

Figure 1: Geometric intuition of convexity.

Week 3 — Convexity

1. Basic definitions

Definition (Convex set). Let $X \subseteq \mathbb{R}^J$ be nonempty. We call X *convex* if for every $x, y \in X$ and every $\alpha \in [0, 1]$,

$$\alpha x + (1 - \alpha)y \in X.$$

The point $\alpha x + (1 - \alpha)y$ is the *line segment* point between x and y .

Definition (Convex combination). Given points $x^1, \dots, x^k \in \mathbb{R}^J$, a vector

$$z = \sum_{i=1}^k \alpha_i x^i$$

is a *convex combination* of the x^i if $\alpha_i \geq 0$ for all i and $\sum_{i=1}^k \alpha_i = 1$.

Definition (Convex hull). For $S \subseteq \mathbb{R}^J$, the *convex hull* $\text{conv}(S)$ is the set of all finite convex combinations of points in S .

Remark. Geometrically, $\text{conv}(S)$ is “everything in S plus exactly the extra line-segment pieces needed to make it convex.”

2. Convex subsets of \mathbb{R} are exactly intervals

Theorem 1. A nonempty set $X \subseteq \mathbb{R}$ is convex if and only if it is an interval.

What we need to show.

- (\Rightarrow) If X is convex, then whenever $a < b$ are in X , the whole $[a, b] \subseteq X$.
- (\Leftarrow) If X is an interval, then for any $x, y \in X$ and $\alpha \in [0, 1]$, the point $\alpha x + (1 - \alpha)y$ is still in X .

Proof. (\Rightarrow) Take $a < b$ in X . For any $t \in [0, 1]$, convexity gives $ta + (1 - t)b \in X$. As t runs from 0 to 1 this sweeps $[b, a] = [a, b]$ (reversing orientation), hence $[a, b] \subseteq X$.

(\Leftarrow) Suppose X is an interval and take $x, y \in X$. Without loss of generality $x \leq y$. For $\alpha \in [0, 1]$,

$$\alpha x + (1 - \alpha)y \in [x, y] \subseteq X,$$

since intervals contain every point between their endpoints. Thus X is convex. \square

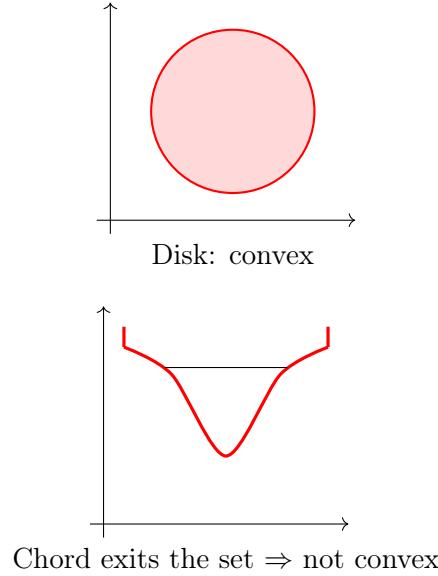


Figure 2: Convex vs. non-convex geometry.

Remark (Contrapositive method you saw in class). If $X \subseteq \mathbb{R}$ is *not* an interval, there exist $x < \bar{x}$ in X and a $z \in (x, \bar{x})$ with $z \notin X$. Define $f(\alpha) = \alpha x + (1 - \alpha)\bar{x}$, a continuous map from $[0, 1]$ onto $[x, \bar{x}]$. The Intermediate Value Theorem yields $\alpha^* \in (0, 1)$ with $f(\alpha^*) = z$. If X were convex, z would have to be in X ; contradiction.

3. Canonical examples and non-examples

- **Convex:** any line segment; any Euclidean ball (disk) $\{x : \|x - x_0\|_2 \leq r\}$; any halfspace $\{x : a^\top x \leq b\}$; the epigraph of a convex function $\{(x, t) : t \geq f(x)\}$.
- **Non-convex:** an annulus; a “crescent” shape; a set with a “hole”; the hypograph of a convex (i.e., not concave) function.

