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Class 1: What we have left from 601

Review and Transition

This first class revisits the key elements of consumer and firm theory
that we covered in Econ 601, emphasizing the aspects that we will build
on for general equilibrium analysis.

• Consumer Theory: Preferences, utility representation, and demand
functions. We recall how complete, transitive, and continuous prefer-
ences can be represented by a continuous utility function u : X → R,
and how monotonicity and convexity yield the standard shape of
indifference curves.

• The Firm: Technology sets, production functions, cost and profit
functions, and the duality between them. Firms choose input–output
bundles to maximize profits given prices.

• Bridging to 603: Both consumers and firms are price-takers in com-
petitive markets. Today we start from the individual optimization
problems and move toward their interaction in equilibrium, which
will be the main focus of 603.

Remark (Conceptual link). In partial equilibrium, we studied individual
optimization taking prices as given. In general equilibrium, prices
themselves must adjust so that all markets clear simultaneously. Hence,
equilibrium analysis “closes the model” by endogenizing prices.

Consumer problem

We start from the familiar optimization problem:

max
x∈Rn

+

u(x) s.t. p · x ≤ y.

Assume the solution is unique. Then the Marshallian demand is a well-
defined function

x(p, y) : Rn
++ × R++ → Rn

+.
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Remark. Uniqueness ensures that x(p, y) is a function rather than a
correspondence. This assumption will be convenient later when we
aggregate demand.

Firm problem

Similarly, the firm solves
max
x∈X

p · x,

where X ⊆ Rn represents the production set. The optimal supply is
denoted by

s(p) ∈ X.

Remark (Partial order). The production set X is endowed with the
natural partial order of Rn: for x, x′ ∈ Rn, we say x ≥ x′ if xi ≥ x′i for
all i. This captures the idea of “more output and less input.” Under
this order, efficiency means that if x is feasible, no x′ ≥ x with x′ ̸= x is
feasible.

Monotonicity properties

Consider a function f : Rn → Rn. We say that f is monotone if

(x − x′) · ( f (x)− f (x′)) ≥ 0 ∀x, x′ ∈ Rn.

If the inequality is reversed (≤ 0), the function is monotonically decreasing.
This definition uses the inner product and the partial order above.1 1 Intuition for future me: For the firm,

monotonicity means that changing prices
in a given direction produces a supply re-
sponse in the same direction. The inverse
concept applies to the demand function,
which is decreasing.

Jacobian and local monotonicity

Let J(x) denote the Jacobian (matrix of first derivatives) of f (x). Then

J(x) + J(x)T

2

is the symmetric part of the Jacobian. If this matrix is

• negative semidefinite (NSD), then f is monotonically decreasing;

• positive semidefinite (PSD), then f is monotonically increasing.

A stronger statement (firm side)

Let s : Rn
++ → Rn

+ be the firm’s supply function. Then s is the result of
profit maximization for some production set X if and only if:

(1) s(p) is homogeneous of degree zero:

s(λp) = s(p) ∀λ > 0;
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(2) The Jacobian J(p) is symmetric and positive semidefinite:

(p − p′) · (s(p)− s(p′)) ≥ 0.

Remark. Condition (1) follows from the fact that only relative prices
matter for profit maximization. Condition (2) encodes the law of supply:
as prices rise, the value supplied does not decrease.

Integrability and Expenditure Minimization

Integrability Theorem

A function d : Rn+1
++ → Rn

+, written as d(p, y), is the result of utility
maximization if and only if:

(1) Budget constraint: p · d(p, y) = y for all (p, y).

(2) Homogeneity: d(λp, λy) = d(p, y) for all λ > 0.

(3) Symmetry and definiteness: The matrix constructed as(
∂di(p, y)

∂pj
+ dj(p, y)

∂di(p, y)
∂y

)n

i,j=1

is symmetric and negative semidefinite (NSD).

Remark. These conditions guarantee that a demand function can be
rationalized by some utility function. The third condition (symmetry
and NSD) is the analogue of compensated monotonicity: it ensures that
compensated price changes (holding utility constant) yield predictable,
symmetric responses.

Expenditure Minimization Problem

min
x∈Rn

+

p · x s.t. u(x) ≥ ū.

This problem finds the cheapest bundle that attains a given utility level ū.
The solution defines the Hicksian demand:

xh(p, ū),

and the minimized value is the expenditure function:

e(p, ū) = p · xh(p, ū).

