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Class 1: Consumer Choice, Preferences, and Rationaliza-
tion

From Utility Maximization to Choice Correspondences

A consumer chooses a bundle x = (x1, . . . , xℓ) ∈ Rℓ
+ to

max
x∈Rℓ

+

u(x) s.t. p · x ≤ y,

where p ∈ Rℓ
++ is the price vector and y > 0 income.

Definition (Ordinal utility & monotone transforms). A function u :
X → R represents a preference relation ⪰ on X if

x ⪰ y ⇐⇒ u(x) ≥ u(y) for all x, y ∈ X.

If f : R → R is strictly increasing, then v = f ◦ u represents the same ⪰.
Hence utility is ordinal: only the induced ranking matters.

Example (Log-transform of Cobb–Douglas). If u(x1, x2) = x1x2, then
v(x1, x2) = ln x1 + ln x2 = f (u) with f (t) = ln t (strictly increasing on
t > 0) represents the same preferences.

Definition (Feasible sets and choice). Let X be the set of feasible objects
and A a family of nonempty subsets A ⊆ X (“menus”). A choice
correspondence is a mapping

c : A ⇒ X, c(A) ⊆ A,

assigning to each menu the set of chosen elements. We use correspondences (possibly multi-
valued) because data/behavior may show
ties.

Quick read and intuition. X is the universe of feasible objects (all alter-
natives that could be considered). A menu A ⊆ X is the subset actually
on the table in a decision instance (what is “on offer”). The choice
correspondence c takes each menu A and returns the set of alternatives
actually chosen when A is offered. The double arrow c : A ⇒ X
reminds us that c may be multi-valued. “No off-menu”: the condition c(A) ⊆ A

forbids choosing something that was not
available.
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Why a correspondence and not a function? Two main reasons:

• Tie/indifference: if the person is indifferent between x and y in A,
the model does not impose a tie-break, so c(A) may include both.

• Repeated data: if we observe several decisions with the same A
and sometimes x is chosen and other times y, it is natural to record
c(A) = {x, y}. If there is always a unique chosen ele-

ment, c is called a choice function.

Link to utility. If there exists a preference ⪰ (or a utility u that repre-
sents it), a standard way to rationalize c is

c(A) = arg max
x∈A

u(x).

Ties in u ⇒ c(A) may contain multiple elements. With strictly convex
preferences over convex sets (e.g., Rℓ

+ with Cobb–Douglas) the arg max
is unique; with discrete domains or preferences with flat segments,
multiple optima may appear.

Non-emptiness is often imposed: c(A) ̸=
∅ for every A ∈ A. In finite domains this
is reasonable; in infinite ones it requires
continuity/compactness assumptions for
a maximum to exist.

Domain of c. A is the family of menus on which we define/observe
choice. In revealed-preference theory we often take all nonempty sub-
sets of X; with real data, A consists only of the menus that were
observed.

Example: Discrete menus and budget sets.

Discrete. Let X = {Air, ThinkPad, XPS} and suppose we observe:

c({Air, ThinkPad}) = {Air, ThinkPad} (sometimes Air is chosen, sometimes ThinkPad),

c({ThinkPad, XPS}) = {ThinkPad},

c({Air, XPS}) = {Air}.

Here c is a correspondence because for the first menu there is a tie and
we record both choices. If later the menu is {Air, ThinkPad, XPS}, co-
herence (WARP) requires not choosing ThinkPad while Air is available
if Air was ever chosen over ThinkPad.

Budget set: Let X = R2
+ and A = B(p, y) = {x ∈ R2

+ : p1x1 + p2x2 ≤
y}.

• Cobb–Douglas. For u(x) = xα
1 x1−α

2 with α ∈ (0, 1), the FOCs yield

x∗1 =
α

p1
y, x∗2 =

1 − α

p2
y.

Hence c(A) = {(x∗1 , x∗2)} is unique. Strict convexity of preferences
guarantees no ties.



class 1: consumer choice, preferences, and rationalization 7

• Perfect complements (Leontief). For u(x) = min{x1, x2} the opti-
mum occurs at the kink x1 = x2 (consumption in 1:1 proportion)
subject to the budget:

x∗1 = x∗2 =
y

p1 + p2
.

Here too c(A) is unique: the indifference “L” has a single intersection
with the budget line when p1, p2 > 0.

• Perfect substitutes. For u(x) = x1 + x2:

c(A) =


{(y/p1, 0)}, if p1 < p2 (corner at x1),

{(0, y/p2)}, if p2 < p1 (corner at x2),

{x ∈ R2
+ : p1x1 + p2x2 = y}, if p1 = p2 (all points on the segment).

This last case illustrates why we model c as a correspondence: when
the slope of the budget line matches that of indifference curves, there
are infinitely many optima.

In continuous domains c(A) can be a singleton (strictly convex prefer-
ences or “point” kinks) or multivalued (flat segments or slope coinci-
dences). In discrete data, c becomes multivalued when we observe ties
or different choices under the same menu.

Preferences and Their Basic Properties

Definition (Preference primitives). A weak preference ⪰ is a binary
relation on X. Define the strict preference x ≻ y iff x ⪰ y and not y ⪰ x,
and indifference x ∼ y iff x ⪰ y and y ⪰ x.

Definition (Rational (standard) axioms). A preference ⪰ is complete if
for all x, y ∈ X we have x ⪰ y or y ⪰ x (or both); and transitive if x ⪰ y
and y ⪰ z imply x ⪰ z.

Remark. Completeness formalizes “the agent can compare any two
options”; transitivity formalizes consistency of those comparisons. With
these, the derived ∼ is an equivalence relation.

From Choice Data to Preferences: Coherence (WARP)

Kreps call it choice coherence. In standard revealed-preference language
it is Samuelson’s Weak Axiom of Revealed Preference (WARP).

Definition (Non-emptiness). c satisfies non-emptiness if c(A) ̸= ∅ for
every A ∈ A.
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Definition (Choice coherence = WARP). c satisfies choice coherence
(WARP) if for all menus A, B ∈ A and all x, y ∈ A ∩ B:(

x ∈ c(A) and y ∈ A \ c(A)
)

=⇒ y /∈ c(B).

Interpretation: If x is chosen over y when both were available, then y is
never chosen in any other menu that still contains x. Your red sketch labeled “violation of

choice coherence” is exactly a WARP vio-
lation.Definition (Rationalization by a preference). A preference ⪰ rationalizes

c if for every A ∈ A,

c(A) = {x ∈ A : x ⪰ y for all y ∈ A}.

That is, c(A) is the set of ⪰-maximal elements in A.

Key Equivalences on Finite Domains

Throughout this section assume X is finite (as in our class; Kreps
develops the infinite case).

Theorem (Revealed preference characterization on finite X). Let X be
finite and c defined on all nonempty A ⊆ X. Then the following are equivalent:

1. c satisfies non-emptiness and choice coherence (WARP).

2. There exists a complete and transitive preference ⪰ that rationalizes c
(i.e., c(A) are ⪰-maxima in A for all A).

Proof sketch your professor outlined. (2) ⇒ (1): If c(A) are the ⪰-maximal
elements in each A, then c(A) ̸= ∅ (finite sets have maxima under com-
plete, transitive ⪰), and WARP holds because if x ⪰ y in A with
y /∈ c(A), then in any B containing both, y cannot beat x.

(1) ⇒ (2) (construction): Define a revealed weak preference by

x ⪰∗ y ⇐⇒ x ∈ c({x, y}).

Completeness: Because c({x, y}) ̸= ∅ for every pair, either x or y is
chosen from {x, y}, hence either x ⪰∗ y or y ⪰∗ x. This answers your “Why?”: Non-

emptiness on all pairs forces a choice be-
tween any two options, which is exactly
completeness of ⪰∗.

Transitivity: Suppose x ⪰∗ y and y ⪰∗ z. If transitivity failed (x ̸⪰∗ z),
then z ∈ c({x, z}). Consider menu A = {x, y, z}. WARP applied to the
pairs {x, y} and A forces y /∈ c(A); WARP applied to {y, z} and A forces
z /∈ c(A). But then c(A) would be empty, contradicting non-emptiness.
Hence x ⪰∗ z.

Finally, verify that c(A) equals the set of ⪰∗-maximal elements of
A (otherwise WARP would be violated by the offending pair inside
A).

Corollary (Utility representation on finite X). If ⪰ is complete and tran-
sitive on finite X, then there exists a utility u : X → R that represents ⪰.
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For instance, assign u by ranks: largest u to any ⪰-maximal elements, then
proceed recursively on the remainder. Any strictly increasing transform f ◦ u
represents the same ⪰.

Linking Back to Utility Maximization

Proposition (Utility maximization rationalizes c). Fix a preference ⪰
represented by u. Define c(A) = arg maxx∈A u(x). Then c satisfies non-
emptiness and WARP, and c is rationalized by ⪰.

Remark (When do we need more structure (continuity, convexity)?).
For infinite X (e.g., X = Rℓ

+), completeness and transitivity alone do
not guarantee a continuous or nice u. Standard micro adds continuity (to
rule out jumps), monotonicity (“more is better”), and sometimes (strict)
convexity (diminishing marginal rate of substitution). In the finite case
of this class, Theorem and the ranking construction suffice.

Quick Checks & Exercises

Exercise 0.0.1 (Diagnose a coherence (WARP) violation). Suppose c({x, y}) =
{x} and c({x, y, z}) = {y}. Show this violates WARP. Which pair pro-
duces the contradiction?

Exercise 0.0.2 (Reconstructing ⪰ from c). Given choice data on all
nonempty A ⊆ X for finite X, build ⪰ as in the proof and show c(A)

equals the set of ⪰-maximal elements of A for every A.

Exercise 0.0.3 (Monotone transforms). Let u represent ⪰ on X ⊆ Rℓ
+.

Prove that v = f ◦ u represents ⪰ if and only if f is strictly increasing
on u(X).

Exercise 0.0.4 (Utility from any complete, transitive ⪰ on finite X).
Construct a representing u by top-cycling ranks: set u(x) = k for all x
in the k-th indifference “layer” in the order from best to worst. Argue
that this works and is unique up to strictly increasing transforms.

Mini FAQ

Q: Why does non-emptiness on all pairs imply completeness? Because for
each {x, y} the choice set c({x, y}) contains either x or y. Declare
x ⪰ y iff x ∈ c({x, y}). Then for every pair, at least one direction
holds—exactly completeness.

Q: Is choice coherence the same as WARP? Yes in this finite, menu-
based setting: “If x was chosen over y somewhere, never choose y when
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x is also available.”



Class 2: Rationality of Choice (finite and infinite)

Quick recap (finite case)

Let X be the set of alternatives (finite in this subsection) and let A ⊆
2X \ {∅} be the family of feasible menus.

Definition (Choice function). A choice function is a mapping c : A → 2X

such that c(A) ⊆ A for every A ∈ A. We say that c satisfies nonemptiness
if c(A) ̸= ∅ for all A ∈ A.

Definition (Preferences and utility). A preference relation is a complete
and transitive binary relation ⪰⊆ X × X. Write x ≻ y for strict prefer-
ence and x ∼ y for indifference. A utility function is a map u : X → R.

Definition (Rationalization and representation). We say that ⪰ rational-
izes c if, for every A ∈ A,

c(A) = { x ∈ A : x ⪰ y ∀y ∈ A }.

We say that u represents ⪰ if u(x) ≥ u(y) ⇐⇒ x ⪰ y for all x, y ∈ X.

Consistency of choice (WARP). We use the operational form

(WARP) If x, y ∈ A ∩ B, x ∈ c(A) and y ∈ c(B), then x = y.

Equivalently: if x, y ∈ A, x ∈ c(A), y /∈ c(A), and x ∈ B, then y /∈ c(B).1 1 Intuition for future me: once x has been
chosen over y when both were available,
y cannot “beat” x in any other menu
where both remain present.

Proposition (Rationalization on finite X). There exists a complete and
transitive preference relation ⪰ that rationalizes the choice function c if and
only if the choice function c satisfies nonemptiness and WARP.

Proof idea. (⇒) If c comes from maximizing ⪰ in each menu, a maximal
element always exists (nonemptiness), and no “revenge” by y over x is
possible when x ⪰ y (WARP).

(⇐) Build ⪰ from pairwise choices:

x ⪰ y ⇐⇒ x ∈ c({x, y}).
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We want, for all A,

x ∈ c(A) ⇐⇒ x ⪰ y ∀y ∈ A.

(⇒) By contraposition: if x ∈ c(A) but ∃y ∈ A with x /∈ c({x, y}),
then c({x, y}) = {y}. WARP forbids x being chosen in A with y
available—contradiction.

(⇐) If x ⪰ y for all y ∈ A, then x wins every pairwise contest in A.
If x /∈ c(A), nonemptiness gives some y ∈ c(A). But WARP, applied to
{x, y} and A, forbids choosing y in A when x was available and also
wins the binary comparison—contradiction.

Proposition (Utility on finite X). If ⪰ is complete and transitive on finite
X, there exists u : X → R representing ⪰. Construction: rank X and assign
increasing values (e.g., u = 3, 2, 1, . . .).

Proposition (Invariance to monotone transformations). If u represents
⪰ and f : R → R is strictly increasing on the range of u, then f ◦ u also
represents ⪰.

“step-by-step” proof of Proposition

Define the preference relation ⪰ via binary choices: x ⪰ y ⇐⇒ x ∈
c({x, y}). We seek, for all A:

x ∈ c(A) ⇐⇒ x ∈ c({x, y}) ∀y ∈ A.

