

Week 4 - Quasiconvexity and quasiconcavity

Recall (Convex and concave functions). Let $X \subseteq \mathbb{R}^n$ be convex and let $f : X \rightarrow \mathbb{R}$.

- f is *convex* if for all $\mathbf{x}, \mathbf{y} \in X$ and all $\alpha \in [0, 1]$,

$$f(\alpha\mathbf{x} + (1 - \alpha)\mathbf{y}) \leq \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y}).$$

- f is *concave* if for all $\mathbf{x}, \mathbf{y} \in X$ and all $\alpha \in [0, 1]$,

$$f(\alpha\mathbf{x} + (1 - \alpha)\mathbf{y}) \geq \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y}).$$

Equivalently:

- f is convex \iff its *epigraph*

$$\text{epi}(f) = \{(\mathbf{x}, y) \in \mathbb{R}^n \times \mathbb{R} : y \geq f(\mathbf{x})\} \subseteq X \times \mathbb{R}$$

is a convex set.

- f is concave \iff its *hypograph* (a.k.a. subgraph)

$$\text{hypo}(f) = \{(\mathbf{x}, y) \in \mathbb{R}^n \times \mathbb{R} : y \leq f(\mathbf{x})\} \subseteq X \times \mathbb{R}$$

is a convex set.

Definition (Quasiconvexity and quasiconcavity). Let $X \subseteq \mathbb{R}^n$ be convex and let $f : X \rightarrow \mathbb{R}$.

- (1) f is *quasiconvex* if for all $\mathbf{x}, \mathbf{y} \in X$ and all $\alpha \in [0, 1]$,

$$f(\alpha\mathbf{x} + (1 - \alpha)\mathbf{y}) \leq \max\{f(\mathbf{x}), f(\mathbf{y})\}.$$

- (2) f is *strictly quasiconvex* if for all $\mathbf{x} \neq \mathbf{y}$ in X and all $\alpha \in (0, 1)$,

$$f(\alpha\mathbf{x} + (1 - \alpha)\mathbf{y}) < \max\{f(\mathbf{x}), f(\mathbf{y})\}.$$

- (3) f is *quasiconcave* if for all $\mathbf{x}, \mathbf{y} \in X$ and all $\alpha \in [0, 1]$,

$$f(\alpha\mathbf{x} + (1 - \alpha)\mathbf{y}) \geq \min\{f(\mathbf{x}), f(\mathbf{y})\}.$$

- (4) f is *strictly quasiconcave* if for all $\mathbf{x} \neq \mathbf{y}$ in X and all $\alpha \in (0, 1)$,

$$f(\alpha\mathbf{x} + (1 - \alpha)\mathbf{y}) > \min\{f(\mathbf{x}), f(\mathbf{y})\}.$$

TBW: Look for functions exemplifying all this definition and its combinations.

Proposition (Convex/concave \Rightarrow quasi-(con)vex). Let $X \subseteq \mathbb{R}^n$ be convex and $f : X \rightarrow \mathbb{R}$.

- (1) If f is convex (resp. strictly convex), then f is quasiconvex (resp. strictly quasiconvex).

- (2) If f is concave (resp. strictly concave), then f is quasiconcave (resp. strictly quasiconcave).

Proof. (1) Fix $\mathbf{x}, \mathbf{y} \in X$ and $\alpha \in [0, 1]$, and set $\mathbf{z}_\alpha = \alpha\mathbf{x} + (1 - \alpha)\mathbf{y}$. By convexity,

$$f(\mathbf{z}_\alpha) \leq \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y}) \leq \alpha \max\{f(\mathbf{x}), f(\mathbf{y})\} + (1 - \alpha) \max\{f(\mathbf{x}), f(\mathbf{y})\} = \max\{f(\mathbf{x}), f(\mathbf{y})\},$$

so f is quasiconvex. If f is strictly convex, then for $\mathbf{x} \neq \mathbf{y}$ and $\alpha \in (0, 1)$ we have

$$f(\mathbf{z}_\alpha) < \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y}) \leq \max\{f(\mathbf{x}), f(\mathbf{y})\},$$

hence f is strictly quasiconvex.

(2) The concave case is analogous. Alternatively, apply part (1) to $-f$: if f is concave, then $-f$ is convex and thus quasiconvex, which is equivalent to f being quasiconcave. The strict variant follows in the same way. \square

Remark (Bounds along chords). For any $\mathbf{x}, \mathbf{y} \in X$ and $\alpha \in [0, 1]$, with $\mathbf{z}_\alpha = \alpha\mathbf{x} + (1 - \alpha)\mathbf{y}$,

$$\max\{f(\mathbf{x}), f(\mathbf{y})\} \geq f(\mathbf{z}_\alpha) \geq \min\{f(\mathbf{x}), f(\mathbf{y})\}.$$

Under strict convexity/concavity, the inequalities are strict whenever $\mathbf{x} \neq \mathbf{y}$ and $\alpha \in (0, 1)$.

Remark (Converse fails). The converse of the previous proposition is not always true.