Remark. Geometrically, xh(p, ū) is the point of tangency between the
budget line and the indifference curve u(x) = ū. It represents a dual
problem to the consumer’s utility maximization.
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Properties of the expenditure function

Proposition. e(p, ū) is concave in p.

Proof Sketch. For any λ ∈ [0, 1] and price vectors p, p′,2 2 Intuition for future me: Since expenditure
is linear in prices for each fixed bundle,
minimizing over bundles yields a con-
cave envelope in p.λe(p, ū) + (1 − λ)e(p′, ū) ≤ e(λp + (1 − λ)p′, ū).

Proposition (Shephard’s Lemma).

∂e(p, ū)
∂pi

= xh
i (p, ū).

Remark. This follows directly from the Envelope Theorem. Intuitively,
the derivative of the minimal expenditure with respect to the price
of good i tells us how much of that good is being purchased at the
optimum.

Further properties

Proposition. The Hessian ∇2
pe(p, ū) is symmetric and negative semidefinite.

Remark. This implies that the Jacobian of the Hicksian demand is
symmetric and NSD:

∂xh
i (p, ū)
∂pj

=
∂2e(p, ū)

∂pi∂pj
=

∂xh
j (p, ū)

∂pi
(by Young’s Theorem).

The Slutsky Equation

∂di(p, y)
∂pj

=
∂xh

i (p, ū)
∂pj

− dj(p, y)
∂di(p, y)

∂y
.

• The first term is the substitution effect: response to price changes
keeping utility fixed.

• The second term is the income effect: adjustment due to the change in
real income.

Proof Idea. Since at the optimum xh
i (p, u(p, y)) = di(p, y), differentiat-

ing with respect to pj and applying Shephard’s Lemma yields

∂xh
i (p, ū)
∂pj

=
∂di(p, y)

∂pj
+

∂di(p, y)
∂y

∂e(p, ū)
∂pj

.

Substituting ∂e
∂pj

= xh
j = dj gives the result.
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Remark. The Slutsky equation decomposes the total effect of a price
change on demand into the part due to substitution along an indiffer-
ence curve and the part due to the change in purchasing power. The
matrix of substitution effects (the Slutsky matrix) is symmetric and
negative semidefinite.





Class 2: Pareto Efficiency

The notion of efficiency that we are going to use is Pareto efficiency. We
are going to distinguish it from “Pareto optimality” that will need the
existence of a welfare function.
Primitives.

• Goods: ℓ = 1, 2.

• Initial endowment: ω = (ω1, . . . , ωL) ∈ RL
+.

• Production set: Y ⊆ RL. A vector y ∈ Y is a production plan; typically
yℓ < 0 (input) and yℓ > 0 (output).

Definition (Post–production feasibility set). Let Z ⊆ RL be defined by
the Minkowski sum

Z = {ω}+ Y =
{

x ∈ RL ∣∣ x = ω + y for some y ∈ Y
}

.
Z: the set feasible for the economy af-
ter production.
Assumption? Properties?

Consumers (that also supply labour).

• i = 1, 2, . . . , I.

• Consumption set: Xi ⊆ RL
+. Consumer i’s consumption plan is

xi ∈ Xi.

• Economy-wide plan: X = (x1, x2, . . . , xI) ∈ RI×L
+ .

• Preferences: ⪰i on Xi, complete and transitive.

Definition (Feasibility). A consumption plan x = (xi)i∈I is feasible if

∑
i∈I

xi ∈ Z ⇐⇒ Z = {ω}+ Y.

Definition (Pareto efficiency). A feasible consumption plan x is Pareto-
efficient if there is no other feasible plan x̂ such that

x̂i ⪰i xi ∀i, and x̂j ≻j xj for some j.
There should be a better way to define
it.

No notion of interpersonal compar-
isons → very interesting to discuss.

How satisfied consumers are? → cen-
tral Q. of the course.
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Pure Exchange and the Edgeworth Box

Often we will focus on an exchange economy where Y = {0} (no
production). Suppose L = I = 2 (a 2 × 2 economy). Then every feasible
allocation lies in the Edgeworth box of width ω1 and height ω2.

Good 1

Good 2

ω1

ω2

(x11, x12)

(x21, x22) = (ω1 − x11, ω2 − x12) Edgeworth box (2 × 2 exchange).
Every feasible consumption plan
lies inside the box.

Every feasible consumption plan lies
in the box.