(i) ⇒ If x ∈ c(A) but ∃y ∈ A with x /∈ c({x, y}), then c({x, y}) = {y}.
By WARP, y cannot be chosen in any menu where x is present. Since
y ∈ A and x ∈ A, this contradicts x ∈ c(A).

(ii) ⇐ Suppose x /∈ c(A). By nonemptiness, ∃y ∈ c(A). Since x ⪰ y
by hypothesis (it wins every binary), we have x ∈ c({x, y}). Applying
WARP between {x, y} and A, y could not be chosen in A. Contradiction.

Intuition comment. Part (ii) formalizes: “if x defeats everyone head-to-
head, it must be the tournament champion.”2 2 Intuition for future me: with finite X,

WARP kills cycles and ensures the binary
maximum is a menu maximum.

What if X is infinite? Why things can fail without extra axioms

Example. Let X = R2
+ and u(x1, x2) = x1 + x2. On the “unrestricted”

menu A = X, there is no maximizer: c(X) = ∅ (you can always
increase a bit more).

To recover a useful notion of rationality on infinite sets, we impose
three minimal conditions on c:

(i) Finite nonemptiness: if A is finite and nonempty, then c(A) ̸= ∅.
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(ii) Choice cohoerency (WARP) .

(iii) Binary consistency (pairwise maximality): if x ∈ A and x ∈ c({x, y})
for every y ∈ A, then x ∈ c(A).

Proposition (Rationalization on infinite X). If c satisfies (i)–(iii), then there
exists a complete and transitive ⪰ that rationalizes c (constructed from binary
choices as above).

Idea. (i)–(ii) ensure the induced binary relation is consistent; (iii) pro-
motes the “pairwise champion” to menu champion even when A is
infinite.3 3 Intuition for future me: (iii) is exactly

the missing piece when you passed from
pairs to large menus; it formalizes “if x
wins locally against every rival, it must
win globally.”

Proposition (Utility representation on infinite X (countable order-dense
criterion)). Let ⪰ be a weak order (complete and transitive) on X. There
exists u : X → R that represents ⪰ iff there is a countable subset X∗ ⊆ X
order-dense such that

∀x ≻ y ∃x∗ ∈ X∗ with x ⪰ x∗ ≻ y.

Intuition. In (R,≥), Q is countable and dense: if x > y, you can insert a
rational q with x ≥ q > y. That property lets us “number” the order
with reals without big jumps and build u. Then Proposition ensures
any strictly increasing transform preserves ⪰.4 4 Intuition for future me: order-density is

the substitute for finiteness: “I can always
slip in a numeric marker between any
two strictly ordered alternatives.”





Class 3: Consumer Choice and Demand (Kreps Ch. 2)

Primitives and the baseline assumptions

We work with k goods and the consumption set X = Rk
+. A bundle is

x = (x1, . . . , xk) ∈ X. Intuition for future me. In this class,
we only assume completeness and
transitivity. In infinite domains,
this does not guarantee maximizers
or continuous utility representation.
Several conclusions from the finite
section do not automatically apply.

Definition (Preferences on X). A (weak) preference relation ⪰⊆ X × X
is assumed complete and transitive. Write

x ≻ y ⇐⇒
(

x ⪰ y and not y ⪰ x
)
, x ∼ y ⇐⇒

(
x ⪰ y and y ⪰ x

)
.

Definition (Utility representation (not assumed a priori)). A function
u : X → R represents ⪰ if u(x) ≥ u(y) ⇐⇒ x ⪰ y.

Intuition for future me. d is (again) a
correspondence: it can be multivalued
or even empty if there are no max-
ima (e.g., preferences without con-
tinuity/compactness). With p ≫ 0,
B(p, y) is a bounded polytope in Rk

+.

Budget sets and (Walrasian) demand

Let prices be p ∈ Rk
++ and income y > 0. The budget set is

B(p, y) := { x ∈ X : p · x ≤ y }.

p1x1 + p2x2 = y

x1

x2 Figure 1: Budget set B(p, y) in k = 2:
region under the budget line.

Definition (Demand correspondence). The (Walrasian) demand at (p, y)
is the set of ⪰-maximal elements in the budget set:

d(p, y) :=
{

x ∈ B(p, y) : x ⪰ x′ for all x′ ∈ B(p, y)
}

.
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Indifference “curves” versus mere points

With additional structure, indifference sets typically look like smooth,
downward-sloping, convex curves. Without such assumptions we
cannot guarantee any shape—empirically we might only “see” scattered
points.

x1

x2

x1

x2 Figure 2: Left: “indifference curves” un-
der regularity. Right: without assump-
tions, we may only observe a set of
points.

Intuition for future me. Indifference
curves emerge from structural as-
sumptions (continuity, monotonicity,
convexity). Without them, the set
{x : x ∼ x̄} can be pathological or
disconnected.

Structural properties (preferences and utility)

Definition (Monotonicity). A preference ⪰ on Rk
+ is monotone if for any

x, x′ ∈ Rk
+,

xi ≥ x′i for all i = 1, . . . , k =⇒ x ⪰ x′.

Equivalently, “more doesn’t hurt you” componentwise.

Definition (Strict/strong monotonicity). ⪰ is strictly (a.k.a. strongly)
monotone if the above holds and, whenever xi ≥ x′i for all i and xj > x′j
for some j, then x ≻ x′.

Intuition for future me. Under mono-
tonicity and p ≫ 0, any optimum
x∗ ∈ d(p, y) must exhaust the bud-
get: p · x∗ = y. Otherwise, you could
increase a good a little bit and im-
prove (or not worsen). ICs are non-
increasing and the NE quadrant is
“better”.

Remark. Together with mild continuity/convexity, monotonicity deliv-
ers well-behaved indifference sets and existence/uniqueness results for
d(p, y); we will call on them when needed below.

Monotonicity ↔ (non)decreasing utility

Definition (Strict/strong monotonicity). A preference ⪰ is strictly (a.k.a.
strongly) monotone if

x ≥ x′ and x ̸= x′ =⇒ x ≻ x′.

Proposition (Equivalence at the utility level). Assume ⪰ admits a utility
representation (no continuity required).5 5 Intuition for future me: Under the product

order, “more of each good never hurts.” If
a representing u decreased in some com-
ponent, it could invert x ≥ x′ rankings.
The statement uses that strictly increas-
ing transforms preserve ⪰.

(a) ⪰ is monotone ⇐⇒ every utility u representing ⪰ is nondecreasing
in the product order:

x ≥ x′ =⇒ u(x) ≥ u(x′).



class 3: consumer choice and demand (kreps ch. 2) 17

(b) A preference relation ⪰ is strictly monotone ⇐⇒ every representing
utility u is strictly increasing:

x ≥ x′, x ̸= x′ =⇒ u(x) > u(x′).

Insatiability: global vs. local

Definition (Global insatiability (GI)). A preference relation ⪰ is globally
insatiable if

∀x ∈ X ∃x′ ∈ X such that x′ ≻ x.

Definition (Local insatiability (LI)). A preference relation ⪰ is locally
insatiable 6 if 6 Intuition for future me. GI: for every bun-

dle x there is some x′ (possibly far) with
x′ ≻ x. LI: for every x and every ε > 0
there is x′ within ε of x with x′ ≻ x—an
improvement arbitrarily close.

∀x ∈ X, ∀ε > 0 ∃x′ ∈ X with ∥x′ − x∥ ≤ ε and x′ ≻ x.

Remark. LI ⇒ GI (take, e.g., ε = 1). The converse fails: one may always
find some improvement, but only far away.

Example (GI without monotonicity). On X = R2
+, u(x1, x2) = x1 − x2

yields GI: for any x, (x1 + 1, x2) ≻ x. But preferences are not monotone
(raising x2 makes you worse off).

higher u

x1

x2

Figure 3: GI without monotonicity: u =
x1 − x2.

Remark (LI and budget exhaustion). If p ≫ 0, y > 0 and ⪰ is LI, then
any x∗ ∈ d(p, y) satisfies p · x∗ = y. Idea: if p · x∗ < y, LI yields x′

arbitrarily close with x′ ≻ x∗; for small ε, p · x′ ≤ y, contradicting
optimality.

x̄ worse

x1

x2

Figure 4: Local satiation (bliss point): LI
fails at x̄.

Convexity and upper contour sets

Definition (Convex preferences). A preference relation ⪰ is convex if
for every z ∈ X the weakly preferred set (this is slightly different than
the upper contour set, right?)

U(z) := {x ∈ X : x ⪰ z} = NWT(z)

is convex. NWT states for “not worse than” in Kreps notation. Equiva-
lently: if x ⪰ z and y ⪰ z, then αx + (1 − α)y ⪰ z for all α ∈ [0, 1].

Proposition (Characterization via U(z)). A preference relation ⪰ is convex
⇐⇒ each U(z) is convex.

Proposition (Quasiconcave representation). If ⪰ is convex and has a utility
representation, then there exists a representing utility u that is quasiconcave
(its upper contour sets {x : u(x) ≥ t} are convex).
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Intuition: Convexity encodes “love for averages”: if two bundles are at
least as good as z, any mixture is too. That is exactly the convex-upper-
set property of a quasiconcave u.

Concavity vs. convex preferences

z x

y

αx + (1 − α)y

x1

x2

Figure 5: Convexity: U(z) convex (mix-
tures no worse than z).

Proposition (Concave utility ⇒ convex preferences). If a preference rela-
tion ⪰ is represented by a concave utility u, then the preference relation ⪰ is
convex.

One-line proof idea. For any z, the upper contour set U(z) = {x : u(x) ≥
u(z)} is convex because for x, y ∈ U(z) and α ∈ [0, 1],

u(αx + (1 − α)y) ≥ αu(x) + (1 − α)u(y) ≥ u(z),

so αx+(1− α)y ∈ U(z). By Prop. , the preference relation ⪰ is convex.7 7 Intuition for future me: Concavity gives
“diminishing marginal utility.” Super-
level sets of a concave map are con-
vex, hence mixtures are no worse than
z—exactly convex preferences.Remark (The converse need not hold). Convex preferences admit a

quasiconcave representation (Prop. ), but not every representing utility
is concave. E.g., if u is concave, then v = exp(u) is strictly increasing
(represents the same order) but typically not concave. Quasiconcavity
is the right ordinal notion.

Quasiconcavity and transformations

Definition (Quasiconcavity). A function u : X → R is quasiconcave if for
all x, x′ ∈ X and α ∈ [0, 1],

u(αx + (1 − α)x′) ≥ min{u(x), u(x′)}.

Equivalently, every upper level set {x : u(x) ≥ c} is convex.

Proposition (Convex preferences ⇐⇒ quasiconcave utility). Suppose
⪰ has a utility representation. Then ⪰ is convex iff every utility representing
⪰ is quasiconcave.

Why “every”? If u is quasiconcave and f is strictly increasing, then
v = f ◦ u has the same upper sets up to a relabeling of thresholds:

{x : v(x) ≥ c} = {x : u(x) ≥ f−1(c)},

so v is also quasiconcave. Since any two utilities that represent the
same weak order differ by a strictly increasing transform, the property
is invariant across all representatives. c

ac

{x : u(x) ≥ c} = [ac, ∞)

x

u(x)

Figure 6: Not concave but quasiconcave
in 1D: upper sets are intervals.

Remark (Handy facts). To remember:
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• In one dimension (X ⊆ R), every increasing function is quasiconcave
(upper sets are rays [a, ∞)).

• Concavity ⇒ quasiconcavity, but not conversely.

Choice from convex sets under convex preferences

For any feasible set A ⊆ X, define the set of (weak) optima

C⪰(A) := { x ∈ A : x ⪰ x′ for all x′ ∈ A }.

Proposition (C⪰(A) is convex). If A is convex and ⪰ is convex, then
C⪰(A) is convex.

x

y
mixes

A

C⪰(A)

x1

x2

Figure 7: With convex ⪰ and convex A,
the argmax set is convex.

Proof sketch. Take x, y ∈ C⪰(A). For any x′ ∈ A, we have x ⪰ x′ and
y ⪰ x′. By convexity of ⪰,

αx + (1 − α)y ⪰ x′ ∀α ∈ [0, 1].

Since A is convex, αx + (1 − α)y ∈ A; hence it is weakly preferred to
every element of A and thus belongs to C⪰(A).8 8 Intuition for future me: If two bundles

beat every feasible rival, any average of
them also beats every rival (love for aver-
ages). Therefore the whole “best set” is a
convex set.





Class 4: Regularity of Preferences

Roadmap

Preferences are the primitives. When they satisfy regularity properties,
some (ordinally meaningful) properties can be imposed on a represent-
ing utility as well. We work on X = Rk

+, with a complete and transitive
⪰.

Convexity (love for averages)

Definition (Convex preferences). A preference relation ⪰ is convex if
for every z ∈ X, the weak upper contour set

U(z) := {x ∈ X : x ⪰ z}

is convex. Equivalently: if x ⪰ z and y ⪰ z, then αx + (1 − α)y ⪰ z for
all α ∈ [0, 1].9 9 Intuition for future me: “Love for aver-

ages”: if two bundles are no worse than
z, any mixture is also no worse than z.
Upper contour sets look convex (bulging
toward the origin).

Semi–strict and strict convexity

There are three common strengths (chains hold left ⇒ right):

strictly convex ⇒ semi–strictly convex ⇒ convex.

indiff. band
x1

x2

Figure 8: Convex prefs with a fat indiffer-
ence set: convex ✓, semi–strict ×.