4. Structural properties of convex sets

Proposition (Intersection). *The intersection of any family of convex sets is convex. In particular, $X_1 \cap X_2$ is convex (or empty).*

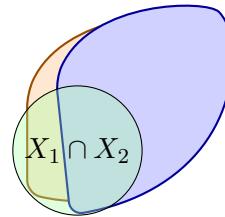


Figure 3: Intersection stays convex.

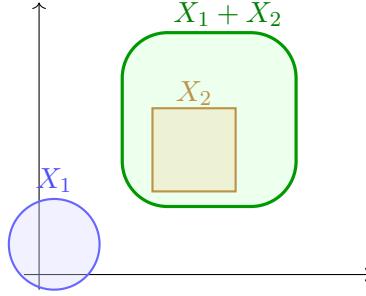


Figure 4: Minkowski sum: $X_1 + X_2 = (c + r\mathbb{B}_2) + X_2$. (Rounded corners have radius r and the whole shape is translated by c .)

For x, y in the intersection and for $\alpha \in [0, 1]$, the convex combination lies in *each* set, hence in their intersection.

Proof. Let $\{C_\lambda\}_{\lambda \in \Lambda}$ be convex. Fix $x, y \in \cap_\lambda C_\lambda$ and $\alpha \in [0, 1]$. For each λ , convexity of C_λ gives $\alpha x + (1 - \alpha)y \in C_\lambda$. Therefore $\alpha x + (1 - \alpha)y \in \cap_\lambda C_\lambda$. \square

Proposition (Linear images). *If X is convex and A is a linear map, then AX is convex. If b is a vector, then $AX + b$ is convex as well (affine image).*

Proof. For $x, y \in X$,

$$\alpha(Ax + b) + (1 - \alpha)(Ay + b) = A(\alpha x + (1 - \alpha)y) + b \in AX + b.$$

\square

Proposition (Scalar multiples and sums). *If X is convex and $\lambda \in \mathbb{R}$, then $\lambda X = \{\lambda x : x \in X\}$ is convex. If X_1, X_2 are convex, then the Minkowski sum*

$$X_1 + X_2 = \{x_1 + x_2 : x_1 \in X_1, x_2 \in X_2\}$$

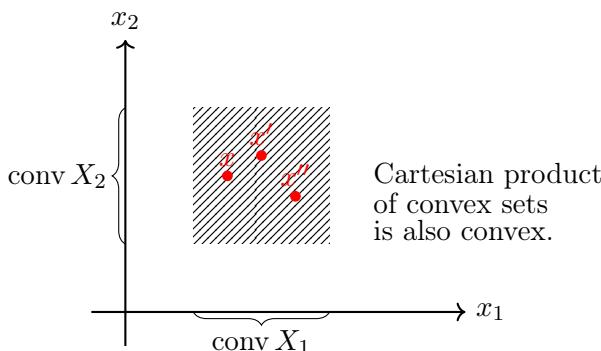
is convex. More generally, for any scalars $\lambda_1, \lambda_2 \in \mathbb{R}$, the set $\lambda_1 X_1 + \lambda_2 X_2$ is convex.

Proof idea before writing it. Use linearity and convexity in each component, then regroup.

Proof. Let $z_i = \lambda_1 x_i + \lambda_2 y_i$ with $x_i \in X_1, y_i \in X_2$ for $i = 1, 2$. For $\alpha \in [0, 1]$,

$$\alpha z_1 + (1 - \alpha)z_2 = \lambda_1(\alpha x_1 + (1 - \alpha)x_2) + \lambda_2(\alpha y_1 + (1 - \alpha)y_2).$$

Convexity of X_1 and X_2 gives $\alpha x_1 + (1 - \alpha)x_2 \in X_1$ and $\alpha y_1 + (1 - \alpha)y_2 \in X_2$. Hence the sum lies in $\lambda_1 X_1 + \lambda_2 X_2$. \square



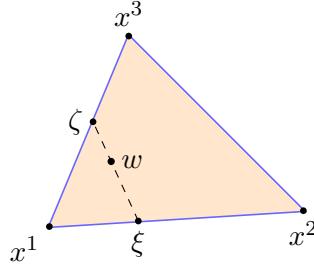


Figure 5: Two-stage convex mixing inside a triangle.