Example (Increasing functions are (strictly) quasi-convex and quasi-concave). Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be increasing (resp. strictly increasing). Then f is quasiconvex and quasiconcave (resp. strictly quasiconvex and strictly quasiconcave).

Proof. Fix $x, y \in \mathbb{R}$ with $x > y$ and let $\alpha \in (0, 1)$. Set $z_\alpha = \alpha x + (1 - \alpha)y$, so $x > z_\alpha > y$. By monotonicity,

$$f(x) \geq f(z_\alpha) \geq f(y) \quad (\text{resp. } f(x) > f(z_\alpha) > f(y) \text{ if } f \text{ is strictly increasing}).$$

Therefore, for all $\alpha \in (0, 1)$,

$$\max\{f(x), f(y)\} \geq f(z_\alpha) \geq \min\{f(x), f(y)\},$$

and in the strict case,

$$\max\{f(x), f(y)\} > f(z_\alpha) > \min\{f(x), f(y)\}.$$

These are precisely the (strict) quasiconvexity and (strict) quasiconcavity inequalities on \mathbb{R} .

Definition (Upper and lower contour sets). Let $X \subseteq \mathbb{R}^n$ be nonempty and let $f : X \rightarrow \mathbb{R}$. For any $y \in \mathbb{R}$ define

$$U(f, y) := \{x \in X : f(x) \geq y\} \subseteq X, \quad L(f, y) := \{x \in X : f(x) \leq y\} \subseteq X.$$

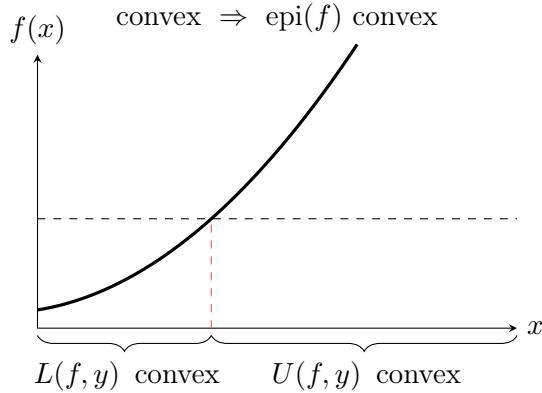
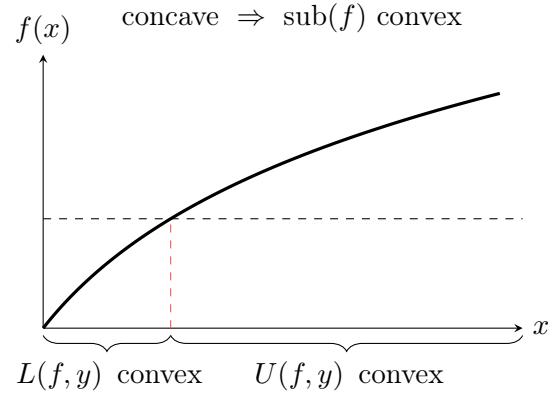
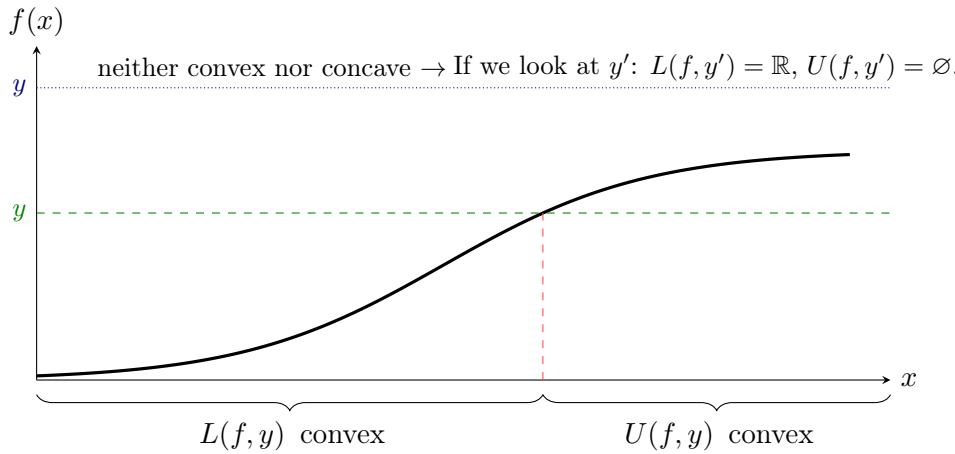
Here $U(f, y)$ is the set of inputs whose value is at least y (hypograph-like at level y), while $L(f, y)$ is the set of inputs whose value is at most y (epigraph-like at level y).

Proposition (Characterization by contour sets). *Let $X \subseteq \mathbb{R}^n$ be convex and $f : X \rightarrow \mathbb{R}$.*

(1) f is quasi-convex \iff for all $y \in \mathbb{R}$ the lower boundary set

$$L(f, y) := \{x \in X : f(x) \leq y\}$$

is convex (possibly empty).