Definition (Semi–strict convexity). A preference relation ⪰ is semi–strictly
convex if they are convex and for all x, y with x ⪰ y and x ̸= y,

αx + (1 − α)y ≻ y ∀ α ∈ (0, 1).

Mixing something weakly better with y makes you strictly better than y.

mix ≻ endpoints

x1

x2

Figure 9: Strict convexity: the chord lies
above the IC ⇒ mixtures strictly better.

Definition (Strict convexity). A preference relation ⪰ is strictly convex if
for all x ̸= y with x ⪰ y,

αx + (1 − α)y ≻ y ∀ α ∈ (0, 1).

In particular, if x ∼ y and x ̸= y, every mixture strictly improves on y.
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Remark (Semi–strict + continuity ⇒ convex). If the preference relation
⪰ is continuous (next section), semi–strict convexity implies convexity.
Intuition: the one–sided strict improvement along chords, plus closed
upper sets, forces the whole upper set to be convex.

Add plot of not strictly convex preferences.

Proposition (Uniqueness of demand with strict convexity). If A ⊆ X is
convex (e.g., a budget set) and ⪰ is strictly convex, then C⪰(A) is a singleton.
With LI or monotonicity and p ≫ 0, the maximizer lies on p · x = y.

Quasiconcavity (QC), semi–strict QC, and strict QC

Definition (Quasiconcavity (QC)). A function u : X → R is quasiconcave
if for all x, y ∈ X and α ∈ [0, 1],

u(αx + (1 − α)y) ≥ min{u(x), u(y)}.

Equivalently, every upper contour set {x : u(x) ≥ c} is convex.

Definition (Semi–strict quasiconcavity). A function u : X → R is
semi–strictly quasiconcave if whenever u(x) > u(y) and α ∈ (0, 1),

u(αx + (1 − α)y) > u(y).

Mixing a strictly better point with a worse one gives a strict improve-
ment over the worse one.

Definition (Strict quasiconcavity). A function u : X → R is strictly
quasiconcave if for all x ̸= y and α ∈ (0, 1),

u(αx + (1 − α)y) > min{u(x), u(y)}.

Equivalently: if u(x) = u(y) with x ̸= y, then any strict mixture has
strictly higher utility.

Proposition (Invariance under monotone transforms). If u is (semi–strictly
/ strictly) quasiconcave and f : R → R is strictly increasing, then f ◦ u is
also (semi–strictly / strictly) quasiconcave.

Proposition (Preferences vs. QC of utilities). Assume ⪰ is represented by
some u.

(a) ⪰ is convex ⇐⇒ every representing utility is quasiconcave.

(b) If u is strictly quasiconcave, then ⪰ is strictly convex.

(c) If ⪰ is strictly convex and continuous, then there exists a representing
utility that is strictly quasiconcave.
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Proposition (Maximizers on convex sets). Let A ⊆ X be convex.

(a) If u is quasiconcave, the maximizer set arg maxx∈A u(x) is convex.

(b) If u is strictly quasiconcave, then arg maxx∈A u(x) is a singleton.

Why concavity ⇒ quasiconcavity (but not conversely)? Concavity imposes
the stronger Jensen inequality:

u(αx + (1 − α)y) ≥ αu(x) + (1 − α)u(y) ≥ min{u(x), u(y)},

so every concave function is quasiconcave. The converse fails because
QC only requires the weaker “min” inequality (convex upper sets),
which allows functions that curve up but have convex upper sets.

a

{x : u(x) ≥ c} = [a, ∞)

x

u(x)

Figure 10: Quasiconcave but not concave:
convex upper sets, graph curves upward.

Relation to (semi–)strict convexity of preferences. Semi–strict convexity of
⪰ corresponds to semi–strict quasiconcavity of some representative: if
x ≽ y and x ̸= y, then mixing them strictly improves on y; in utility
terms, u(αx + (1 − α)y) > u(y). Strict convexity of ⪰ corresponds to
strict QC of (some) representing u, and—by invariance—of every strictly
increasing transform of it.

Continuity

Definition (Continuity of preferences). A preference relation ⪰ is contin-
uous if for all x ≻ y there exists ε > 0 such that whenever ∥x′ − x∥ ≤ ε

and ∥y′ − y∥ ≤ ε, we still have x′ ≻ y′. Equivalently (on X ⊆ Rk): all
upper and lower contour sets are closed.10 10 Intuition for future me: “Small perturba-

tions don’t flip strict rankings.” No iso-
lated jumps: ICs move smoothly (possi-
bly with kinks).

x1

x2

Figure 11: Continuity: small balls around
x ≻ y keep the ranking.

Proposition (Continuous utility on Rk
+ (Debreu)). On X = Rk

+, if a
preference relation ⪰ is continuous ⇐⇒ there exists a continuous utility u
that represents ⪰.

Remark (What this does and does not say). If a continuous u represents
⪰, then ⪰ is continuous. If ⪰ is continuous, there exists a continuous
representative u.

However, it is not true that every utility representing a continuous ⪰
must be continuous. Any strictly increasing (possibly discontinuous)
transform of a representative also represents ⪰.

Homotheticity

Definition (Homothetic preferences). ⪰ is homothetic if for all λ ≥ 0
and all x, y,

x ⪰ y =⇒ λx ⪰ λy.

“Scaling all goods by the same factor preserves rankings.”
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Example. Cobb–Douglas u(x) = xα
1 xβ

2 is homogeneous of degree α + β

and represents homothetic preferences. Perfect substitutes u = a⊤x
and perfect complements u = mini{aixi} are homogeneous of degree 1
(also homothetic).

Proposition (Homogeneous representation). If a preference relation ⪰
is continuous and homothetic on Rk

+, then it admits a representation by a
homogeneous utility u of some degree ρ > 0, i.e. u(λx) = λρu(x) for all
λ ≥ 0. (By a monotone transform, one can normalize to degree 1.)11 11 Intuition for future me: Homothetic ⇒

indifference sets are radial blow-ups of
one another; MRS depends on proportions,
not on scale.Quasi-linear preferences (a money good)

Definition (Quasi-linearity in good k). ⪰ is quasi-linear in xk if there
exists v : Rk−1

+ → R such that a representing utility can be written

u(x) = v(x−k) + xk, x = (x−k, xk).

Proposition (Characterization). On Rk
+, the following are equivalent:12 12 Intuition for future me: Quasi-linearity

means “money” enters additively:
adding the same c units of the numeraire
to both bundles never changes the
ranking. Consequence in demand: no
income effects for the non-numeraire
goods.

(a) A preference relation ⪰ is continuous and quasi-linear in good k.

(b) (i) Monotonicity in the numéraire (xk): for fixed x−k, x′k > xk ⇒
(x−k, x′k) ≻ (x−k, xk).
(ii) Translation invariance in the numeraire: for all c ∈ R,

(x−k, xk) ⪰ (y−k, yk) ⇐⇒ (x−k, xk + c) ⪰ (y−k, yk + c).

(c) Compensability via the numeraire: for every x−k, y−k ∈ R k−1
+ there

exist xk, yk ∈ R+ such that

(x−k, xk) ∼ (y−k, yk). +c

xk (money)

v(x−k)

Figure 12: Quasi-linear: adding c to
money shifts ICs vertically.

Intuition. Utility is additively separable and linear in the numeraire:
money shifts utility one-for-one.

(a) With x−k fixed, more money is strictly better.

(b) Adding the same c to money in both bundles preserves their ranking.

(c) Differences in non-numeraire goods can be offset by transferring
money so the bundles can be made indifferent.
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Appendix to Class 4: Curvature of u and induced preference
convexity.

Property of u Upper contour sets Preferences induced Argmax on
convex sets (de-
mand)

Strictly concave Strictly convex Strictly convex Unique maxi-
mizer

Semi–strictly con-
cave

Convex; strictness only
when u(x) ̸= u(y)

Convex (not necessar-
ily strict)

Possibly multiple

Concave Convex Convex Possibly multiple
Strictly quasicon-
cave

Strictly convex Strictly convex Unique maxi-
mizer

Semi–strictly quasi-
concave

Convex; strict on
chords across indiffer-
ence

Strictly convex Unique maxi-
mizer

Quasiconcave Convex Convex Possibly multiple

Key facts. Concavity ⇒ QC. Strict versions (strictly concave / strictly
QC / semi–strictly QC) ⇒ strictly convex preferences ⇒ uniqueness
of the maximizer on convex feasible sets (e.g., budget sets). Non-strict
versions yield convex (not strictly) preferences and allow multiplicity.

Outside the six cases (what if u is none of them?)

• Continuous but not QC: upper contour sets need not be convex
⇒ preferences are continuous but may be non-convex; maximizer
sets on convex budgets can be disconnected or large; uniqueness not
guaranteed.

• Strictly increasing (monotone) but not continuous/QC: preferences
are monotone (more is better) but may fail continuity and convexity;
existence/continuity of demand can fail without additional assump-
tions (e.g., closed/compact feasibility).

• Arbitrary representatives (discontinuous transforms): preserve or-
dinal rankings but can destroy regularity properties of the represen-
tative (continuity, differentiability) without changing the underlying
(possibly regular) preferences.

Operational takeaway. For uniqueness and clean comparative statics,
target strict convexity of preferences (achieved if u is strictly con-
cave, strictly QC, or semi–strictly QC). With only convexity (concave /
semi–strictly concave / QC), expect potential multiplicity.





Class 5: Separability and Choice vs. Demand

Additive separability (two blocks)

Separability asks when preferences can be decomposed into “blocks” of
goods so that trade–offs within a block do not depend on the quantities
of goods outside the block. In the simplest two–block additively separable
case, overall utility is the sum of a subutility for each block; cross–block
substitution disappears, and the interaction across blocks operates only
through the budget.

u(x1, . . . , xℓ, xℓ+1, . . . , xk) = v(x1, . . . , xℓ) + ω(xℓ+1, . . . , xk).

Definition (Weak separability into blocks Y1, . . . , YN). Let Yn ⊆ {1, . . . , k}
be nonempty and pairwise disjoint (Yn ∩ Yñ = ∅ for n ̸= ñ). Write
xYn ∈ R

|Yn |
+ for the subvector of x on coordinates in Yn, and Yc

n for the
complement in {1, . . . , k}.

A preference relation ⪰ on Rk
+ is weakly separable into Y1, . . . , YN if

there exist subutility functions Vn : R
|Yn |
+ → R and an aggregator f that

is increasing in each Vn such that

u(x) = f
(
V1(xY1), V2(xY2), . . . , VN(xYN ), x(Y1∪···∪YN)c

)
,

and, equivalently, for every n, all xYn , x̂Yn ∈ R
|Yn |
+ , and all common

complements xYc
n , x̂Yc

n ∈ R
|Yc

n |
+ with xYc

n = x̂Yc
n ,

(xYn , xYc
n) ⪰ (x̂Yn , xYc

n) ⇐⇒ Vn(xYn) ≥ Vn(x̂Yn).

Acá hay que ver bien que se dice y poner intuición.

Definition (Strong separability (additive across blocks)). Let Y1, . . . , YN

form a partition of {1, . . . , k} (i.e., pairwise disjoint and
⋃N

n=1 Yn =

{1, . . . , k}). A preference relation ⪰ is strongly separable into Y1, . . . , YN

if it is weakly separable into this partition and admits the additive
representation

u(x) = V1(xY1) + V2(xY2) + · · ·+ VN(xYN ).
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Choice vs. Demand

Let X ⊆ Rk
+ be the consumption set and let E denote the collection of

all nonempty subsets of X.

Definition (Choice correspondence). A choice correspondence is a map
C : E ⇒ X with C(B) ⊆ B for every B ∈ E .

Definition (Budget set). For p ∈ Rk
++ and y > 0,

B(p, y) = {x ∈ Rk
+ : p · x ≤ y}.

Definition (Demand correspondence / function). Given a preference
relation ⪰ on X, the demand correspondence is

D(p, y) = arg max
x∈B(p,y)

u(x) for any utility u representing ⪰ .

When D(p, y) is a singleton, we write x(p, y) for its unique element
and call it the demand function.

Consumer problem and basic properties

Definition (Consumer problem (CP)). Given p ∈ Rk
++ and y > 0,

max
x∈Rk

+

u(x) s.t. p · x ≤ y,

and D(p, y) denotes the set of solutions.

Proposition. Suppose the preference relation ⪰ is continuous (equivalently,
admits a continuous utility u).

(i) For every p ∈ Rk
++ and y > 0, the CP has at least one solution: D(p, y) ̸=

∅.

(ii) If x ∈ D(p, y) and λ > 0, then x ∈ D(λp, λy).

(iii) If u is quasi-concave (i.e., ⪰ is convex), then D(p, y) is a convex set. If u
is strictly quasi-concave, then D(p, y) is a singleton.

(iv) If ⪰ is locally non-satiated, then every x ∈ D(p, y) satisfies the budget:
p · x = y.

