Week 4 - Quasiconvexity and quasiconcavity
Recall (Convex and concave functions). Let X C R™ be convex and let f: X — R.
o fis convez if for all x,y € X and all a € [0, 1],
flax+ (1 =a)y) < af(x)+(1—a)f(y)
e fis concave if for all x,y € X and all « € [0, 1],

flax+ (1 —a)y) > af(x)+ (1 —a)f(y)
Equivalently:
e f is convex <= its epigraph
epi(f) = {(x,y) eR"xR: y > f(x)} € X xR
is a convex set.
e fis concave <= its hypograph (a.k.a. subgraph)
hypo(f) = {(x,y) eR" xR: y< f(x)} € X xR
is a convex set.
Definition (Quasiconvexity and quasiconcavity). Let X C R™ be convex and let f: X — R.
(1) fis quasiconvez if for all x,y € X and all « € [0, 1],
flax+(1—a)y) < max{f(x), f(y)}.
(2) f is strictly quasiconvez if for all x #y in X and all « € (0,1),
flox+(1-a)y) < max{f(x), f(y)}
(3) f is quasiconcave if for all x,y € X and all a € [0, 1],
flax+ (1 —a)y) > min{f(x), f(y)}-
(4) f is strictly quasiconcave if for all x # y in X and all « € (0, 1),

flax+(1=a)y) > min{f(x), f(y)}.

TBW: Look for functions exemplifying all this definition and its combinations.
Proposition (Convex/concave = quasi-(con)vex). Let X C R"™ be conver and f: X — R.
(1) If f is convex (resp. strictly convex), then f is quasiconvex (resp. strictly quasiconver).

(2) If f is concave (resp. strictly concave), then f is quasiconcave (resp. strictly quasiconcave).



Proof. (1) Fix x,y € X and « € [0, 1], and set z, = ax + (1 — a)y. By convexity,
f(za) < af(x)+(1-a)f(y) < amax{f(x), f(y)}+(1—-a)max{f(x), f(y)} = max{f(x),f(y)},

so f is quasiconvex. If f is strictly convex, then for x # y and a € (0,1) we have

f(za) < af(x)+ (1 —-a)f(y) < max{f(x),f(y)},

hence f is strictly quasiconvex.

(2) The concave case is analogous. Alternatively, apply part (1) to —f: if f is concave, then
—f is convex and thus quasiconvex, which is equivalent to f being quasiconcave. The strict variant
follows in the same way. O

Remark (Bounds along chords). For any x,y € X and a € [0, 1], with z, = ax+ (1 — )y,
max{f(x), f(y)} = f(za) > min{f(x), f(y)}-

Under strict convexity/concavity, the inequalities are strict whenever x # y and « € (0, 1).

Remark (Converse fails). The converse of the previous proposition is not always true.

Example (Increasing functions are (strictly) quasi-convex and quasi-concave). Let f : R — R
be increasing (resp. strictly increasing). Then f is quasiconvex and quasiconcave (resp. strictly
quasiconvex and strictly quasiconcave).

Proof. Fix z,y € R with z > y and let o € (0,1). Set zo, = ax + (1 — a)y, so x > z, > y. By
monotonicity,

f@) = f(za) =2 fly)  (vesp. f(z) > f(za) > f(y) if f is strictly increasing).
Therefore, for all o € (0,1),
max{f(z), f(y)} > f(za) = min{f(x), f(y)},
and in the strict case,
max{f(z), f(y)} > f(za) > min{f(2), f(y)}.
These are precisely the (strict) quasiconvexity and (strict) quasiconcavity inequalities on R.

Definition (Upper and lower contour sets). Let X C R™ be nonempty and let f : X — R. For any
y € R define

Ulf.y) ={zeX: flz)2y} €X, L(fy ={zeX: fla) <y} CX
Here U(f,y) is the set of inputs whose value is at least y (hypograph-like at level y), while L(f,y)
is the set of inputs whose value is at most y (epigraph-like at level y).
Proposition (Characterization by contour sets). Let X C R™ be convez and f: X — R.
(1) f is quasi-convex <= for all y € R the lower boundary set
L(fy)={zeX: f(z)<y}

is convex (possibly empty).



flz) ~convex = epi(f) convex f(x) Comcave = sub(f) convex

L(f,y) convex  U(f,y) convex L(f,y) convex  U(f,y) convex

f(x)

y neither convex nor concave — If we look at y': L(f,y") =R, U(f,y) = @.

L(f,y) convex U(f,y) convex

(2) f is quasiconcave <= for all y € R the upper boundary set

Ulfy) ={zeX: flz) =2y}
is convex (possibly empty).

Remark (Clarification on “borderline cases”). At some levels y, it may happen that L(f,y) = X
or U(f,y) = X (for example, if y > sup f(X), then L(f,y) = X, and if y < inf f(X), then
U(f,y) = X), or that L(f,y) = @ or U(f,y) = &. All these cases satisfy the proposition because
X (and, in particular, R when X = R) is convex and the empty set is also convex.

Example (Single-peaked vs. contiguous-peaked on R; quasi-concavity consequences). Let f : R —
R. We say that f is single-peaked if there exists m € R U {£o00} such that f is strictly increasing
on (—oo,m) and strictly decreasing on (m,o0). We say that f is contiguous-peaked if each upper
contour set U(f,y) = {x € R: f(z) > y} is an interval (possibly empty or all of R), allowing for a
flat “plateau” of maximizers.

Key facts (on R).

e f is quasiconcave <= U(f,y) is an interval for every y (i.e., f is contiguous-peaked). Peaks
may occur at oo (monotone functions).

o If f is single-peaked, then f is strictly quasiconcave.



contiguous-peaked < quasiconcave on R
at some y we may have L(f,y’) convex,
f () but one non-convex L(f,y
already violates quasiconvexity.

f(z) single-peaked =- strictly quasiconcave
here L(f,y) is non-convex = not quasiconvex

L(f,y) U(f,y) convex L(f,y) L(f,y) U(f,y) convex L(f,y)

Remark (Why a single convex L(f,3’) does not suffice). Quasiconvexity requires every lower con-
tour L(f,y) to be convex. In the single-peaked panel, for the displayed y the set L(f,y) is the union
of two disjoint intervals (non-convex), so f fails quasiconvexity—even though for some other levels
y' the set L(f,y') happens to be convex.

(@)

Neither U(t,y) nor L(t,y) are convex

many — non — contiguous peaks . . .
= neither quasiconcave nor quasiconvex.

]

Punchline. On R:

e One contiguous peak (possibly a flat plateau) <= f is quasiconcave (equivalently, each U(f,y)
is an interval). The “peak” may occur at +00 or —oo (monotone functions).

o If f is single-peaked (strictly increasing up to a unique mode m and strictly decreasing there-
after—allowing m = +00), then f is strictly quasiconcave.



