
Week 4 - Quasiconvexity and quasiconcavity

Recall (Convex and concave functions). Let X ⊆ Rn be convex and let f : X → R.

• f is convex if for all x,y ∈ X and all α ∈ [0, 1],

f
(
αx+ (1− α)y

)
≤ αf(x) + (1− α)f(y).

• f is concave if for all x,y ∈ X and all α ∈ [0, 1],

f
(
αx+ (1− α)y

)
≥ αf(x) + (1− α)f(y).

Equivalently:

• f is convex ⇐⇒ its epigraph

epi(f) = {(x, y) ∈ Rn × R : y ≥ f(x)} ⊆ X × R

is a convex set.

• f is concave ⇐⇒ its hypograph (a.k.a. subgraph)

hypo(f) = {(x, y) ∈ Rn × R : y ≤ f(x)} ⊆ X × R

is a convex set.

Definition (Quasiconvexity and quasiconcavity). Let X ⊆ Rn be convex and let f : X → R.

(1) f is quasiconvex if for all x,y ∈ X and all α ∈ [0, 1],

f
(
αx+ (1− α)y

)
≤ max{f(x), f(y)}.

(2) f is strictly quasiconvex if for all x ̸= y in X and all α ∈ (0, 1),

f
(
αx+ (1− α)y

)
< max{f(x), f(y)}.

(3) f is quasiconcave if for all x,y ∈ X and all α ∈ [0, 1],

f
(
αx+ (1− α)y

)
≥ min{f(x), f(y)}.

(4) f is strictly quasiconcave if for all x ̸= y in X and all α ∈ (0, 1),

f
(
αx+ (1− α)y

)
> min{f(x), f(y)}.

TBW: Look for functions exemplifying all this definition and its combinations.

Proposition (Convex/concave ⇒ quasi-(con)vex). Let X ⊆ Rn be convex and f : X → R.

(1) If f is convex (resp. strictly convex), then f is quasiconvex (resp. strictly quasiconvex).

(2) If f is concave (resp. strictly concave), then f is quasiconcave (resp. strictly quasiconcave).

1



Proof. (1) Fix x,y ∈ X and α ∈ [0, 1], and set zα = αx+ (1− α)y. By convexity,

f(zα) ≤ αf(x)+(1−α)f(y) ≤ αmax{f(x), f(y)}+(1−α)max{f(x), f(y)} = max{f(x), f(y)},

so f is quasiconvex. If f is strictly convex, then for x ̸= y and α ∈ (0, 1) we have

f(zα) < αf(x) + (1− α)f(y) ≤ max{f(x), f(y)},

hence f is strictly quasiconvex.
(2) The concave case is analogous. Alternatively, apply part (1) to −f : if f is concave, then

−f is convex and thus quasiconvex, which is equivalent to f being quasiconcave. The strict variant
follows in the same way.

Remark (Bounds along chords). For any x,y ∈ X and α ∈ [0, 1], with zα = αx+ (1− α)y,

max{f(x), f(y)} ≥ f(zα) ≥ min{f(x), f(y)}.

Under strict convexity/concavity, the inequalities are strict whenever x ̸= y and α ∈ (0, 1).

Remark (Converse fails). The converse of the previous proposition is not always true.

Example (Increasing functions are (strictly) quasi-convex and quasi-concave). Let f : R → R
be increasing (resp. strictly increasing). Then f is quasiconvex and quasiconcave (resp. strictly
quasiconvex and strictly quasiconcave).

Proof. Fix x, y ∈ R with x > y and let α ∈ (0, 1). Set zα = αx + (1 − α)y, so x > zα > y. By
monotonicity,

f(x) ≥ f(zα) ≥ f(y) (resp. f(x) > f(zα) > f(y) if f is strictly increasing).

Therefore, for all α ∈ (0, 1),

max{f(x), f(y)} ≥ f(zα) ≥ min{f(x), f(y)},

and in the strict case,

max{f(x), f(y)} > f(zα) > min{f(x), f(y)}.