Sketch for (iii). Let x, y ∈ D(p, y) and λ ∈ [0, 1]. Feasibility: the budget
set is convex, so

p ·
(
λx + (1 − λ)y

)
= λ p · x + (1 − λ) p · y ≤ y,

hence z := λx + (1 − λ)y ∈ B(p, y). Optimality under QC: by quasi-
concavity,

u(z) ≥ min{u(x), u(y)}.
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Since x, y are optimal, u(x) = u(y) = maxB(p,y) u, so u(z) ≥ maxB(p,y) u
and thus z ∈ D(p, y). Uniqueness under strict QC: if x ̸= y, strict quasi-
concavity gives

u
(
λx + (1 − λ)y

)
> min{u(x), u(y)} = max

B(p,y)
u,

a contradiction. Hence D(p, y) is a singleton.
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Appendix to class 5: Summary & Intuition

Weak separability (by blocks). Preferences are weakly separable into a
partition {Y1, . . . , YN} when the trade–offs within a block do not depend
on quantities outside the block. Equivalently, there exist subutilities
Vn(xYn) and an aggregator f (increasing in each Vn) such that u(x) =
f (V1, . . . , VN , x(Y1∪···∪YN)c). Operational test (MRS-independence): for
i, j ∈ Yn,

∂

∂xk

(
ui
uj

)
= 0 ∀ k /∈ Yn,

so the within-block MRS is unaffected by goods outside Yn. Intuition:
choice can be done in stages—collapse each block to an index, then
compare blocks via the budget.

Strong separability. Strong (additive) separability strengthens weak
separability to

u(x) =
N

∑
n=1

Vn(xYn).

Quick checks: (i) If u ∈ C2 and all cross-block second derivatives vanish,
∂2u/∂xi∂xj = 0 for i ∈ Yr, j ∈ Ys, r ̸= s, then u is additively separable
across blocks. (ii) If u = f (V1, . . . , VN) with a CES or product aggre-
gator, a monotone transform (e.g. ϕ = log or a power) makes ϕ ◦ u
additively separable across blocks.

Choice vs. demand (quick facts). Let B(p, y) = {x ≥ 0 : p · x ≤ y} and
D(p, y) = arg maxx∈B(p,y) u(x). Under continuity: existence D(p, y) ̸=
∅. Scaling: if x ∈ D(p, y) then x ∈ D(λp, λy) (homogeneity of degree
zero). Under (strict) quasi-concavity: D(p, y) is convex (a singleton if
strict). With local non-satiation: any x ∈ D(p, y) exhausts the budget
p · x = y.

What to write in proofs. (1) State the partition and apply the MRS-
independence test for weak separability. (2) For strong separability,
either verify vanishing cross-block Hessian terms (additivity) or exhibit
a suitable monotone transform that turns the index aggregator into a
sum.



Class 6: Consumer Problem (CP)

Setup.

• Consumers are price takers.

• Choice: x ∈ Rk
+.

• Standard conditions yield a well–behaved optimization problem.

• Sets we use below are compact (closed and bounded).

Definition (Budget set). For p ∈ Rk
++ and y > 0,

B(p, y) = {x ∈ Rk
+ : p · x ≤ y}.

Definition (Demand correspondence and indirect utility). For any p ∈
Rk

++ and y > 0, let

D(p, y) = arg max
x∈B(p,y)

u(x) and v(p, y) = u(x∗) for any x∗ ∈ D(p, y).

D(p, y) is a (possibly set–valued) demand correspondence; v(p, y) is
the indirect utility.

Proposition (Basic properties of the CP).(i) If u is continuous, then at
least one solution exists: D(p, y) ̸= ∅.

(ii) If u is quasi–concave, then the set of solutions D(p, y) is convex.

(iii) If u is strictly quasi–concave, then there is either no solution or exactly one
solution.

(iv) If preferences are locally non–satiated, then any solution x∗ satisfies p · x∗ =
y.

(v) If x∗ ∈ D(p, y) and λ > 0, then x∗ ∈ D(λp, λy).

Proposition (Homogeneity of degree zero). For all λ > 0,

D(λp, λy) = D(p, y) and v(λp, λy) = v(p, y).
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Demand and indirect utility

For any p ∈ Rk
++ and y > 0, let D(p, y) be the set of all solutions to the

consumer problem. If D(p, y) ̸= ∅, define the indirect utility

v(p, y) = u(x∗) for any x∗ ∈ D(p, y).

Note that D(p, y) is a (possibly set-valued) demand correspondence and
v(p, y) is the indirect utility function.

Proposition (Homogeneity of degree zero). For every λ > 0,

D(λp, λy) = D(p, y) and v(λp, λy) = v(p, y).

Intuition: rescaling both prices and income by the same factor leaves the set of
solutions unchanged.

Proposition. If u is continuous, then:

(i) D is nonempty-valued;

(ii) D is upper hemicontinuous (the relevant continuity notion for correspon-
dences);

(iii) v is continuous.

Theorem (Berge’s Maximum Theorem). If f : T × X → R is continuous
and Γ : T ⇒ X is nonempty, compact-valued and continuous (upper and
lower hemicontinuous), then the value function v(t) = maxx∈Γ(t) f (t, x)
is continuous and the argmax A(t) = arg maxx∈Γ(t) f (t, x) is nonempty,
compact-valued, and upper hemicontinuous.

Always consume the cheaper one.

x1

x2
u(x) = x2

1 + x2
2

D(p∗1) = { 0, y/p∗1 }

Demand jumps.
when indifferent.

Set when p1 = p2

p1

x1
Demand D(p1)

Figure 13: Left: convex utility ⇒ corner
at the cheaper good. Right: non-QC case
with a jump in D(p1).

Upper hemicontinuity of demand

Definition (Upper hemicontinuity (UHC)). A correspondence F : Θ ⇒
X is upper hemicontinuous at θ∗ if for every sequence θn → θ∗ and every
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sequence xn ∈ F(θn) such that xn → x∗, we have x∗ ∈ F(θ∗). We say F
is UHC if this holds at every θ∗.

Definition (UHC of Marshallian demand). Let L ∈ N, Θ = RL
++ ×

R+ with elements (p, y), and X = RL
+. The (Marshallian) demand

correspondence is D : Θ ⇒ X. We say that D is upper hemicontinuous
at (p∗, y∗) if for every sequence (pn, yn) → (p∗, y∗) and every sequence
xn ∈ D(pn, yn) such that xn → x∗, we have x∗ ∈ D(p∗, y∗). We say D
is UHC if this holds for every (p∗, y∗) ∈ Θ.

Remark (Intuition). As prices and income (p, y) vary slightly, track any
optimal bundles xn ∈ D(pn, yn). If xn → x∗, upper hemicontinuity says
x∗ remains optimal at the limit (p∗, y∗). Heuristic: the set of optimal
choices can shrink in the limit but cannot sprout new points outside; limit
points of optimal selections never “jump out” of the limiting demand
set.

Remark (How Kreps phrases it). In Euclidean spaces Kreps uses the
sequential version above (often called upper semicontinuity). Intuitively:
limit points of selections cannot “jump outside” the limiting set; values
may shrink but not expand.

Proposition (Closed–graph characterization). If F has nonempty compact
values, then F is UHC ⇐⇒ its graph Gr(F) = {(θ, x) : x ∈ F(θ)} is
closed.

Proposition (Demand is UHC under continuity). If u is continuous,
then for every y > 0 the demand correspondence D(·, y) : Rk

++ ⇒ Rk
+

is nonempty, compact–valued, and UHC. (Proof idea: Berge’s Maximum
Theorem.)

Intuition.

• UHC as “no new limits”: if prices pn → p∗ and you pick any
xn ∈ D(pn, y), then every limit x∗ is still optimal at (p∗, y). So
optimizers cannot appear outside D(p∗, y) in the limit.

• Why only “upper”? The set at the limit may be smaller (some options
disappear), but cannot be larger than what limits of selections
deliver.

• Closed graph: “limits of feasible pairs stay feasible” is exactly the
closedness of Gr(D), hence the equivalence above.

Remark (Why UHC matters for equilibria). Fixed–point theorems used
for existence typically require correspondences that are nonempty,
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D(p∗1) = {0, y/p∗1}

UHC: limits of selections stay optimal.

p1

x1 Figure 14: UHC in the “jump” case: if
pn → p∗1 and xn ∈ D(pn, y) with xn →
x∗, then x∗ ∈ D(p∗1 , y).

at p1 = p2: x1 ∈ [0, y/p1]

p1

x1 Figure 15: Straight indifference curves
(perfect substitutes): similar picture but
without the gap at p1 = p2.

compact–valued and UHC (e.g., Kakutani also needs convex–valued).
If demand were not UHC, limit arguments in equilibrium proofs can
fail; even with UHC alone, additional properties (e.g., convexity of
values, aggregate feasibility) are needed to close the existence proof.

Differentiable case: KKT/FOC

Assume u : Rk
+ → R is differentiable. Consider

max
x∈Rk

+

u(x) s.t. p · x ≤ y, x ≥ 0.

Lagrangian:

L(x, λ, µ) = u(x) + λ (y − p · x) + µ · x, λ ≥ 0, µ ≥ 0.

Definition (First–order (KKT) conditions). A feasible x∗ satisfies the
FOC/KKT if there exist multipliers λ∗ ≥ 0 and µ∗ ≥ 0 such that

(stationarity) ∇u(x∗)− λ∗p − µ∗ = 0,

(primal feas.) p · x∗ ≤ y, x∗ ≥ 0,

(dual feas.) λ∗ ≥ 0, µ∗ ≥ 0,

(compl. slackness) λ∗ (y − p · x∗) = 0, µ∗
j x∗j = 0 ∀j.
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Equivalently, for each j,

∂u
∂xj

(x∗) ≤ λ∗pj, with equality if x∗j > 0, and p · x∗ ≤ y, with equality if λ∗ > 0.

Proposition. Two important points:

(i) If x∗ solves the consumer problem, then x∗ satisfies the FOC/KKT.

(ii) If u is concave and the constraints are convex, then any x∗ that satisfies
the FOC/KKT is (globally) optimal. In particular, if there is a unique KKT
solution, it is the unique global maximizer.

At the optimum (marginal utility per dollar). From the KKT,

1
pi

∂u
∂xi

(x∗) ≤ λ∗ for all i, and if x∗i > 0 :
1
pi

∂u
∂xi

(x∗) = λ∗.

Hence, for any goods i, j that are consumed in positive amounts,

1
pi

∂u
∂xi

(x∗) =
1
pj

∂u
∂xj

(x∗) = λ∗ (“marginal utility in dollars” equalized).

Envelope (income). If the indirect utility v(p, y) is differentiable in y,
then by the envelope theorem

∂v(p, y)
∂y

= λ∗,

where λ∗ is the multiplier at the optimum corresponding to (p, y).

Example: u(x1, x2) = x1 +
√

x2

ū 2

x1

x2

x1 +
√

x2 = ū

x1

x2 Figure 16: Indifference curve for
u(x1, x2) = x1 +

√
x2 at level ū: x2 =

(ū − x1)
2.

With prices p = (p1, p2) ∈ R2
++ and income y > 0, let λ ≥ 0 be the

multiplier on p · x ≤ y and µ ≥ 0 on x ≥ 0. The KKT conditions are,
for j = 1, 2,

∂u
∂xj

(x∗) ≤ λpj (= if x∗j > 0), p · x∗ ≤ y (= if λ > 0).

Here
∂u
∂x1

= 1,
∂u
∂x2

=
1

2
√

x2
(x2 > 0).
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Case 1 (interior: x∗1 > 0, x∗2 > 0). Equalities hold:

1 = λp1 (which implies λ > 0)
1

2
√

x∗2
= λp2 ⇒ λ =

1
p1

, x∗2 =
( p1

2p2

)2
.

Binding budget gives

x∗1 =
y
p1

− p1

4p2
.

Feasibility requires x∗1 ≥ 0, i.e.

y ≥
p2

1
4p2

.

Case 2 (corner: x∗1 = 0, x∗2 > 0). Then p2x∗2 = y ⇒ x∗2 = y
p2

and

1 ≤ λp1,
1

2
√

x∗2
= λp2 ⇒ λ =

1
2
√

p2y
, 1 ≤ p1

2
√

p2y
⇔ y ≤

p2
1

4p2
.

Demand correspondence.

D(p1, p2, y) =


(

y
p1

− p1

4p2
,
( p1

2p2

)2
)

, if y ≥
p2

1
4p2

,

(
0 ,

y
p2

)
, if y ≤

p2
1

4p2
.

(At y =
p2

1
4p2

both expressions coincide.)

“MU per dollar” equalization (interior). If x∗1 , x∗2 > 0 then

1
p1

=
1
p2

· 1
2
√

x∗2
⇒ x∗2 =

( p1

2p2

)2
.

slope = p1λ

x1

u

√
x2

slope = p2λ

x2

u
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Appendix to Class 6: Solving the Consumer Problem — A Gen-
eral Playbook

Standing notation. Prices p ∈ Rk
++, income y > 0, choice x ∈ Rk

+,

• Budget set B(p, y) = {x ≥ 0 : p · x ≤ y}

• Demand correspondence D(p, y) ⊆ arg maxx∈B(p,y) u(x)

• Indirect utility v(p, y) = maxx∈B(p,y) u(x).

What graders expect to see (principles before math)

(a) Meta-properties first. State continuity / (strict) quasi-concavity of
u and convexity/compactness of B(p, y). This pins down existence,
convexity of D, and (under strict qc) uniqueness, i.e. D(p, y) is
unique-valued (a marshallian demand function). If u is concave and
constraints are convex, KKT are necessary and sufficient. Why KKT are necessary & sufficient

(intuition). In a concave maximization
over a convex feasible set, the “surface”
of u is bowl-shaped downward: any lo-
cal improvement is also a global one.
KKT encode two ideas: (i) no profitable
local move (the gradient cannot point
into the feasible set at the optimum, ex-
cept along flat directions), and (ii) which
constraints pinch (complementary slack-
ness identifies binding constraints and
zeros). Equalizing MU per dollar means
a one-dollar reallocation cannot raise u;
with concavity, “no local gain” ⇒ “no
global gain”. Conversely, any true max-
imizer must satisfy the same trade-offs
and pinching, hence KKT are also neces-
sary.