Proposition (Cartesian products). *If $X_1 \subseteq \mathbb{R}^{n_1}$ and $X_2 \subseteq \mathbb{R}^{n_2}$ are convex, then $X_1 \times X_2 \subseteq \mathbb{R}^{n_1+n_2}$ is convex.*

Proof outline. Take $(x_1, y_1), (x_2, y_2) \in X_1 \times X_2$ and $\alpha \in [0, 1]$. Then

$$\alpha(x_1, y_1) + (1 - \alpha)(x_2, y_2) = (\alpha x_1 + (1 - \alpha)x_2, \alpha y_1 + (1 - \alpha)y_2) \in X_1 \times X_2,$$

by convexity of each coordinate set.

5. Working with convex combinations (the triangle picture)

Proposition (Two-stage mixing produces arbitrary barycentric weights). *Fix three points $x^1, x^2, x^3 \in \mathbb{R}^J$. Every point in $\text{conv}\{x^1, x^2, x^3\}$ can be written as*

$$w = \alpha \xi + (1 - \alpha) \zeta, \quad \xi = \phi x^1 + (1 - \phi) x^2, \quad \zeta = \psi x^1 + (1 - \psi) x^3,$$

for some $\alpha, \phi, \psi \in [0, 1]$. Conversely, any such choice yields a convex combination $w = \sum_{i=1}^3 \lambda_i x^i$ with $\lambda_i \geq 0$, $\sum_i \lambda_i = 1$.

Before the algebra. The picture: first choose a point ξ on the edge $[x^1, x^2]$, then a point ζ on the edge $[x^1, x^3]$; and finally mix ξ and ζ . This fills exactly the triangle.

Proof. Expand:

$$\begin{aligned} w &= \alpha(\phi x^1 + (1 - \phi)x^2) + (1 - \alpha)(\psi x^1 + (1 - \psi)x^3) \\ &= \underbrace{(\alpha\phi + (1 - \alpha)\psi)}_{\lambda_1} x^1 + \underbrace{\alpha(1 - \phi)}_{\lambda_2} x^2 + \underbrace{(1 - \alpha)(1 - \psi)}_{\lambda_3} x^3. \end{aligned}$$

Each coefficient is nonnegative and $\lambda_1 + \lambda_2 + \lambda_3 = \alpha\phi + (1 - \alpha)\psi + \alpha(1 - \phi) + (1 - \alpha)(1 - \psi) = 1$. Thus w is a convex combination. The converse (recovering (α, ϕ, ψ) from $\lambda_1, \lambda_2, \lambda_3 \geq 0$, sum 1) can be done, e.g., by taking

$$\alpha = \lambda_2 + \lambda_3, \quad \phi = \frac{\lambda_1}{\lambda_1 + \lambda_2}, \quad \psi = \frac{\lambda_1}{\lambda_1 + \lambda_3}$$

when $\lambda_1 + \lambda_2 > 0$, and a symmetric choice when it is 0. \square

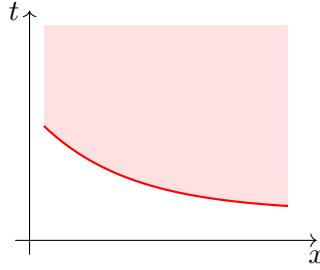


Figure 6: Epigraph of a convex f : convex set

6. Characterizations of the convex hull

Proposition. For any $S \subseteq \mathbb{R}^J$,

$$\text{conv}(S) = \bigcap \{ C \subseteq \mathbb{R}^J : C \text{ is convex and } S \subseteq C \}.$$

Moreover, $\text{conv}(S)$ is convex, contains S , and is the smallest convex set that contains S .