(2) f is quasiconcave \iff for all $y \in \mathbb{R}$ the upper boundary set

$$U(f, y) := \{x \in X : f(x) \geq y\}$$

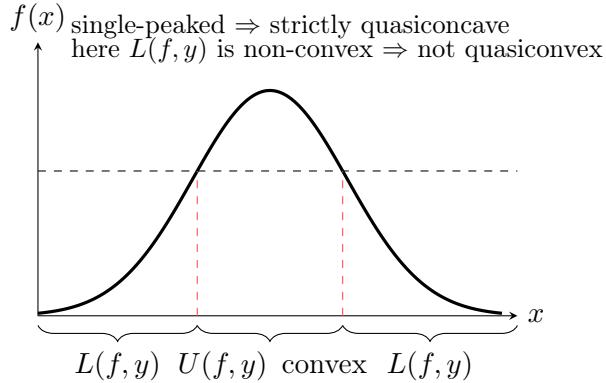
is convex (possibly empty).

Remark (Clarification on “borderline cases”). At some levels y , it may happen that $L(f, y) = X$ or $U(f, y) = X$ (for example, if $y \geq \sup f(X)$, then $L(f, y) = X$, and if $y \leq \inf f(X)$, then $U(f, y) = X$), or that $L(f, y) = \emptyset$ or $U(f, y) = \emptyset$. All these cases satisfy the proposition because X (and, in particular, \mathbb{R} when $X = \mathbb{R}$) is convex and the empty set is also convex.

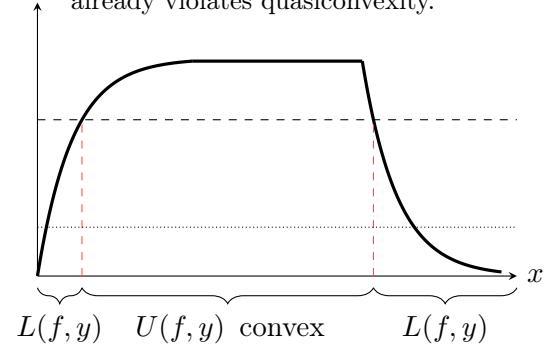
Example (Single-peaked vs. contiguous-peaked on \mathbb{R} ; quasi-concavity consequences). Let $f : \mathbb{R} \rightarrow \mathbb{R}$. We say that f is *single-peaked* if there exists $m \in \mathbb{R} \cup \{\pm\infty\}$ such that f is strictly increasing on $(-\infty, m)$ and strictly decreasing on (m, ∞) . We say that f is *contiguous-peaked* if each upper contour set $U(f, y) = \{x \in \mathbb{R} : f(x) \geq y\}$ is an interval (possibly empty or all of \mathbb{R}), allowing for a flat “plateau” of maximizers.

Key facts (on \mathbb{R}).

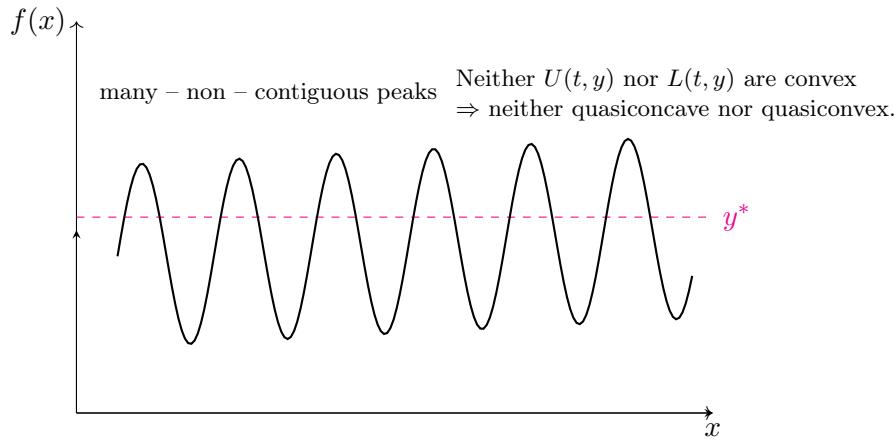
- f is quasiconcave $\iff U(f, y)$ is an interval for every y (i.e., f is contiguous-peaked). Peaks may occur at $\pm\infty$ (monotone functions).
- If f is single-peaked, then f is *strictly* quasiconcave.



contiguous-peaked \Leftrightarrow quasiconcave on \mathbb{R}
at some y' we may have $L(f, y')$ convex,
 $f(x)$ but one non-convex $L(f, y)$
already violates quasiconvexity.



Remark (Why a single convex $L(f, y')$ does not suffice). Quasiconvexity requires *every* lower contour $L(f, y)$ to be convex. In the single-peaked panel, for the displayed y the set $L(f, y)$ is the union of two disjoint intervals (non-convex), so f fails quasiconvexity—even though for some other levels y' the set $L(f, y')$ happens to be convex.



Punchline. On \mathbb{R} :

- One contiguous peak (possibly a flat plateau) $\Leftrightarrow f$ is quasiconcave (equivalently, each $U(f, y)$ is an interval). The “peak” may occur at $+\infty$ or $-\infty$ (monotone functions).
- If f is single-peaked (strictly increasing up to a unique mode m and strictly decreasing thereafter—allowing $m = \pm\infty$), then f is *strictly* quasiconcave.