• If u is continuous and B(p, y) is nonempty and compact, then by
Weierstrass a maximizer exists: D(p, y) ̸= ∅.

• If u is quasi-concave, then D(p, y) is convex (possibly set-valued); if
u is strictly quasi-concave, any maximizer is unique.

• If u is concave (or strictly concave) and constraints are convex, then
any KKT point is a global maximizer (KKT are necessary and
sufficient; uniqueness if strict concavity holds).

• If u is not quasi-concave (e.g., convex utility), KKT are only necessary:
generate interior and corner candidates via KKT and then compare
u(·) across candidates.

Necessary vs. sufficient (plain words).
Necessary: every true optimum must sat-
isfy KKT; if a point violates KKT, it can-
not be optimal. Sufficient: any point that
satisfies KKT is (globally) optimal. Nec-
essary & sufficient: equivalence (KKT is
both a filter and a certificate). If only nec-
essary (non-concave u), KKT can produce
false positives (e.g., saddles), so you must
compare utilities across KKT-generated
candidates.

KKT quick implications by utility class (with optimality status).

• Cobb–Douglas / CES (concave). Interior solution via MU/p
equalization; then use p · x = y to get closed-form shares. KKT
status: necessary & sufficient (concave objective, convex feasible
set). Uniqueness: yes if strictly qc (e.g., all weights > 0; for CES
in the concave range). Corners: only if parameters force a good to
drop out (weight = 0) or feasibility binds at nonnegativity.

Slater (CQ) for the Consumer Problem.
General: For convex programs max u(x)
s.t. gi(x) ≤ 0, Slater holds if there ex-
ists a point with all gi(x) < 0 (strict fea-
sibility). Here: g0(x) = p · x − y ≤ 0
and gj(x) = −xj ≤ 0. If p ∈ Rk

++ and
y > 0, pick x = ε1 ≫ 0 with ε small:
then p · x < y and −xj < 0 for all j ⇒
Slater holds. Implications: With concave
u and linear constraints, strong duality;
KKT are necessary & sufficient (use subgra-
dients if u has kinks). Relation to MFQC:
MFQC is a smooth first-order CQ. In con-
vex problems, Slater ⇒ MFQC and is eas-
ier to verify here. Edge cases: If y = 0
or some pi = 0, strict feasibility may
fail; handle separately (often a corner like
x = 0).

• Quasi-linear (x1 as numeraire). λ∗ = 1/p1; solve the non-linear
block with MU/p = 1/p1 and allocate residual income to x1. KKT
status: necessary & sufficient if v(·) is concave. Uniqueness: yes
if the non-linear block is strictly concave. Corners: arise when
income is too small to hit the interior for the non-linear block.

• Perfect substitutes (u = ∑ aixi). Compare ai/pi; spend all income
on any argmax. At ties, D(p, y) is the full budget segment spanned
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by tied goods. KKT status: necessary & sufficient (linear ≡
concave); may yield many KKT solutions at ties. Uniqueness:
no at price-ratio ties (set-valued demand along the budget line).
Practical tie-handling: report the convex set of budget-feasible
mixtures of tied goods. Constraint qualification (Slater). In the

consumer problem with p ∈Rk
++, y > 0,

there exists x ≫ 0 with p · x < y; hence
Slater holds. For concave u and convex
constraints, KKT is necessary and sufficient.
With kinks (nondifferentiable u), replace
gradients by subgradients and the same
logic applies.

• Perfect complements (Leontief, u = min{xi/αi}). Fixed propor-
tions at the kink; the budget pins the scalar multiple. KKT status:
with subgradients, necessary & sufficient (concave as a minimum
of linear forms). Uniqueness: yes (unique kink bundle scaled by y).
Corners: non-issue—solution sits at the kink (not an “interior” in
the smooth sense).

• Convex utilities (non-qc; e.g., u = x2
1 + x2

2). Interior FOCs do not
characterize a maximum; solutions push to corners at the cheapest
good(s). KKT status: only necessary (can flag stationary points
that are not global maxima). Workflow: generate interior/corner
candidates via KKT, then compare u and partition (p, y) by the
verification inequalities. Ties: when price ratios equalize, demand
is set-valued (entire budget segment).

(b) Budget binds under monotonicity. If preferences are locally non-
satiated (e.g., monotone in each good), then any optimizer satisfies
p · x∗ = y.

(c) KKT written in “GSI format”. For each j,

∂u
∂xj

(x∗) ≤ λpj (= if x∗j > 0), p · x∗ ≤ y (= if λ > 0).

This line is your workhorse; it drives all the case analysis.

(d) Case-by-case structure. Interior: equalize “MU per dollar” and use
the binding budget to solve. Corners: set xk = 0, solve for λ and
remaining x, then verify the inequality on the zeroed good(s).

(e) Partition the parameter space. Convert the verification inequalities
into clean thresholds in (p, y). Report D(p, y) (and v(p, y) if asked)
piece-wise.

(f) If u is not concave. Say it explicitly. Treat KKT as necessary only,
enumerate candidates (interior/corners), and compare u(·) across
candidates.

(g) One-line regularity checks. Homogeneity of degree zero, Walras’
law (p · x(p, y) = y when monotone), monotonicity in y, and (when
relevant) UHC via Berge.
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Cookie-cutter for Marshallian demand (exam version)

1. State properties: u continuous (and, if true, concave/strictly qc); B(p, y) convex/-
compact. Therefore existence (and uniqueness if strict qc) of D.

2. Write KKT succinctly:

∇u(x∗)− λp − µ = 0, p · x∗ ≤ y, x∗ ≥ 0

Equivalently: ∂u/∂xj ≤ λpj (= if x∗j > 0) and budget binds if λ > 0.

3. Show budget binds: argue local non-satiation/monotonicity ⇒ λ > 0 and p · x∗ =
y.

4. Interior candidate: if plausible, equalize MU per dollar 1
pi

∂u
∂xi

= 1
pj

∂u
∂xj

for all i, j

with x∗i > 0, substitute into p · x = y, solve x∗, check x∗ ≥ 0.

5. Corner candidates: choose subset S with xj = 0 for j /∈ S, solve on S with
equalities, then verify ∂u/∂xj ≤ λpj at j /∈ S. This yields threshold conditions in
(p, y).

6. Partition and report: translate verifications into clean regimes and give

D(p, y) =


x(1)(p, y), if condition 1

x(2)(p, y), if condition 2

{x(2)(p, y), x(3)(p, y)}, if ties

7. Find v(p, y) = u(x(·)(p, y)).

8. (If asked) regularity quick-checks: homogeneity 0, Walras’ law, monotonicity in y,
UHC via Berge.

Exam-time diagnostics (fast checks)

• Homothetic u ⇒ Engel curves are straight lines through the origin;
x(p, y) = y h(p) where h(p) is a vector of optimal consumption when
income is 1, h(p) := x(p, 1).

• If a good is strictly essential (e.g., complements): interior in that
good unless y too small to reach the kink.

• Strictly convex u (non-qc) ⇒ corners at the cheapest good; report
ties as a set at price equalities.

• MU/p equalization is the quickest route for interiors; the binding
budget closes the system.

• Tie-handling: if two regimes meet at a threshold, list both optimal
bundles at the threshold (set-valued demand).

Playbooks for typical u(·)

(i) Cobb–Douglas. u(x) = ∏k
i=1 xαi

i , αi > 0.

Interior (always, with x∗i > 0):
∂u/∂xi

pi
=

∂u/∂xj

pj
⇒ x∗i =

αi

∑ℓ αℓ

y
pi

.

Properties:
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• xi is homogeneous of degree 0 in (p, y);

• expenditure shares= αi/ ∑ αℓ

(ii) CES with elasticity σ > 0, σ ̸= 1. Let u(x) =
(

∑k
i=1 ai x

σ−1
σ

i
) σ

σ−1 with
ai > 0. Then the Marshallian demand is

xi(p, y) = y
ai p−σ

i

∑k
ℓ=1 aℓ p 1−σ

ℓ

, (and as σ → 1 this converges to Cobb–Douglas).

Equivalent share form: si =
pixi

y = ai

(
pi
P

)1−σ
with P =

(
∑ℓ aℓp 1−σ

ℓ

) 1
1−σ .

(iii) Quasi-linear (numeraire x1). u(x) = x1 + v(x2, . . . , xk) with v con-
cave, increasing.

Rule:
∂v
∂xj

(x∗) = λpj (j ≥ 2), λ =
1
p1

.

Compute (x∗2 , . . . , x∗k ) from MU/p = 1/p1 and the budget for the
non-linears; residual income goes to x1:

x∗1 =
y
p1

− ∑
j≥2

pj

p1
x∗j ≥ 0.

If y is too small to reach the interior for the non-linear block, you hit a
corner there and the remainder goes to the numeraire.

(iv) Perfect substitutes. u(x) = ∑i aixi with ai > 0. Pick any good with
highest ai/pi. If a unique maximizer i∗ exists,

x∗i∗ =
y

pi∗
, x∗j = 0 (j ̸= i∗).

If ties at the top, D(p, y) is the convex set of all bundles mixing tied
goods on the budget line.

(v) Perfect complements (Leontief). u(x) = min{x1/α1, . . . , xk/αk} with
αi > 0. Fixed proportions at the kink:

x∗ = θ (α1, . . . , αk), θ =
y

p · α
⇒ x∗i = αi

y
∑ℓ pℓαℓ

.

(vi) Convex utilities (e.g., u = x2
1 + x2

2). Preferences are not quasi-
concave; KKT are only necessary. Candidates are corners at the cheapest
good:

x∗ =


(y/p1, 0), p1 < p2,

(0, y/p2), p2 < p1,

{(t, y/p2 − (p1/p2)t) : t ∈ [0, y/p1]}, p1 = p2.

Report demand piece-wise and be explicit about the set at p1 = p2.
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(vii) “Power” or isoelastic blocks. For u(x1, x2) = xβ
1 + g(x2) with β ∈

(0, 1), the interior condition is βxβ−1
1 /p1 = g′(x2)/p2 with budget

binding. Proceed by solving one variable from MU/p and substituting
into p · x = y.

Berge’s Maximum Theorem (consumer-specialized): existence, continu-
ity, and demand regularity

Setup. Parameters t := (p, y) ∈ Rk
++ × R++, feasible set B(p, y) =

{x ∈ Rk
+ : p · x ≤ y}, objective u : Rk

+ → R continuous. Define the
demand correspondence D(p, y) ⊆ arg maxx∈B(p,y) u(x) and indirect
utility v(p, y) := maxx∈B(p,y) u(x). Compactness at a glance. If p ≫ 0 and

y > 0, then 0 ≤ xi ≤ y/pi for each
i, hence B(p, y) is a nonempty, closed,
bounded (thus compact) polytope.Statement. If

(i) u is continuous,

(ii) for every (p, y) the feasible set B(p, y) is nonempty and compact,
and Why (iii) holds here. With linear con-

straints and p ≫ 0, small changes in
(p, y) deform B(p, y) continuously; no
facets “appear/disappear” discontinu-
ously. This delivers the continuity of the
feasible-set mapping needed by Berge.

(iii) the correspondence (p, y) 7→ B(p, y) is continuous (both upper and
lower hemicontinuous),

Then:

(a) Existence & compact argmax: D(p, y) is nonempty and compact-
valued.

(b) Continuity of indirect utility: v(p, y) is continuous in (p, y).

(c) Upper hemicontinuity (UHC) of demand: D(·) is UHC in (p, y).

(d) Convexity & uniqueness under curvature: If u is (strictly) quasi-
concave, D(p, y) has convex (respectively, singleton) values; if u is
strictly concave on a convex B(p, y), D is a continuous function.





Class 7: Comparative statistics and GARP (Chapter 4)

Setup and notation

Let D(p, y) ⊆ RL
+ be the demand correspondence of a decision maker,

represented by some preferences (or utility). For each price vector
p ∈ RL

+ and income y ∈ R+, the set D(p, y) contains the optimal
consumption bundles. We write x ∈ D(p, y) to indicate an optimal choice
at (p, y).

13 13 Intuition for future me: Think of D(·) as
“what the consumer buys” at (p, y). We
now ask what happens to demand when
y, a good’s own price pi , or a cross-price
pj changes. At this stage we do not pre-
dict any specific relation, we just classify
possibilities.

What can happen when y, pi, or pj changes

• If income y changes: good i can be

– Normal: as y increases (with prices fixed), demand for i increases.

– Inferior: as y increases (with prices fixed), demand for i decreases.

• If a cross price pj changes (with j ̸= i): good i can be

– Substitute: as pj increases, xi increases (and decreases if pj falls).

– Complement: as pj increases, xi decreases (and increases if pj falls).

• If the own price pi changes: demand for i can be

– Normal: the usual downward-sloping demand.

– Giffen: demand for i increases when pi increases.

Towards characterization

In the end, we want to characterize changes in pi or pj with two
different effects. For example, we will record a change in prices and
then describe the set of options that are weakly preferred.
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compensated price change

Figure 17: Compensated price change:
the new budget line (orange) is tangent
to the same indifference curve (green) at
the optimum (blue point).

Compensated Law of Demand and a consequence for Giffen goods

Remark. (Budget exhaustion under LNS). If preferences are locally
non–satiated (LNS) and x ∈ D(p, y), then the budget is exhausted:
p · x = y. Same for any x′ ∈ D(p′, y′).