What we need to show.

1. Every convex set C containing S contains all finite convex combinations of S (closed under chords), hence it contains $\text{conv}(S)$.
2. The intersection of convex sets is convex (Prop.).

Proof. Immediate from Proposition and the fact that each convex $C \supseteq S$ contains every chord between points of S , then every chord between points already added, etc. That recursive closure is exactly “finite convex combinations.” \square

7. Quick gallery of standard closure properties (one-liners)

- If X is convex and $a \in \mathbb{R}^J$, then $X + a = \{x + a : x \in X\}$ is convex (translation).
- If X is convex and A is linear, then $A^{-1}(X) = \{z : Az \in X\}$ is convex (inverse image under linear maps).
- If f is convex, then $\text{epi}(f) = \{(x, t) : t \geq f(x)\}$ is convex. If f is concave, $\text{hypo}(f) = \{(x, t) : t \leq f(x)\}$ is convex.

8. (Optional) nice compact proofs to keep handy

Lemma (Chord test). A set X is convex if and only if it contains the entire chord between every two of its points.

Proof. This is the definition unpacked: $[x, y] = \{\alpha x + (1 - \alpha)y : \alpha \in [0, 1]\} \subseteq X$ for all $x, y \in X$. \square

Lemma (Products are convex again). Already proved in Proposition ; keep it nearby: it is used constantly when moving between goods and prices, or states and controls.

Convex and concave functions

Standing assumptions and notation

Let $X \subseteq \mathbb{R}^n$ be nonempty and convex. Let $f : X \rightarrow \mathbb{R}$.

- The *graph* of f is $\text{graph}(f) := \{(x, y) \in X \times \mathbb{R} : f(x) = y\}$.
- For $x_1, x_2 \in X$ and $\alpha \in [0, 1]$, write

$$x_\alpha := \alpha x_1 + (1 - \alpha)x_2, \quad c_\alpha := \alpha f(x_1) + (1 - \alpha)f(x_2)$$

for the point on the line segment in the domain (x_α) and the corresponding value on the chord (c_α).

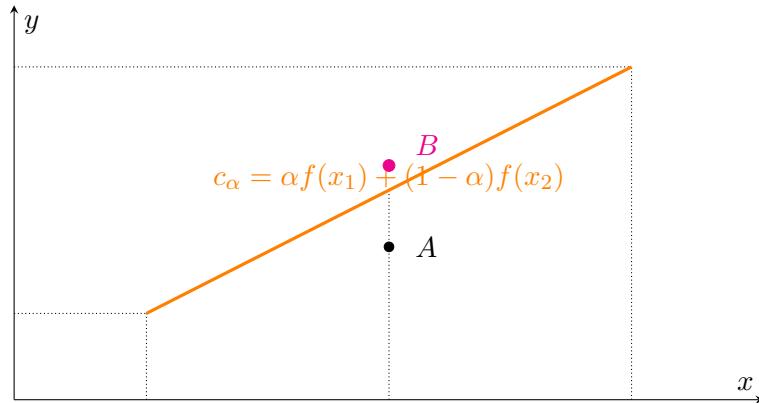


Figure 7: Given $x_1, x_2 \in X$ and $\alpha \in [0, 1]$, the point $(x_\alpha, f(x_\alpha))$ may lie *below* the chord (point A) or *above* the chord (point B). Convexity/concavity will rule out one of these possibilities.