Planner’s Program and Tangency

Let the aggregate endowment be ω = (ω1, ω2), and utilities u1(x11, x12)

and u2(x21, x22). A standard Pareto program is

max
x11,x12

u1(x11, x12) s.t. u2(ω1 − x11, ω2 − x12) ≥ ū.

Its Lagrangian is

L = u1(x11, x12)− λ
(

ū − u2(ω1 − x11, ω2 − x12)
)

.

The first-order conditions (for interior solutions) are

∂L
∂x11

=
∂u1

∂x11
− λ

∂u2

∂x21
= 0,

∂L
∂x12

=
∂u1

∂x12
− λ

∂u2

∂x22
= 0,

which imply (again, for interior solutions and differentiability)

∂u1/∂x11

∂u1/∂x12
=

∂u2/∂x21

∂u2/∂x22
⇐⇒ MRS1 = MRS2.

x1

x2

Figure 2: Interior PE: indiffer-
ence curves tangent ⇒ MRS1 =

MRS2.

Remark. Can we have multiple solutions? Yes. Without strict convexity of
preferences (e.g., kinks or linear segments), the efficient set can include
a whole segment of allocations, so the planner’s problem at a given ū
need not have a unique maximizer.

Utility Possibility Set
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U1

U2

ū

U∗

Utility possibility set (shaded)
and frontier; maximizing U1 sub-
ject to U2 ≥ ū.





Class 3: Walrasian Equilibrium

The setup will be slightly more elaborated than in Pareto efficiency.
Primitives.

• Goods: ℓ = 1, . . . , L.

• Consumers: i = 1, . . . , I with consumption set Xi ⊆ RL
+ and prefer-

ences ⪰i (complete and transitive).

• Endowments: ωi ∈ RL
+, aggregate ω = ∑I

i=1 ωi. “Private ownership economy”. There
can be more.

• Firms: j = 1, . . . , J with production sets Yj ⊆ RL.

• Ownership shares: θ
j
i ∈ [0, 1] with ∑I

i=1 θ
j
i = 1 for each j.

• Aggregate production set: Y = ∑J
j=1 Yj (Minkowski sum).

Prices and allocations. A price vector is p ∈ RL. An allocation is
(x1, . . . , xI ; y1, . . . , yJ) with xi ∈ Xi and yj ∈ Yj. Consumer i’s budget
set at (p, y):

Bi(p, y) ≡
{

xi ∈ Xi

∣∣∣ p · xi ≤ p · ωi +
J

∑
j=1

θ
j
i p · yj

}
.

Definition (Walrasian equilibrium). A price vector p∗ and an allocation
(x∗, y∗) are a WE if

(i) Profit maximization: p∗ · y∗j ≥ p∗ · y for all y ∈ Yj and all j = 1, . . . , J.

(ii) Utility maximization: x∗i ∈ Bi(p∗, y∗) and x∗i ⪰i xi for all xi ∈
Bi(p∗, y∗), for each i.

(iii) Market clearing: ∑I
i=1 x∗i = ∑I

i=1 ωi + ∑J
j=1 y∗j .

Essence: find supply (i), find demand
(ii) and then equalize them (iii).

Remark (Price normalization). If (p∗, x∗, y∗) is a WE and λ > 0, then
(λp∗, x∗, y∗) is also a WE. If p∗ℓ > 0, we may normalize p∗ℓ = 1 w.l.o.g.

Proposition (Budget exhaustion & Walras’ law). If all ⪰i are locally
non-satiated and (ii) holds at p∗, then

p∗ ·
I

∑
i=1

x∗i = p∗ ·
I

∑
i=1

ωi + p∗ ·
J

∑
j=1

y∗j .
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Remark. Proof sketch: with LNS, each consumer spends the whole
budget: p∗ · x∗i = p∗ · ωi + ∑j θ

j
i p∗ · y∗j . Sum over i and use ∑i θ

j
i = 1.

Proposition (Redundancy of one market). If ⪰i are locally non-satiated,
(ii) holds, and

I

∑
i=1

x∗iℓ =
I

∑
i=1

ωiℓ +
J

∑
j=1

y∗jℓ for ℓ = 1, . . . , L − 1,

then for any good L with p∗L ̸= 0,

I

∑
i=1

x∗iL =
I

∑
i=1

ωiL +
J

∑
j=1

y∗jL.
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Appendix: Walrasian Equilibrium Cookiecutter

Seven rules that solve 90% of these problems

1. Pick the program & normalize. Pareto (planner) vs. WE (mar-
kets). Set a numeraire (e.g., p1 = 1).

2. Collapse dimension by feasibility. In 2 × 2, write x11 = ω1 −
x21 and x12 = ω2 − x22; reduce to 1 variable whenever one
constraint is linear (e.g., 2x21 + x22 = ū2).