Compensated monotonicity. This propo-
sition is exactly that compensated (Hick-
sian) demand is decreasing in prices. Hold
utility fixed—stay on the same indiffer-
ence curve—and ask which bundle is cho-
sen. As prices tilt, the same-utility choice
tilts the other way: less of what became
relatively more expensive, more of what
became relatively cheaper. This is a direc-
tional (not coordinatewise) monotonicity
statement.

Proposition (Compensated law of demand (Slutsky inequality)). Sup-
pose preferences are LNS. Let x ∈ D(p, y). Fix any p′ ∈ RL

+ and define the
Slutsky compensation y′ := p′ · x. Let x′ ∈ D(p′, y′). Then

(p′ − p) · (x′ − x) ≤ 0.

Proof. By budget exhaustion and the compensation y′ = p′ · x, we have

p′ · x′ = y′ = p′ · x ⇒ p′ · (x′ − x) = 0.

Since x′ ∈ D(p′, y′) and x is affordable at (p′, y′), we have x′ ⪰ x.
Because x solves the (p, y)-problem and x′ ⪰ x, local non-satiation
implies p · x′ ≥ p · x. Hence Scalar vs. coordinatewise. When we

write p · x′ ≥ p · x, this is a single-number
(scalar) cost comparison at prices p—not
a coordinatewise comparison of x′ and
x. Likewise, (p′ − p) · (x′ − x) ≤ 0 is
an inner product: it aggregates price and
quantity changes into one number that
captures whether quantities move, on net,
against the price change.

(p′− p) · (x′− x) = p′ · (x′− x)− p · (x′− x) = 0−
(

p · x′− p · x
)
≤ 0.

Remark. This result is about compensated price changes. It does not
contradict the possibility of Giffen behavior, which is an uncompensated
(Marshallian) phenomenon driven by the income effect.

Proposition (Giffen ⇒ Inferior). Suppose preferences are LNS. Fix (p, y)
and let x ∈ D(p, y). Consider a price change that raises only the own price
of good i: p′i > pi and p′j = pj for j ̸= i. Assume (Giffen behavior) that for
the uncompensated problem at income y there exists xu ∈ D(p′, y) with
xu

i > xi. Define the compensated income ȳ := p′ · x and pick x̄ ∈ D(p′, ȳ).
Then

ȳ > y, x̄i ≤ xi < xu
i ,

so at prices p′ a higher income ȳ yields (weakly) less of good i than a lower
income y. Hence good i is (weakly) inferior.
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Proof. Since only pi increases and xi ≥ 0, we have ȳ = p′ · x > p · x = y.
By the compensated law of demand applied to (p, y) and (p′, ȳ) we get
(p′ − p) · (x̄ − x) ≤ 0, which here reduces to

(p′i − pi) (x̄i − xi) ≤ 0 ⇒ x̄i ≤ xi.

By the Giffen assumption for the uncompensated choice at (p′, y), we
have xu

i > xi. Putting these together,

x̄i ≤ xi < xu
i ,

so when income increases from y to ȳ (holding p′ fixed), demand for
good i decreases. Thus i is inferior.

Data set

We observe a finite set of choices:

{(x1, p1, y1), (x2, p2, y2), . . . , (xn, pn, yn)},

where each xi ∈ RL
+ is the chosen bundle at prices pi ∈ RL

+ and income
yi = pi · xi (by local non-satiation).

Revealed preference

Lemma. Let a preference relation ⪰ be complete, transitive, and locally non-
satiated preferences. If x∗ ∈ D(p, y) is chosen at prices p with income y,
then:

1. For every x with p · x = y, we have x∗ ⪰ x.

2. For every x with p · x < y, we have x∗ ≻ x.

Proof. (i) If p · x = y, then x is feasible at (p, y). Since x∗ is chosen,
x∗ ⪰ x. (ii) If p · x < y, local non-satiation implies there exists x′

arbitrarily close to x with x′ ≻ x and p · x′ ≤ y. Then x′ is feasible, so
x∗ ⪰ x′. By transitivity, x∗ ≻ x.

Definition (Direct revealed preference). Given an observation (xi, pi, yi)

with yi ≥ pi · xi:

• Weak direct revealed preference: if pi · xj ≤ yi, then xi ⪰d xj.

• Strict direct revealed preference: if pi · xj < yi, then xi ≻d xj.

Definition (Revealed preference (transitive closure)). We write xi ⪰R xj

if there exist indices k1, . . . , km (possibly m = 0) such that

xi ⪰d xk1 , xk1 ⪰d xk2 , . . . , xkm ⪰d xj.

If at least one step in the chain is strict, then xi ≻R xj. In particular,
allowing m = 0 gives xi ⪰d xj ⇒ xi ⪰R xj.
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GARP
GARP intuition. Think “no improve-
ment loops.” (i) If a chosen bundle
spends strictly less than income (pi · xi <
yi), then it is strictly directly revealed pre-
ferred to itself (xi ≻d xi), so GARP is
immediately violated. (ii) More generally,
if there is a chain of revealed weak prefer-
ences from xi to xj and another back from
xj to xi , with at least one strict link, the
two chains form a strict cycle (xi ≻r xi).
GARP = no such cycles.

Definition (Generalized Axiom of Revealed Preference (GARP)). A data
set satisfies GARP if there is no bundle xi such that

xi ≻R xi.

In words: revealed preference must not generate cycles with a strict
step.

Afriat’s Theorem

Theorem (Afriat). The following statements are equivalent:

1. The data set can be rationalized by a complete, transitive, locally non-
satiated preference relation.

2. The data set satisfies GARP.

3. The data set can be rationalized by a complete, transitive, locally non-
satiated, convex, continuous, monotone preference relation.



Class 8 – Choice under Uncertainty (Kreps Ch. 5)

We now move from deterministic choice to situations under uncertainty.
The key idea is to represent actions by probability distributions over
outcomes, and to assume that agents maximize expected utility.

Outcomes and Probability Distributions

Let X denote the set of outcomes. For simplicity, assume X is finite.

Definition (Probability Distributions over Outcomes). We denote by
∆(X) the set of all probability distributions over X. Each p ∈ ∆(X) is a
function p : X → [0, 1] with ∑x∈X p(x) = 1.

Definition (Degenerate Distribution). For each x ∈ X, let δx ∈ ∆(X) be
the degenerate (Dirac) distribution that assigns probability 1 to outcome
x and 0 to all other outcomes. 14 14 Intuition for future me: We are identify-

ing actions with distributions over out-
comes. Deterministic choices are special
cases represented by δx .Preferences over Lotteries

Definition (Preference Relation over Lotteries). Let ≿ denote a prefer-
ence relation defined on ∆(X). Formally, ≿⊆ ∆(X)× ∆(X). We write
p ≿ q if lottery p is weakly preferred to lottery q.

Properties of the Preference Relation

We impose axioms on ≿ analogous to the deterministic setting:

(i) Completeness and Transitivity. The relation ≿ is complete and
transitive. 15 15 Intuition for future me: The agent can

rank all lotteries consistently.

(ii) Continuity. Preferences are continuous: if p ≻ q ≻ r, then small
perturbations of p or r preserve the ranking.

Under these two axioms, we already know that preferences can be
represented by a utility function U : ∆(X) → R such that

p ≿ q ⇐⇒ U(p) ≥ U(q).
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The Independence Axiom

We add a third crucial axiom:

Definition (Independence). For all lotteries p, q, r ∈ ∆(X) and all α ∈
(0, 1),

p ≿ q =⇒ αp + (1 − α)r ≿ αq + (1 − α)r.

This axiom captures the idea that preferences respect probabilistic
mixtures.16 16 Intuition for future me: If you prefer p to

q, then you should also prefer any mix-
ture of p with a third lottery r to the same
mixture of q with r.

Representation by Expected Utility
∆(X): Representation vs. EU. On
the lottery space ∆(X), completeness +
transitivity + (topological) continuity al-
ready guarantee the existence of some
utility U : ∆(X) → R representing
≿. Independence is not needed for ex-
istence; it is the axiom that forces
U to be affine in probabilities (von
Neumann–Morgenstern expected util-
ity). With Independence (plus the
usual Archimedean/mixture continu-
ity), there is a cardinal index u :
X → R with U(p) = ∑x∈X p(x) u(x),
unique up to positive affine transfor-
mations.

Theorem (Von Neumann–Morgenstern Representation). If a preference
relation ≿ on ∆(X) satisfies completeness, transitivity, continuity, and in-
dependence, then there exists a utility function u : X → R such that for all
p ∈ ∆(X),

U(p) = ∑
x∈X

p(x)u(x),

and p ≿ q ⇐⇒ U(p) ≥ U(q).17 Equivalently, there is U : ∆(X) → R

17 Intuition for future me: Preferences over
lotteries can be represented as the ex-
pected value of a utility index defined
over outcomes.

given by U(p) = Ep[u] = ∑x p(x)u(x) representing ≿.

Remark (Geometric picture and intuition). On the 3–outcome simplex
(coordinates (p(x1), p(x2)) with p(x3) = 1 − p(x1)− p(x2)), expected
utility is affine in probabilities. Hence: (i) indifference sets are straight,
parallel lines with slope − u(x1)−u(x3)

u(x2)−u(x3)
; (ii) each upper contour set {p :

U(p) ≥ Ū} is the intersection of a half–plane with the simplex (a convex
“half–triangle”). Independence is exactly what yields this linearity in
mixtures.

p(x1) + p(x2) = 1

U(p) = Ū

p(x1)

p(x2)

(a) Upper contour set in the simplex

p(x1) + p(x2) = 1

p(x1)

p(x2)

(b) Indifference lines: straight and parallel Figure 18: VNM on the 3–outcome sim-
plex. Left: the upper contour set is
the half–plane U(p) ≥ Ū intersected
with the simplex. Right: indifference
sets are straight and parallel with slope
−(u1 − u3)/(u2 − u3).
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Independence ⇒ Linearity and the Geometry of VNM

Proposition. (Independence ⇒ Affine mixtures) Let X be finite and ≿ on
∆(X) satisfy completeness, transitivity, continuity, and independence. The
independence axiom implies the affinity (linearity in mixtures) of any utility
representation.

Lemma (Affinity). If U : ∆(X) → R represents ≿, then for all p, q ∈ ∆(X) and
α ∈ [0, 1],

U
(
αp + (1 − α)q

)
= α U(p) + (1 − α)U(q).

Equivalently, writing each lottery componentwise,18 18 Intuition for future me: Independence
says that mixing with a common third
lottery r preserves orderings. This forces
U to be affine in probabilities, i.e., the
utility of a mixture is the mixture of utili-
ties.

U

(
∑

x∈X

[
αp(x) + (1 − α)q(x)

]
δx

)
= α ∑

x∈X
p(x)U(δx) + (1 − α) ∑

x∈X
q(x)U(δx).

Geometry on the simplex (three outcomes)

Let X = {x1, x2, x3} with ui := U(δxi ). Any p ∈ ∆(X) can be written as
p = (p1, p2, p3) with p1 + p2 + p3 = 1. By Lemma ,

U(p) = p1u1 + p2u2 + p3u3 = (u1 − u3)p1 + (u2 − u3)p2 + u3.

Hence each indifference set {p : U(p) = Ū} is a straight line inside the
triangle {(p1, p2) : p1 ≥ 0, p2 ≥ 0, p1 + p2 ≤ 1} given by

(u1 − u3)p1 + (u2 − u3)p2 = Ū − u3.

Upper contour sets {p : U(p) ≥ Ū} are the corresponding half–triangles
(convex regions).

Normalization and binary reduction

Because X is finite, there exist a best and a worst outcome w.r.t. ≿:
pick x̄ ∈ X with δx̄ ≿ δx for all x, and x ∈ X with δx ≿ δx for all x.
Normalize the VNM index by19 19 Intuition for future me: Every lottery is

indifferent to a two–point lottery between
the best and worst outcomes, with weight
on the best equal to its expected utility.
Thus ranking lotteries is the same as rank-
ing these binary mixtures by their weight
on x̄.

u(x) = 0, u(x̄) = 1.

Then for any lottery p ∈ ∆(X),

U(p) = ∑
x∈X

p(x) u(x) ∈ [0, 1],

and, by affinity,

p ∼ U(p) δx̄ +
(
1 − U(p)

)
δx.

Remark. Writing αp + (1 − α)q componentwise gives

∑
x∈X

(
αp(x)+ (1− α)q(x)

)
u(x) = α ∑

x∈X
p(x)u(x)+ (1− α) ∑

x∈X
q(x)u(x),

i.e., the indifference sets are level lines of a linear form in (p(x))x∈X,
which is exactly what the simplex plots above are visualizing.





Class 9 – Objective vs. Subjective Probabilities

In the theory of choice under uncertainty we can distinguish two
versions:

(a) Objective probabilities: true probabilities for each outcome are
given.

(b) Subjective probabilities: probabilities are not given; instead, from
the choices of the agent we attempt to infer beliefs.

Objective probabilities and the VNM framework

Let X be a finite set of outcomes. Then ∆(X) denotes the set of all
probability distributions over X, that is, all vectors p = (p(x))x∈X with
∑x∈X p(x) = 1.

A preference relation ≿ is defined over ∆(X), and we impose the
following axioms:

(i) Rationality (R). ≿ is complete and transitive.

(ii) Continuity (C). ≿ is continuous, hence admits a continuous utility
representation.

(iii) Independence (I). For all p, q, r ∈ ∆(X) and α ∈ (0, 1),

p ≿ q =⇒ αp + (1 − α)r ≿ αq + (1 − α)r.