Definition. Let $X \subseteq \mathbb{R}^n$ be nonempty and convex. Let $f : X \rightarrow \mathbb{R}$. Then:

1. f is *convex* if for each $x, y \in X$ and each $\alpha \in [0, 1]$,

$$f(\alpha x + (1 - \alpha)y) \leq \alpha f(x) + (1 - \alpha)f(y).$$

2. f is *concave* if for each $x, y \in X$ and each $\alpha \in [0, 1]$,

$$f(\alpha x + (1 - \alpha)y) \geq \alpha f(x) + (1 - \alpha)f(y).$$

3. f is *strictly convex* if for each distinct $x, y \in X$ and each $\alpha \in (0, 1)$,

$$f(\alpha x + (1 - \alpha)y) < \alpha f(x) + (1 - \alpha)f(y).$$

4. f is *strictly concave* if for each distinct $x, y \in X$ and each $\alpha \in (0, 1)$,

$$f(\alpha x + (1 - \alpha)y) > \alpha f(x) + (1 - \alpha)f(y).$$

Remark. Any (affine) linear function $x \mapsto a + b \cdot x$ is both convex and concave, since the inequality above holds with equality for all x, y and α .

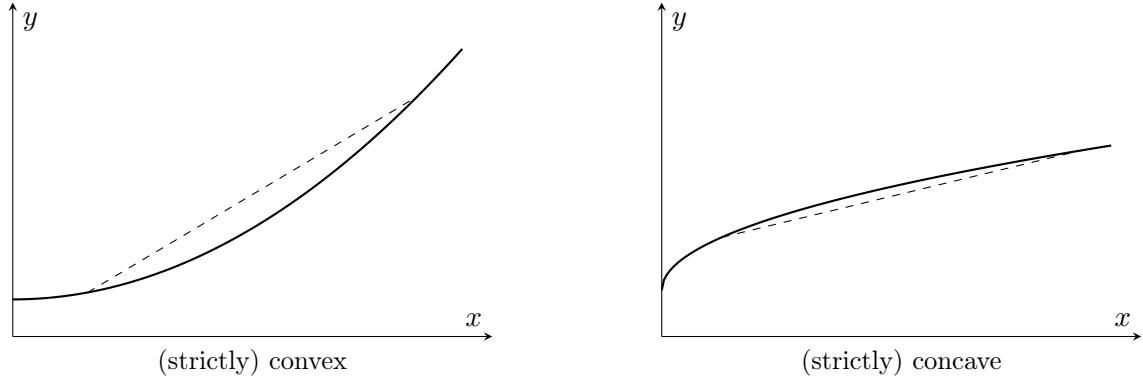


Figure 8: Convex versus concave: the function lies below (resp. above) every chord.

One-dimensional criteria

Epigraph and hypograph

We first fix a one-dimensional setting: let $X \subseteq \mathbb{R}$ be a nonempty interval and $f : X \rightarrow \mathbb{R}$. Define the *epigraph* and *hypograph* as subsets of \mathbb{R}^2 :

$$\text{epi}(f) := \{(x, y) \in X \times \mathbb{R} : y \geq f(x)\}, \quad \text{hypo}(f) := \{(x, y) \in X \times \mathbb{R} : y \leq f(x)\}.$$

Proposition (Epigraph/hypograph criterion). *Let $X \subseteq \mathbb{R}$ be an interval and $f : X \rightarrow \mathbb{R}$. Then f is convex on X iff $\text{epi}(f) \subset \mathbb{R}^2$ is a convex set. Dually, f is concave on X iff $\text{hypo}(f)$ is convex.*

Intuition. Points of the epigraph are simply points *(x, y) above the graph*. Take two such points (x_1, y_1) and (x_2, y_2) with $y_i \geq f(x_i)$. For $\alpha \in [0, 1]$, the convex combination

$$(x_\alpha, y_\alpha) := (\alpha x_1 + (1 - \alpha)x_2, \alpha y_1 + (1 - \alpha)y_2)$$

belongs to $\text{epi}(f)$ precisely when $y_\alpha \geq f(x_\alpha)$. Using $y_\alpha \geq \alpha f(x_1) + (1 - \alpha)f(x_2)$, this reduces to the convexity inequality

$$f(x_\alpha) \leq \alpha f(x_1) + (1 - \alpha)f(x_2).$$

For concavity, reverse the inequalities and use the hypograph.