3. Interior Pareto = tangency of MRS.

MU1,1

MU1,2
=

MU2,1

MU2,2
⇒ ratio-of-ratios (contract curve).

If utility has linear/quasi-linear parts, solve 1D, check u′
1 = 0; if

it falls outside the range, the solution is edge.

4. Identical Cobb–Douglas ⇒ proportional split. With ui =

xi1xi2: xiℓ = αi · (total of good ℓ). Then I chose separate produc-
tion (see 5).

5. Separate production: I chose y to maximize the aggregator
that everyone values. With Y : y2 =

√−y1 and ω = (ω1, 0):

max
0≤y1≤ω1

(ω1 − y1)
√

y1 ⇒ y⋆1 = ω1/3, y⋆2 =
√

ω1/3.

6. Minimum WE pipeline. (i) Signature: π(p) = maxy∈Y p · y
(with y2 =

√−y1: y⋆1 = (p/2)2, y⋆2 = p/2, π = p2/4). (ii)
Income: mi = p · ωi + ∑j θ

j
i πj. (iii) Demand CD with equal

exponents: each i spends half of mi on each good. (iv) Clear
only one market (Walras): the other closes on its own.

7. Two laws that save you steps. LNS ⇒ exhausted budgets. Walras’
Law ⇒ one equilibrium equation is redundant.

Remark (Quick pitfalls). (1) Include firm profits exactly once in income:
mi = p · ωi + ∑j θ

j
i πj(p); never add profits to the goods resource con-

straint. (2) Use only L − 1 market-clearing equations—Walras’ Law
makes the last one redundant after price normalization. (3) FOCs give
candidates only: enforce xiℓ ≥ 0 and any auxiliary constraints (e.g.,
u2 ≥ ū2); if violated, the solution lies on the boundary.
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Exercises

1. Consider an exchange economy that consists of two consumers
i = 1, 2. There are two consumption goods ℓ = 1, 2. The economy
has a total endowment of 5 units of good 1 and 5 units of good
2. Both consumers have consumption set R2

+. Consumer 1 has
preferences that can be represented by the utility function

u1(x1,1, x1,2) = x1,1 (x1,2)
2.

Consumer 2 has preferences that can be represented by the utility
function

u2(x2,1, x2,2) = (x2,1)
2 x2,2.

Which consumption plans are Pareto efficient?

2. Repeat Question 1 but now assume that

u1(x1,1, x1,2) = x1,1 +
√

x1,2 and u2(x2,1, x2,2) = 2x2,1 + x2,2.

3. Suppose an economy has initial endowment ω = (5, 0) and suppose
the economy’s production set is

Y = { (y1, y2) ∈ R2 | y1 ≤ 0 and y2 =
√
−y1 }.

There are two consumers. Both consumers have consumption set R2
+.

Consumer 1 has preferences that can be represented by the utility
function

u1(x1,1, x1,2) = x1,1 x1,2

and consumer 2’s preferences are represented by

u2(x2,1, x2,2) = x2,1 x2,2.

Which consumption plans are Pareto efficient in this economy?

4. For the economy in Question 3 find a Walrasian Equilibrium. Assume
that both consumers have initial endowment ωi = (2.5, 0), and that
there is one firm. This firm’s production set is given by the set Y in
Question 3. Assume that both consumers own shares 0.5 of the firm.

5. Consider an exchange economy that consists of 2 consumers i = 1, 2.
There are two consumption goods ℓ = 1, 2. The economy has a
total endowment of 5 units of good 1 and 8 units of good 2. Both
consumers have consumption set R2

+. Consumer 1 regards the two
goods as perfect substitutes. Her preferences are represented by the
utility function

u1(x1,1, x1,2) = x1,1 + x1,2.
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Consumer 2 regards the two goods as complements. His preferences
are represented by the utility function

u2(x2,1, x2,2) = min{x2,1, x2,2}.

Which consumption plans are Pareto efficient?

6. Consider an exchange economy that consists of n ≥ 2 consumers.
There are two consumption goods ℓ = 1, 2. The economy has a
total endowment of 10 units of good 1 and 20 units of good 2. All
consumers have consumption set R2

+. The consumers have identical
preferences represented by

ui(xi,1, xi,2) = xi,1 (xi,2)
2 for i = 1, 2, . . . , n.