Theorem (Von Neumann–Morgenstern Representation). If a preference
relation ≿ on ∆(X) satisfies (R), (C), and (I), then there exists a function
u : X → R such that for all p, q ∈ ∆(X),

p ≿ q ⇐⇒ ∑
x∈X

p(x)u(x) ≥ ∑
x∈X

q(x)u(x).

Proof sketch. Part 1. Construct U(p) = ∑x∈X p(x)u(x) and show that
this is well defined under (R), (C), (I).

Part 2. Show that U(p) correctly orders the elements of ∆(X), i.e.
p ≿ q iff U(p) ≥ U(q).



52 microeconomics 601 university of michigan

Remark (Strict separability). The independence axiom induces a strong
form of separability: the utility of a mixture is the corresponding
mixture of utilities. This is exactly what makes expected utility a linear
functional of probabilities.

Remark (Risk neutrality baseline). The expected utility representation
itself is agnostic about attitudes toward risk. Neutrality is the natural
baseline. Risk aversion or risk seeking only appear once we apply u to
monetary outcomes and study the curvature of u.

Rewriting lotteries

Given p ∈ ∆(X), we can always write it as a convex combination of
degenerate lotteries:

p = ∑
x∈X

p(x) δx.

This allows us to rewrite rankings in terms of comparisons of de-
generate lotteries weighted by probabilities. For instance, with three
outcomes: p(x)

p(y)
p(z)

 = p(x)

1
0
0

+ p(y)

0
1
0

+ p(z)

0
0
1

 .

20 20 Intuition for future me: The key is that
rankings over lotteries should depend on
whether probabilities differ. Expected
utility treats these mixtures in a linear
fashion.

Normalization and affine transformations

Suppose û(x) = ∑x∈X p(x)µ(x) represents ≿. Then any other VNM
index v that represents ≿ must be an affine transformation:

v(x) = a µ(x) + b, a > 0, b ∈ R.

Theorem (Uniqueness of VNM index). If u represents ≿, then any other v
representing ≿ satisfies v(x) = au(x) + b for all x, with a > 0.

Remark (Expected utility as probability weights). Expected utility as-
signs probabilities to outcomes in such a way that makes the agent
indifferent between compound and reduced lotteries. This is the formal
content of the independence axiom.

The Allais Paradox: when Independence fails

TB Revised

Example (Allais paradox). Consider the following choices:

• Lottery A: 0.33 → 27,000; 0.66 → 24,000; 0.01 → 0.
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• Lottery B: 1 → 24,000.

Many agents prefer B ≻ A.
Now consider:

• Lottery A′: 0.33 → 27,000; 0.67 → 0.

• Lottery B′: 0.34 → 24,000; 0.66 → 0.

Empirically, many agents prefer A′ ≻ B′.21 21 Intuition for future me: But these two
preference patterns are inconsistent un-
der the independence axiom. The Al-
lais paradox highlights that actual hu-
man choices systematically violate inde-
pendence.

Remark. Replace (M̄, m̄, 0) by (27,000, 24,000, 0) and (0.10, 0.11, 0.89)
by (0.33, 0.34, 0.66). Your pairs become:

A : 0.33→ 27,000, 0.66→ 24,000, 0.01→ 0, B : 1→ 24,000,

A′ : 0.33→ 27,000, 0.67→ 0, B′ : 0.34→ 24,000, 0.66→ 0.

Then B ≻ A and A′ ≻ B′ is exactly the same violation: with u(0) = 0,
u(27,000) = 1, u(24,000) = x, the first choice B ≻ A gives x < 33

34 , while
the second A′ ≻ B′ gives x > 33

34 . Contradiction. Moreover,

B = 0.66 δ24,000 + 0.34 B′, A = 0.66 δ24,000 + 0.34 A′.

Thus A and B are obtained by adding the same common consequence
0.66 of 24,000 to A′ and B′. Independence would require preserving
the A′ vs. B′ ordering, which is violated empirically.





Class 10 – Subjective Probabilities

Motivation

We aim to infer subjective beliefs from choices. The key shift in this
part is that the objects of choice are acts—state–contingent plans—not
bare outcomes or exogenously risky lotteries. If you repeatedly prefer
the act “$100 if A, $0 otherwise” to the act “$100 if B, $0 otherwise,”
holding consequences fixed, your choices reveal that you regard event A
as more likely than B. Preferences over acts thus encode both tastes over
consequences and beliefs about states. Intuition: An act is an if–then rule. We

keep the consequence menu fixed and vary
the event that triggers it. The way you
rank such rules reveals a likelihood or-
dering over events.

Roadmap. (1) Define states, events, consequences, and acts (functions
from states to consequences). (2) Take preferences over acts as primitive.
(3) Impose behavioral axioms (including the Sure–Thing Principle)
under which preferences admit a representation as expected utility with
a subjective probability on events.

Framework

Definition (States, events, acts, and consequences). Let S be a (finite)
set of states of the world and let E ⊆ 2S be the set of events. Let X
be a set of consequences. An act is a function a : S → X that assigns
a consequence to each state. A (complete and transitive) preference
relation ⪰ is defined over the set of acts A = XS.

Remark (Why acts are the primitives here). Unlike in objective–risk
problems (where lotteries are given with known probabilities), here
probabilities are not assumed; they are inferred from ⪰ over acts. Acts
are the natural primitives because they tell us, for each possible state,
what would happen if this plan were chosen. Events matter only through
how acts condition consequences on them.

Remark (When consequences are monetary). In many applications we
take X = [a, b] ⊂ R (money or consumption) and we already endowed
X with a vNM utility index u : X → R. We also write ∆(X) for the set
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of simple lotteries over X (probability distributions with finite support).

Remark (Important: timing). We must choose an act a ∈ A before
learning which state s ∈ S will prevail. After the state realizes, the
chosen act mechanically yields its corresponding consequence a(s).

Representation: subjective expected utility (SEU)

The idea is that preferences over acts can be represented as expected
utility with respect to a subjective probability on states.

Theorem (SEU representation (finite S; Anscombe–Aumann flavor)).
Suppose ⪰ over A satisfies the usual list of axioms:22 then there exist (i) a 22 Weak order, continuity, monotonicity

w.r.t. consequences, and the Sure-
Thing/independence axiom across
events; plus nondegeneracy. In the AA
setup, mixture independence is imposed
via objective mixtures of consequences.

probability distribution p on S and (ii) a utility index u : X → R such that
for all acts a, b ∈ A,

a ⪰ b ⇐⇒ ∑
s∈S

p(s) u
(
a(s)

)
≥ ∑

s∈S
p(s) u

(
b(s)

)
.

Moreover, p is unique, and u is unique up to a positive affine transformation
u′(x) = αu(x) + β with α > 0.

Reading: “Preferences reveal your sub-
jective probabilities, and they admit an
expected-utility representation.”Remark (Why the Sure-Thing Axiom matters). The Sure-Thing Principle

(STP) says: if two acts deliver the same consequence on an event E, then
your ranking between them should depend only on what they do on
Ec. In SEU, this follows from linearity of expectation and is equivalent
to independence across events.

Add excercise 3 of PS5b as an example.

Ellsberg’s paradox: a failure of STP (ambiguity)

Consider an urn with 90 balls: 30 are red (R); the remaining 60 are
blue (B) or green (G) in unknown proportions (ambiguity about B vs.
G). The state space is S = {R, B, G}. Pay $100 if the described event
occurs, and $0 otherwise.

Act R B G

A 100 0 0

B 0 100 0

A′
100 0 100

B′
0 100 100

Example (Typical choices). Empirically, many subjects choose A ≻ B
(bet on red) and also B′ ≻ A′ (bet on blue-or-green rather than red-or-
green).



class 10 – subjective probabilities 57

Remark (Why this contradicts SEU / STP). Observe that A′ and B′

are obtained from A and B by adding the same payoff on event G
(both give $100 on G). By the Sure-Thing Principle, adding a common
consequence on G should not flip the ranking: from A ≻ B we should
infer A′ ≻ B′. The observed reversal B′ ≻ A′ therefore violates STP
(and hence SEU). This is interpreted as ambiguity aversion: people dislike
bets whose probabilities are ill-defined (here, the split between B and
G).

Connection to “probabilistic sophistica-
tion”: if preferences depended only on
the induced lotteries over consequences,
a single subjective p would rationalize
both choices. Ellsberg shows they often
do not.

Event comparisons via bets

Fix consequences and vary only the event that triggers the prize. For
example, compare the two acts

aE(s) =

xH if s ∈ E,

xL if s /∈ E,
aF(s) =

xH if s ∈ F,

xL if s /∈ F,

with xH ≻ xL. If aE ⪰ aF for all such pairs (xH , xL), we read this as
“E is (subjectively) at least as likely as F,” which SEU rationalizes via
p(E) ≥ p(F).

Utility for money and simple lotteries (Chapter 6)

We now specialize to monetary consequences. Let X = [a, b] ⊂ R. De-
note by ∆(X) the set of simple lotteries on X, i.e. probability distributions
with finite support.

Definition (vNM index on money). A preference ⪰ on ∆(X) has a vNM
representation if there exists u : X → R such that for all π, ρ ∈ ∆(X),

π ⪰ ρ ⇐⇒ ∑
x∈supp(π)

π(x) u(x) ≥ ∑
x∈supp(ρ)

ρ(x) u(x).

The function u is unique up to positive affine transformations.

Definition (Monotonicity on money). Write δx ∈ ∆(X) for the degener-
ate lottery that pays x for sure. A preference ⪰ is increasing if for all
x, y ∈ [a, b], x ≥ y implies δx ⪰ δy (strictly if x > y).

Remark. Intuition: “More money is (weakly) better for sure outcomes.”
In a vNM representation, this is equivalent to u being (weakly) increas-
ing on [a, b].
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a

b

x

u(x) Figure 19: An increasing vNM index u
on money.

First-order stochastic dominance (FOSD)

Definition (FOSD via CDFs). For π, ρ ∈ ∆(X) with cumulative distribu-
tion functions Fπ and Fρ, we say that π first-order stochastically dominates
ρ (write π ⪰FOSD ρ) if

Fπ(x) ≤ Fρ(x) for all x ∈ [a, b],

with strict inequality for some x (for strict FOSD). If the CDFs cross,
the pair is not comparable by FOSD.

Proposition (Monotonicity ⇐⇒ FOSD). Let ⪰ on ∆(X) admit a vNM
representation by u. Then

⪰ is increasing ⇐⇒ u is (weakly) increasing ⇐⇒
(
∀π, ρ ∈ ∆(X)

)
π ⪰FOSD ρ ⇒ π ⪰ ρ.

Proof sketch. (⇒) If δx ⪰ δy for x ≥ y, then u(x) ≥ u(y), so u is increasing;
FOSD implies higher probability on higher payoffs, and linearity of EU with
increasing u gives π ⪰ ρ. (⇐) If u were not increasing, there exist x > y
with u(x) < u(y): but δx ⪰FOSD δy while EU would rank δy ≻ δx, a
contradiction.

Fρ Fπ

x

F(x)

FOSD: π ⪰FOSD ρ

Fρ Fπ

x

F(x)

Crossing: not comparable Figure 20: Left: Fπ ≤ Fρ pointwise
(FOSD). Right: CDFs cross ⇒ no FOSD
ranking.

Reading tip. If Fπ ≤ Fρ, every increasing
u yields Eπ [u(X)] ≥ Eρ[u(X)]. If CDFs
cross, some increasing u prefers π and
another prefers ρ.



Class 11 – Utility of Money (Chapter 6)

Setup and simple lotteries

Let X = [0, x̄] ⊂ R denote monetary outcomes, and let ∆(X) be the
set of simple lotteries (finite support probability distributions) over X.
Preferences ⪰ are defined over ∆(X).

Definition (EU representation on money). A vNM index u : X → R

represents ⪰ if for all π, ρ ∈ ∆(X),

π ⪰ ρ ⇐⇒ U(π)︸ ︷︷ ︸
:=Eπ [u(X)]

= ∑
x∈supp(π)

π(x) u(x) ≥ ∑
x∈supp(ρ)

ρ(x) u(x) = U(ρ),

with u unique up to positive affine transformations.

Monotonicity and FOSD

Definition (Monotonicity on sure amounts). Let δx be the degenerate
lottery that pays x for sure. We say that ⪰ is increasing if for all x ≥ y
in X, δx ⪰ δy (strictly increasing if x > y ⇒ δx ≻ δy).

Proposition (Three equivalent statements). For preferences ⪰ on ∆(X)

with EU index u, the following are equivalent:

(i) ⪰ is (weakly) increasing.

(ii) u is (weakly) increasing on [0, x̄].

(iii) If π first-order stochastically dominates ρ (i.e. Fπ(x) ≤ Fρ(x) for all x),
then π ⪰ ρ.

Moreover, if ⪰ is strictly increasing, then u is strictly increasing and strict
FOSD implies strict preference (Fπ ≤ Fρ and Fπ < Fρ somewhere ⇒ π ≻ ρ).

Risk aversion and SOSD

Definition (Risk aversion). ⪰ is risk-averse if for every lottery π ∈ ∆(X),

δEπ [X] ⪰ π.
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(Strict risk aversion: the inequality is strict whenever π is non-degenerate.)

Proposition (Characterizations of risk aversion). For EU preferences with
index u, the following are equivalent:

(a) ⪰ is (strictly) risk-averse.

(b) u is (strictly) concave on [0, x̄].