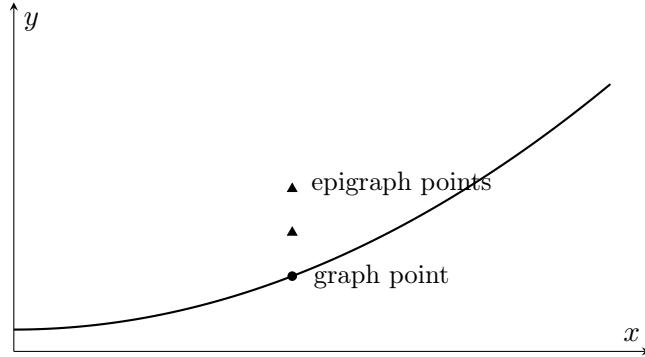


Figure 9: In $\mathbb{R} \rightarrow \mathbb{R}$, $\text{epi}(f)$ consists of the points lying above the graph.

Proposition. *One-dimensional derivative criteria* Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be differentiable.

- f is concave if and only if f' is nonincreasing.
- f is convex if and only if f' is nondecreasing.
- f is **strictly concave** if and only if f' is **strictly decreasing**.
- f is **strictly convex** if and only if f' is **strictly increasing**.

Moreover, if f is twice differentiable, then

$$f \text{ is concave (convex)} \iff f''(x) \leq 0 (\geq 0) \text{ for all } x.$$

If, in addition, $f''(x) < 0$ (resp. > 0) for all x , then f is strictly concave (resp. strictly convex). The converses need not hold: strict concavity/convexity allows f'' to vanish at isolated points (e.g., $f(x) = -x^4$ at $x = 0$).

Example. (One-dimensional case and derivatives) Consider $f : \mathbb{R} \rightarrow \mathbb{R}$, $f(x) = -x^2$. Here $A = [-1]$ is negative definite, so f is **strictly concave**. Moreover,

$$f'(x) = -2x \quad \text{is nonincreasing in } x, \quad f''(x) = -2 < 0.$$

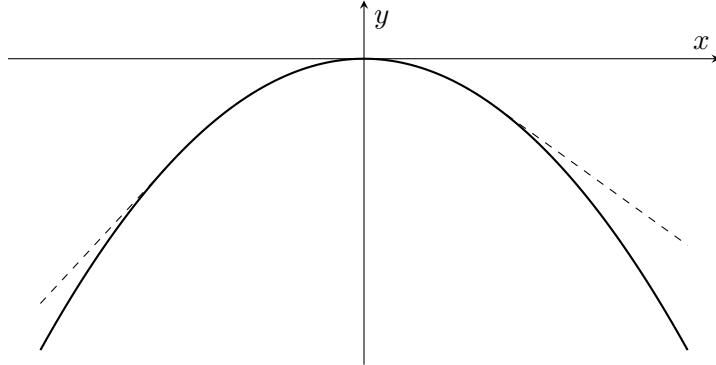


Figure 10: Example $f(x) = -x^2$: concave, with decreasing slopes (tangent lines).

Multi-dimensional criteria

Proposition. Let $X \subseteq \mathbb{R}^n$ be nonempty and convex, and let $f : X \rightarrow \mathbb{R}$.

1. f is convex if and only if its epigraph

$$\text{epi}(f) := \{(x, y) \in X \times \mathbb{R} : y \geq f(x)\}$$

is a convex set.

2. f is concave if and only if its hypograph

$$\text{hypo}(f) := \{(x, y) \in X \times \mathbb{R} : y \leq f(x)\}$$

is a convex set.

Recall. (Quadratic forms) A *quadratic form* on \mathbb{R}^n can be written as

$$f(x) = x^\top A x,$$

for some *symmetric* matrix $A \in \mathbb{R}^{n \times n}$.