Which consumption plans are Pareto efficient? Which consumption
plans maximize the sum of the consumers’ utility? (For the second
question, it may be helpful to start with the case n = 2.)

7. Consider an economy with two consumers. Both consumers have
consumption set R2

+. Consumer 1 has preferences represented by

u1(x1,1, x1,2) = x1,1 x1,2,

and consumer 2’s preferences are represented by

u2(x2,1, x2,2) = x2,1 x2,2.

Consumer 1 has initial endowment ω1 = (5, 0) whereas consumer 2

has initial endowment ω2 = (0, 0). Consumer 2 owns all of the firm.
There is one firm with production set

Y = {(y1, y2) ∈ R2 | y1 ≤ 0 and y2 ≤ 2
√
−y1}.

Find all Walrasian equilibria of this economy.

More complicated exercises

P1. Existence of Walrasian Equilibrium via Kakutani (pure exchange).
Let an exchange economy have I ≥ 2 consumers, L ≥ 2 goods,
aggregate endowment Ω ≫ 0, and for each i, a continuous, strictly
convex, locally non-satiated preference relation represented by a
utility ui : RL

+ → R. Define the aggregate excess demand z(p) =

∑I
i=1 xi(p, p · ωi)− Ω with prices p ∈ ∆ = {p ∈ RL

+ : ∑ℓ pℓ = 1}.

(a) Prove: (i) z is continuous on the simplex ∆, (ii) p · z(p) = 0
(Walras’ Law), (iii) z(·) is homogeneous of degree 0, (iv) boundary
behavior: if pℓ ↓ 0 then zℓ(p) → +∞ under local non-satiation
and Ω ≫ 0.
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(b) Construct the excess demand correspondence with price trunca-
tion Z(p) = argmax{q · z(p) : q ∈ ∆} and show the hypotheses
of Kakutani’s fixed-point theorem hold for an appropriate corre-
spondence, yielding p∗ ∈ ∆ with z(p∗) ≤ 0 componentwise.

(c) Conclude existence of a Walrasian equilibrium (p∗, x∗), giving a
precise selection argument from individual demands to allocations
and verifying feasibility and optimality.

P2. Negishi Program and Welfare Theorems (pure exchange). Fix
λ ∈ ∆◦

I = {λ ∈ RI
++ : ∑i λi = 1}. Consider the social planner:

max
{xi}I

i=1

I

∑
i=1

λiui(xi) s.t.
I

∑
i=1

xi = Ω, xi ∈ RL
+.

(a) Prove existence of a solution and derive the KKT conditions. Show
that at any interior solution {xλ

i } there exists pλ ≫ 0 supporting
{xλ

i } with MRSi(xλ
i ) = pλ for all i.

(b) Define the Negishi map T : λ 7→ (vector of transfers making
each xλ

i budget-feasible at pλ). Prove continuity of T and deduce
existence of λ∗ with zero net transfers. Conclude: any competitive
equilibrium allocation solves the planner’s problem for some λ∗,
and conversely.

P3. Core–Walras Equivalence under Replication. Consider the κ-replica
economy with κ ∈ N.

(a) Prove that the set of core allocations Cκ shrinks as κ grows (i.e.,
Cκ+1 ⊆ Cκ) under convex preferences and free disposal.

(b) Show that
⋂∞

κ=1 Cκ equals the set of Walrasian equilibrium alloca-
tions (Edgeworth’s conjecture) by constructing equal-treatment
allocations and using supporting price hyperplanes.

P4. Gross Substitutes and Uniqueness. Let aggregate excess demand
z : ∆ → RL satisfy Walras’ Law and GS: for any p, p′ with p′j > pj

and p′−j = p−j, we have zk(p′) ≥ zk(p) for all k ̸= j.

(a) Prove that any two Walrasian equilibria have comparable price
vectors (lattice property) and that the set of equilibrium prices is
a lattice interval.

(b) Deduce global uniqueness of the relative price vector if z(·) satis-
fies GS and the value of excess demand for at least one good is
strictly decreasing in its own price.

(c) Establish monotone comparative statics: if endowments of good j
increase, then equilibrium pj/p−j weakly decreases.
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P5. Multiplicity with Leontief: full characterization. Two goods, two
consumers with u1(x) = min{ax1, x2} and u2(x) = min{x1, bx2},
a, b > 0, aggregate endowment Ω ≫ 0.