(c) (SOSD consistency) If π second-order stochastically dominates ρ (write
π ⪰SOSD ρ), then π ⪰ ρ. With strict concavity, π ≻ ρ when the
dominance is strict.

Sketch. (a)⇔(b) is Jensen: u(E[X]) ≥ E[u(X)], with > if u is strictly
concave and π non-degenerate. (b)⇒(c): concavity plus the definition of
SOSD (below) implies Eπ [u(X)] ≥ Eρ[u(X)]. (c)⇒(a) by taking ρ = π and
π = δE[X], which SOSD-dominates π.

Definition (Second-order stochastic dominance). Let X = [0, x̄]. For
π, ρ ∈ ∆(X) with CDFs Fπ , Fρ, we write

π ⪰SOSD ρ ⇐⇒
∫ t

0
Fπ(x) dx ≤

∫ t

0
Fρ(x) dx for all t ∈ [0, x̄],

and ∫ x̄

0
Fπ(x) dx =

∫ x̄

0
Fρ(x) dx (equivalently, Eπ [X] = Eρ[X]).

Remark (Mean-preserving spread (MPS)). ρ is an MPS of π iff there
exists a zero-mean noise Ỹ such that

Xρ = Xπ + Ỹ, E[Ỹ | Xπ ] = 0.

This is equivalent to π ⪰SOSD ρ. Intuition: ρ is obtained by “spreading”
mass of π away from its mean without changing the mean.

x x̄π(x)x + (1 − π(x))x̄

E[u(X)]
u(E[X])

x

u(x) Figure 21: Risk aversion: concavity ⇒
Jensen u(E[X]) ≥ E[u(X)]. Add a plot
with risk loving.
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FρFπ

x

F(x) Figure 22: Second-order dominance:∫ t
0 Fπ ≤

∫ t
0 Fρ for all t (same mean). Then

every increasing concave u prefers π to
ρ.

Takeaways

• Monotonicity on sure amounts ⇐⇒ u increasing ⇐⇒ FOSD consis-
tency (Prop. ).

• Risk aversion ⇐⇒ u concave ⇐⇒ SOSD consistency (Prop. ).

• Mean-preserving spreads (zero-mean noise added) worsen lotteries
for a risk-averse DM; they leave the mean unchanged but raise
dispersion.

Arrow–Pratt, certainty equivalent, and risk premium

Definition (Arrow–Pratt absolute risk aversion). For an EU index u :
X → R with u′ > 0, the absolute risk-aversion (ARA) coefficient is

Au(x) := −u′′(x)
u′(x)

.

It is invariant to positive affine transformations: if v = αu + β with α > 0,
then Av ≡ Au.

Definition (Certainty equivalent and risk premium). Given a lottery
π ∈ ∆(X), the certainty equivalent CE(π) ∈ X is the (unique) number
such that

u
(
CE(π)

)
= Eπ

[
u(X)

]
.

The risk premium is

RP(π) := Eπ [X] − CE(π).

Proposition (Risk aversion ⇔ nonnegative premia). For EU preferences
with u increasing, the following are equivalent:

(i) The DM is (weakly) risk-averse.

(ii) u is (weakly) concave.
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(iii) For every π, RP(π) ≥ 0 (strict > for nondegenerate π when u is strictly
concave).

Sketch. Jensen: u(E[X]) ≥ E[u(X)] with > for strict concavity and nonde-
generacy.

u(E[X])E[u(X)]

CE x

u(x) Figure 23: Certainty equivalent: u(CE) =
E[u(X)] ≤ u(E[X]). Risk premium =
E[X]− CE.

Small-risk expansion and Arrow–Pratt

Fix x ∈ X and let Z̃ be a mean-zero r.v. with E[Z̃] = 0 and E[Z̃2] < ∞.
For ε ≥ 0, define the risk premia c(ε) by the CE equation

u
(

x − c(ε)
)
= E

[
u
(

x + εZ̃
)]

.

Then c(0) = 0, c′(0) = 0, and if u ∈ C2 and c is twice differentiable at
0,

c′′(0) = Au(x)E[Z̃2] = −u′′(x)
u′(x)

E[Z̃2]

so that, for small risks,

RP
(
εZ̃
)
= c(ε) ≈ 1

2 Au(x) ε2 Var(Z̃).

Derivation. Apply a second-order Taylor expansion to both sides around
ε = 0 and use E[Z̃] = 0.

c′(0) = 0
c′′(0) = Au(x)E[Z̃2]

ε

c(ε) Figure 24: Small-risk premium c(ε): tan-
gent flat at 0 and convex when Au(x) >
0.
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Constant absolute risk aversion (CARA)

Definition (CARA). u has constant ARA equal to ρ > 0 if Au(x) ≡ ρ for
all x, i.e.

−u′′(x)
u′(x)

= ρ ⇐⇒ u′′(x) + ρ u′(x) = 0.

Solving the ODE yields u(x) = α − βe−ρx with β > 0. A convenient
normalization is u(x) = 1 − e−ρx.

Proposition (Comparative risk aversion (Pratt)). If Au(x) ≥ Av(x) for
all x, then u is uniformly more risk-averse than v (equivalently, v = ϕ◦ u for
some increasing concave ϕ). Hence RPu(π) ≥ RPv(π) for all π.

A simple portfolio choice “at zero”

Let initial wealth be m > 0. Choose a share λ ∈ [0, 1] to invest in a risky
increment X̃ while the remainder stays safe. Final wealth:

W(λ) = (1 − λ)m + λ X̃.

The DM chooses λ to maximize E[u(W(λ))].

Proposition (Sign of the optimal direction at λ = 0). Suppose u is
increasing and differentiable. Then

d
dλ

E
[
u(W(λ))

]∣∣∣∣
λ=0

= u′(m)
(
E[X̃]− m

)
.

Hence, if an optimum is interior near 0, we have λ∗ > 0 iff E[X̃] > m. If
X̃ is a net risky payoff over the safe (so the safe is 0), this simplifies to
λ∗ > 0 iff E[X̃] > 0.

Remark. For (small) mean-zero risks with variance σ2, the second-order
effect is governed by Arrow–Pratt:

d2

dλ2 E
[
u(W(λ))

]∣∣∣∣
λ=0

= u′(m) Au(m) σ2 (−sign),

so risk aversion (Au > 0) penalizes variance and pushes the optimum
λ∗ downward.
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Setup

We model the firm as a single decision maker. The technology is a
production set

Z ⊆ Rk,

whose elements z = (z1, . . . , zk) are production plans. We follow the sign
convention:

zi ≤ 0 (inputs), zj ≥ 0 (outputs).

Example. With two inputs and one output, z = (−2,−3, 24) ∈ Z means
the firm uses 2 units of input 1 and 3 of input 2 to produce 24 units of
output.

Remark. This sign convention makes the language flexible: “adding
output” increases components of z that are outputs, while “using more
inputs” decreases the corresponding (negative) components.

Prices and profits

Let p ∈ Rk be the price vector. The firm’s (static) profit from plan z is

π(p, z) = p · z =
k

∑
i=1

pizi.

With outputs priced pj ≥ 0 and inputs priced pi ≥ 0 (remember zi ≤ 0
for inputs), outputs raise profit and inputs reduce it.

The firm’s problem and the profit function

Given p, the set of profit-maximizing plans is

Z(p) := arg max
z∈Z

p · z,

which can be a correspondence (multiple maximizers) or empty. The
associated profit function is

π(p) := sup{ p · z : z ∈ Z } (well-defined once Z ̸= ∅),
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and may take value +∞ if technology allows arbitrarily profitable scale
at prices p.

Remark (Existence (minimal conditions)). If Z is nonempty, closed, and
profits are bounded above at p (no arbitrarily scalable free output in a
priced direction), then Z(p) ̸= ∅. Uniqueness generally needs strict
concavity of the feasible frontier (or of π).

A two-dimensional picture

Consider one input L ≤ 0 and one output y ≥ 0. A convenient
representation is

Z = {(L, y) ∈ R2 : y ≤
√
−L, L ≤ 0, y ≥ 0},

which says higher output requires (weakly) more input. The feasible
set is the area under the curve y =

√
−L for L ≤ 0.

y =
√
−L

inputs (L ≤ 0) L

y Figure 25: Technology with one input
(L ≤ 0) and one output (y ≥ 0). The
shaded area is the feasible set Z .

Iso-profit lines. At prices (pL, py) with pL, py > 0, iso-profit lines in
(L, y)-space have slope − pL

py
(since π = py y + pL L with L ≤ 0). Profit

maximization picks a boundary point of Z where an iso-profit line is
just tangent (or a corner like the origin if prices are unfavorable).

Takeaways:

• Technology as a set Z ⊂ Rk (outputs ≥ 0, inputs ≤ 0) gives a clean
language for firm decisions.

• The choice set at prices p is Z(p) = arg maxz∈Z p · z; Z(p) can be
multi-valued. The profit function is π(p) = supz∈Z p · z.

• Existence needs nonemptiness/closedness and bounded profits at p;
uniqueness needs curvature.
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A warm-up example (CRS ray and (non)existence)

Let k = 2 with z = (z1, z2), where z1 ≤ 0 is an input and z2 ≥ 0 an
output. Consider the constant-returns technology

Z =
{
(z1, z2) ∈ R2 : z1 ≤ 0, z2 = |z1|

}
=
{
(−t, t) : t ≥ 0

}
.

At prices p = (p1, p2) the firm solves maxt≥0 p · (−t, t) = t(p2 − p1).
Hence

Z(p) =


{(0, 0)} if p1 > p2,

{(−t, t) : t ≥ 0} if p1 = p2,

∅ if p1 < p2,

π(p) =

0 if p1 ≥ p2,

+∞ if p1 < p2.

Lesson: if an output’s price exceeds the “cost” of the input along a CRS
ray, profits are unbounded and no maximizer exists.

z2 = −z1

z1 (input)

z2 (output) Figure 26: CRS ray. If p1 > p2, the max-
imizer is (0, 0); if p1 < p2, profits are
unbounded.

Existence, continuity, and convexity of the choice set

Proposition (Existence under compactness). If Z is nonempty and com-
pact, then for every p the maximization maxz∈Z p · z admits a solution; i.e.
Z(p) ̸= ∅.

Remark (Free disposal as a fallback). If 0 ∈ Z and the technology has
free disposal (i.e. z′ ≤ z componentwise and z ∈ Z imply z′ ∈ Z), then
for any p ≥ 0 the problem has at least the feasible plan z = 0 with
π(p, 0) = 0.

Theorem (Berge’s Maximum Theorem). If Z is nonempty and compact,
then the argmax correspondence Z(·) is upper hemicontinuous (hence has a
closed graph), and the profit function π(p) = maxz∈Z p · z is continuous in
p.

Proposition (Convex choice at fixed prices). If Z is convex, then Z(p)
is convex for every p. Proof. If z, z′ ∈ Z(p) and λ ∈ [0, 1], then z̃ = λz +
(1− λ)z′ ∈ Z and p · z̃ = λ p · z + (1− λ) p · z′ = π(p), so z̃ ∈ Z(p).
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Homogeneity and the law of supply (WAPM)

Proposition (Positive homogeneity). For all λ > 0 and all p,

Z(λp) = Z(p) and π(λp) = λ π(p).

Proposition (Weak axiom of profit maximization / law of supply). If
z ∈ Z(p) and z′ ∈ Z(p′), then

(z − z′) · (p − p′) ≥ 0.

Proof. From z ∈ Z(p) we have p · z ≥ p · z′; from z′ ∈ Z(p′) we have
p′ · z′ ≥ p′ · z. Adding yields (p − p′) · (z − z′) ≥ 0.

Corollary (One–price changes, inputs vs. outputs). If only component j of
the price vector changes from pj to p′j with p′j > pj, then

(z′j − zj)(p′j − pj) ≥ 0.

Hence for an output j (quantities zj ≥ 0) we get z′j ≥ zj (more output when
its price rises); for an input i (quantities zi ≤ 0) we get z′i ≥ zi, i.e. the input
is used less (moves toward zero).

“Afriat for firms”: rationalizing a finite dataset

Suppose we observe n price–choice pairs {(pt, zt)}n
t=1.

Necessary condition (pairwise optimality). A necessary condition for profit
maximization is

pt · zt ≥ pt · zs for all t, s ∈ {1, . . . , n}. (⋆)

Sufficient condition and a rationalizing technology. If (⋆) holds, then the
closed, convex set

Z∗ :=
{

z ∈ Rk : pt · z ≤ pt · zt for all t
}

(with free disposal added if desired: Z∗ + Rk
−) rationalizes the data:

each zt solves maxz∈Z∗ pt · z. If, moreover, all observed profits are
nonnegative (pt · zt ≥ 0 for all t), then 0 ∈ Z∗ (consistent with free
disposal and the idea that “doing nothing” is feasible).

What we can and cannot infer. From finite data we cannot identify the
true technology nor its curvature; we can only assert that there exists a
closed, convex (free-disposal) technology that makes the observations
profit maximizing.

Takeaways.
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• Compact Z ⇒ existence; Berge ⇒ Z(·) upper hemicontinuous and
π(·) continuous.

• If Z is convex, Z(p) is convex (mixtures of optimizers remain opti-
mal).

• π and Z are positively homogeneous of degree 1 and 0, respectively.

• WAPM: (z − z′) · (p − p′) ≥ 0; in particular, raising an output price
raises optimal output, and raising an input price lowers input usage.

• Afriat-for-firms: pairwise profit inequalities are necessary; they are
also sufficient once we construct a rationalizing (closed, convex,
free-disposal) Z∗.
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