Proposition (Convexity/concavity via definiteness). *Let $f(x) = x^\top A x$ with $A = A^\top$.*

1. *f is strictly convex iff A is positive definite (PD).*
2. *f is strictly concave iff A is negative definite (ND).*
3. *f is convex iff A is positive semidefinite (PSD).*
4. *f is concave iff A is negative semidefinite (NSD).*

Proof. Fix $x, y \in \mathbb{R}^n$ and $\alpha \in [0, 1]$. Let $x_\alpha := \alpha x + (1 - \alpha)y$. Then

$$\begin{aligned} f(x_\alpha) &= (\alpha x + (1 - \alpha)y)^\top A (\alpha x + (1 - \alpha)y) \\ &= \alpha^2 x^\top A x + \alpha(1 - \alpha) x^\top A y + \alpha(1 - \alpha) y^\top A x + (1 - \alpha)^2 y^\top A y \\ &= \alpha^2 x^\top A x + 2\alpha(1 - \alpha) x^\top A y + (1 - \alpha)^2 y^\top A y \quad (\text{because } A \text{ is symmetric}). \end{aligned}$$

On the other hand,

$$\alpha f(x) + (1 - \alpha)f(y) = \alpha x^\top A x + (1 - \alpha) y^\top A y.$$

Subtracting gives the fundamental identity

$$\boxed{\alpha f(x) + (1 - \alpha)f(y) - f(x_\alpha) = \alpha(1 - \alpha) (x - y)^\top A (x - y)}$$

which shows that the sign of the difference is governed by the definiteness of A . If $A \succeq 0$ (PSD), the right-hand side is ≥ 0 and hence $f(x_\alpha) \leq \alpha f(x) + (1 - \alpha)f(y)$ (convexity); if $A \succ 0$ (PD) and $x \neq y$ with $\alpha \in (0, 1)$, the inequality is strict. The concave cases follow analogously with $A \preceq 0$ or $A \prec 0$. \square

Example. Two-dimensional functions Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be $f(x) = -(x_1^2 + x_2^2)$. Then $f(x) = x^\top A x$ with

$$A = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -I_2.$$

Hence $x^\top A x = -x_1^2 - x_2^2 \leq 0$ with equality only at $x = 0$. By principal minors, A is negative definite:

$$\det(-1) = -1 < 0, \quad \det(A) = \det(-I_2) = 1 > 0.$$

Therefore f is *strictly concave*. Its gradient is

$$\nabla f(x_1, x_2) = (-2x_1, -2x_2).$$

Remark. Strict concavity does *not* imply that ∇f is strictly decreasing in the *coordinatewise* order. For instance, if we hold x_1 fixed and increase x_2 , only the second component of ∇f decreases while the first component remains unchanged.

Example. An indefinite quadratic form Consider $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ given by

$$f(x_1, x_2) = x_1^2 + 4x_1x_2 + x_2^2 = x^\top Ax, \quad A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}.$$

Then $\nabla f(x) = (2x_1 + 4x_2, 2x_2 + 4x_1)$, which is *coordinatewise increasing*: if $x' \neq x''$ and $x' \geq x''$ componentwise, then $\nabla f(x') > \nabla f(x'')$ componentwise. Nevertheless, A is *indefinite* (e.g., $f(1, 1) = 6 > 0$ while $f(1, -1) = -2 < 0$), so f is neither convex nor concave.

Intuition. Information from first derivatives alone is insufficient to infer convexity or concavity in higher dimensions: we must incorporate *interaction effects* via the cross-partial derivatives, i.e., second derivatives.

