α)2 y⊤Ay (because A is symmetric).

On the other hand,
αf(x) + (1− α)f(y) = αx⊤Ax+ (1− α) y⊤Ay.

Subtracting gives the fundamental identity

αf(x) + (1− α)f(y)− f(xα) = α(1− α) (x− y)⊤A (x− y)

which shows that the sign of the difference is governed by the definiteness of A. If A ⪰ 0 (PSD),
the right-hand side is ≥ 0 and hence f(xα) ≤ αf(x) + (1− α)f(y) (convexity); if A ≻ 0 (PD) and
x ̸= y with α ∈ (0, 1), the inequality is strict. The concave cases follow analogously with A ⪯ 0 or
A ≺ 0.

Example. Two-dimensional functions Let f : R2 → R be f(x) = −(x21 + x22). Then f(x) = x⊤Ax
with

A =

(
−1 0

0 −1

)
= −I2.

Hence x⊤Ax = −x21 − x22 ≤ 0 with equality only at x = 0. By principal minors, A is negative
definite:

det
(
−1
)
= −1 < 0, det(A) = det(−I2) = 1 > 0.

Therefore f is strictly concave. Its gradient is

∇f(x1, x2) = (−2x1, −2x2).

Remark. Strict concavity does not imply that ∇f is strictly decreasing in the coordinatewise order.
For instance, if we hold x1 fixed and increase x2, only the second component of ∇f decreases while
the first component remains unchanged.

9



Example. An indefinite quadratic form Consider f : R2 → R given by

f(x1, x2) = x21 + 4x1x2 + x22 = x⊤Ax, A =

(
1 2

2 1

)
.

Then ∇f(x) = (2x1 + 4x2, 2x2 + 4x1), which is coordinatewise increasing : if x′ ̸= x′′ and x′ ≥ x′′

componentwise, then ∇f(x′) > ∇f(x′′) componentwise. Nevertheless, A is indefinite (e.g., f(1, 1) =
6 > 0 while f(1,−1) = −2 < 0), so f is neither convex nor concave.

Intuition. Information from first derivatives alone is insufficient to infer convexity or concavity
in higher dimensions: we must incorporate interaction effects via the cross-partials, i.e., second
derivatives.

Second derivatives and the Hessian

Assume f : X → R is twice continuously differentiable on X ⊆ Rn; that is, all second partial
derivatives exist and are continuous on X. By Clairaut’s (Schwarz’s) theorem,

∂2f

∂xi ∂xj
=

∂2f

∂xj ∂xi
for all i, j.

The Hessian of f at x ∈ X is the symmetric n× n matrix

Hf (x) :=



∂2f

∂x21
(x)

∂2f

∂x1∂x2
(x) · · · ∂2f

∂x1∂xn
(x)

∂2f

∂x2∂x1
(x)

∂2f

∂x22
(x) · · · ∂2f

∂x2∂xn
(x)

...
...

. . .
...

∂2f

∂xn∂x1
(x)

∂2f

∂xn∂x2
(x) · · · ∂2f

∂x2n
(x)


.

Proposition. Hessian characterization. Suppose X ⊆ Rn is open and convex, and f : X → R is
twice continuously differentiable on X.

1. f is convex if and only if Hf (x) is positive semidefinite for every x ∈ X.

2. f is strictly convex if and only if Hf (x) is positive definite for every x ∈ X.

3. f is concave if and only if Hf (x) is negative semidefinite for every x ∈ X.

4. f is strictly concave if and only if Hf (x) is negative definite for every x ∈ X.

Intuition. The Hessian aggregates all second-order effects, including cross-partials. Positivity
(or negativity) of the quadratic form v⊤Hf (x)v for all directions v guarantees that along any line
through x, the second derivative of the univariate restriction is nonnegative (or nonpositive), which
is exactly convexity (or concavity) along every line—and hence on X.

Remark (Why the openness assumption appears with Hessians). When using the Hessian charac-
terization, we want a full neighborhood around each x0 to apply line restrictions t 7→ f(x0 + tv)
and second-order Taylor expansions. Boundary points may fail to have such two-sided neighbor-
hoods even if f is differentiable along some directions, hence the condition X open (or at least
x0 ∈ int(X)).
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Example. (Strict concavity does not imply a negative definite Hessian everywhere) Consider f :
R → R, f(x) = −x4. Then

f ′(x) = −4x3 is strictly decreasing in x,

so by the one–dimensional criterion f is strictly concave. However,

f ′′(x) = −12x2 ≤ 0, f ′′(0) = 0,

that is, the Hessian Hf (x) = [−12x2] is negative semidefinite (NSD) and not negative definite (ND)
at x = 0. Hence strict concavity does not force Hf (x) to be ND at every point.

Remark. The correct Hessian test is: convex ⇔ Hf (x) ⪰ 0 for all x; strictly convex ⇔ Hf (x) ≻ 0
for all x; concave ⇔ Hf (x) ⪯ 0 for all x; strictly concave ⇔ Hf (x) ≺ 0 for all x. Strict concavity
allows Hf (x) to be only NSD at isolated points.

Proposition. (Continuity on the interior) Suppose f : X → R is either convex or concave. Then
for every x0 ∈ int(X), the function f is continuous at x0. In particular, if X is open, convexity or
concavity implies continuity on X.

Intuition (Sketch via the epigraph). For convex f , the epigraph is convex and, on an open domain,
it is closed. The graph graph(f) = {(x, y) : y = f(x)} forms the “floor” of the epigraph. If a sequence
of points (xk, yk) ∈ epi(f) converges to a point on the graph, the limit remains in the epigraph; if
it converges to a point strictly above the graph, it is trivially still in the epigraph since the latter is
convex and contains every vertical ray above the curve. This closedness yields lower semicontinuity;
applying the same idea to −f (whose epigraph is the hypograph of f) gives upper semicontinuity.
Having both sides implies continuity at interior points. The concave case is analogous by swapping
epigraph with hypograph.
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