These are precisely the (strict) quasiconvexity and (strict) quasiconcavity inequalities on R.

Definition (Upper and lower contour sets). Let X ⊆ Rn be nonempty and let f : X → R. For any
y ∈ R define

U(f, y) := {x ∈ X : f(x) ≥ y } ⊆ X, L(f, y) := {x ∈ X : f(x) ≤ y } ⊆ X.

Here U(f, y) is the set of inputs whose value is at least y (hypograph–like at level y), while L(f, y)
is the set of inputs whose value is at most y (epigraph–like at level y).

Proposition (Characterization by contour sets). Let X ⊆ Rn be convex and f : X → R.

(1) f is quasi-convex ⇐⇒ for all y ∈ R the lower boundary set

L(f, y) := {x ∈ X : f(x) ≤ y }

is convex (possibly empty).
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L(f, y) convex U(f, y) convex

convex ⇒ epi(f) convex

x

f(x)

L(f, y) convex U(f, y) convex

concave ⇒ sub(f) convex

x

f(x)

y

L(f, y) convex U(f, y) convex

If we look at y′: L(f, y′) = R, U(f, y′) = ∅.
y

neither convex nor concave →

x

f(x)

(2) f is quasiconcave ⇐⇒ for all y ∈ R the upper boundary set

U(f, y) := {x ∈ X : f(x) ≥ y }

is convex (possibly empty).

Remark (Clarification on “borderline cases”). At some levels y, it may happen that L(f, y) = X
or U(f, y) = X (for example, if y ≥ sup f(X), then L(f, y) = X, and if y ≤ inf f(X), then
U(f, y) = X), or that L(f, y) = ∅ or U(f, y) = ∅. All these cases satisfy the proposition because
X (and, in particular, R when X = R) is convex and the empty set is also convex.

Example (Single-peaked vs. contiguous-peaked on R; quasi-concavity consequences). Let f : R →
R. We say that f is single-peaked if there exists m ∈ R ∪ {±∞} such that f is strictly increasing
on (−∞,m) and strictly decreasing on (m,∞). We say that f is contiguous-peaked if each upper
contour set U(f, y) = {x ∈ R : f(x) ≥ y} is an interval (possibly empty or all of R), allowing for a
flat “plateau” of maximizers.

Key facts (on R).

• f is quasiconcave ⇐⇒ U(f, y) is an interval for every y (i.e., f is contiguous-peaked). Peaks
may occur at ±∞ (monotone functions).

• If f is single-peaked, then f is strictly quasiconcave.
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L(f, y) U(f, y) convex L(f, y)

single-peaked ⇒ strictly quasiconcave
here L(f, y) is non-convex ⇒ not quasiconvex

x

f(x)

L(f, y) U(f, y) convex L(f, y)

contiguous-peaked ⇔ quasiconcave on R
at some y′ we may have L(f, y′) convex,
but one non-convex L(f, y)
already violates quasiconvexity.

x

f(x)

Remark (Why a single convex L(f, y′) does not suffice). Quasiconvexity requires every lower con-
tour L(f, y) to be convex. In the single-peaked panel, for the displayed y the set L(f, y) is the union
of two disjoint intervals (non-convex), so f fails quasiconvexity—even though for some other levels
y′ the set L(f, y′) happens to be convex.

x

f(x)

y∗

many – non – contiguous peaks Neither U(t, y) nor L(t, y) are convex
⇒ neither quasiconcave nor quasiconvex.

Punchline. On R:

• One contiguous peak (possibly a flat plateau) ⇐⇒ f is quasiconcave (equivalently, each U(f, y)
is an interval). The “peak” may occur at +∞ or −∞ (monotone functions).

• If f is single-peaked (strictly increasing up to a unique mode m and strictly decreasing there-
after—allowing m = ±∞), then f is strictly quasiconcave.
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