Second derivatives and the Hessian

Assume $f : X \rightarrow \mathbb{R}$ is *twice continuously differentiable* on $X \subseteq \mathbb{R}^n$; that is, all second partial derivatives exist and are continuous on X . By Clairaut's (Schwarz's) theorem,

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i} \quad \text{for all } i, j.$$

The *Hessian* of f at $x \in X$ is the symmetric $n \times n$ matrix

$$H_f(x) := \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2}(x) & \frac{\partial^2 f}{\partial x_1 \partial x_2}(x) & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(x) \\ \frac{\partial^2 f}{\partial x_2 \partial x_1}(x) & \frac{\partial^2 f}{\partial x_2^2}(x) & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(x) & \frac{\partial^2 f}{\partial x_n \partial x_2}(x) & \cdots & \frac{\partial^2 f}{\partial x_n^2}(x) \end{pmatrix}.$$

Proposition. *Hessian characterization.* Suppose $X \subseteq \mathbb{R}^n$ is open and convex, and $f : X \rightarrow \mathbb{R}$ is twice continuously differentiable on X .

1. f is convex if and only if $H_f(x)$ is positive semidefinite for every $x \in X$.
2. f is strictly convex if and only if $H_f(x)$ is positive definite for every $x \in X$.
3. f is concave if and only if $H_f(x)$ is negative semidefinite for every $x \in X$.
4. f is strictly concave if and only if $H_f(x)$ is negative definite for every $x \in X$.

Intuition. The Hessian aggregates all second-order effects, including cross-partial derivatives. Positivity (or negativity) of the quadratic form $v^\top H_f(x)v$ for all directions v guarantees that along any line through x , the second derivative of the univariate restriction is nonnegative (or nonpositive), which is exactly convexity (or concavity) along every line—and hence on X .

Remark (Why the openness assumption appears with Hessians). When using the Hessian characterization, we want a full neighborhood around each x_0 to apply line restrictions $t \mapsto f(x_0 + tv)$ and second-order Taylor expansions. Boundary points may fail to have such two-sided neighborhoods even if f is differentiable along some directions, hence the condition X open (or at least $x_0 \in \text{int}(X)$).

Example. (Strict concavity does not imply a negative definite Hessian everywhere) Consider $f : \mathbb{R} \rightarrow \mathbb{R}$, $f(x) = -x^4$. Then

$$f'(x) = -4x^3 \quad \text{is strictly decreasing in } x,$$

so by the one-dimensional criterion f is *strictly concave*. However,

$$f''(x) = -12x^2 \leq 0, \quad f''(0) = 0,$$

that is, the Hessian $H_f(x) = [-12x^2]$ is *negative semidefinite* (NSD) and not negative definite (ND) at $x = 0$. Hence strict concavity does not force $H_f(x)$ to be ND at every point.

Remark. The correct Hessian test is: convex $\Leftrightarrow H_f(x) \succeq 0$ for all x ; strictly convex $\Leftrightarrow H_f(x) \succ 0$ for all x ; concave $\Leftrightarrow H_f(x) \preceq 0$ for all x ; strictly concave $\Leftrightarrow H_f(x) \prec 0$ for all x . Strict concavity allows $H_f(x)$ to be only NSD at isolated points.

Proposition. (*Continuity on the interior*) Suppose $f : X \rightarrow \mathbb{R}$ is either convex or concave. Then for every $x_0 \in \text{int}(X)$, the function f is continuous at x_0 . In particular, if X is open, convexity or concavity implies continuity on X .

Intuition (Sketch via the epigraph). For convex f , the epigraph is convex and, on an open domain, it is *closed*. The graph $\text{graph}(f) = \{(x, y) : y = f(x)\}$ forms the “floor” of the epigraph. If a sequence of points $(x_k, y_k) \in \text{epi}(f)$ converges to a point on the graph, the limit remains in the epigraph; if it converges to a point strictly above the graph, it is trivially still in the epigraph since the latter is convex and contains every vertical ray above the curve. This closedness yields lower semicontinuity; applying the same idea to $-f$ (whose epigraph is the hypograph of f) gives upper semicontinuity. Having both sides implies continuity at interior points. The concave case is analogous by swapping epigraph with hypograph.