(a) Characterize the set of Pareto efficient allocations analytically (no
diagrams): derive the piecewise-linear contract set by complemen-
tary slackness on the Leontief constraints.

(b) Prove that the set of equilibrium relative prices is a nondegenerate
interval if and only if a specific linear balance condition between
Ω and (a, b) holds. State and prove the necessary and sufficient
condition.

P6. Competitive Equilibrium with Convex Production and Profit Du-
ality. One firm with technology Y ⊂ RL closed, convex, containing
0, and free disposal. Profit function π(p) = supy∈Y p · y; supply
correspondence Y∗(p) = arg maxy∈Y p · y.

(a) Prove: π is convex and positively homogeneous, Y∗(p) = ∂π(p)
(subdifferential), and p · y = π(p) for all y ∈ Y∗(p).

(b) Show existence of a competitive equilibrium in the economy with
I consumers (as in P1) and this firm, invoking standard condi-
tions and a price truncation argument. Be explicit about the “no
unbounded profit at zero prices” condition and where it is used.

P7. Shapley–Folkman and Approximate Equilibria with Nonconvexi-
ties. Let individual feasible sets Fi ⊂ RL be compact (not necessarily
convex). Define F = ∑I

i=1 Fi.

(a) State and prove the Shapley–Folkman lemma.

(b) Use it to show that for large I every point in F is within O(1/I)
(in Hausdorff distance) of the Minkowski sum of convex hulls
∑i co(Fi).

(c) Deduce an ε-equilibrium existence result: with smooth utilities
and small nonconvexities, there exists a price-allocation pair that
is ε(I)-approximately competitive with ε(I) → 0 as I → ∞.

P8. Regular Economies and Local Comparative Statics. Assume a pure
exchange economy is regular: the Jacobian of market excess demand
with respect to prices (restricted to the price simplex) at equilibrium
has full rank.

(a) Prove that equilibrium prices are locally unique and vary smoothly
with endowments (Implicit Function Theorem), after quotienting
out the homogeneity.

(b) Derive a closed-form expression (up to normalization) for Dω p∗(ω)

in terms of the Slutsky matrices and income effects, and sign the
comparative statics when all agents are gross substitutes.
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P9. Assignment Model and Existence with Indivisibilities. There are
n agents, n indivisible objects, and quasilinear utilities ui(xi) =

vi(j)− pj if agent i consumes object j, ui(0) = 0 otherwise.

(a) Prove existence of a Walrasian equilibrium via the lattice-theoretic
approach (Kelso–Crawford) under gross substitutes valuations.

(b) Show that the set of equilibrium prices forms a lattice and the
buyer-optimal price vector exists.

P10. Production–Exchange with Non-differentiable Frontiers. Two goods
{1, 2}; one firm with Y = {(y1, y2) : y1 ≤ 0, y2 ≤ A

√−y1} ∪
{(0, 0)}; two consumers with strictly convex, C1 utilities and positive
endowments.

(a) Prove the firm’s supply correspondence is upper hemicontinuous
and nonempty, compact-valued for all p ≫ 0 despite the kink at
y1 = 0; compute it explicitly.

(b) Establish existence of competitive equilibrium and characterize
the comparative statics of p2/p1 with respect to the technology
parameter A.

P11. Price Support of Pareto Optima (Separation). Let x̄ = (x̄i)
I
i=1 be a

Pareto efficient allocation with x̄i ≫ 0 and strictly convex, monotone
preferences.

(a) Prove that there exists p ≫ 0 such that each x̄i solves max{ui(xi) :
p · xi ≤ p · x̄i}.

(b) Give a proof based only on convex separation (no welfare theo-
rems) by constructing a separating hyperplane between the feasi-
ble set and an appropriate upper contour set at x̄.

P12. Sonnenschein–Mantel–Debreu (structured exercise). Let Z : ∆ →
RL be continuous, homogeneous of degree 0, and satisfy Walras’
Law.

(a) Show that for any ε > 0 there exists a finite exchange economy
whose aggregate excess demand z is within ε (uniformly on ∆) of
Z.

(b) Deduce that equilibrium price sets of exchange economies can
approximate those of arbitrary Z (subject to the two restrictions),
and discuss the implications for uniqueness/stability theory.

P13. Taxation to Decentralize Planner Allocations (exact implementa-
tion). Consider a convex production economy with one firm Y and
consumers {ui, ωi}I

i=1. Let x̂ solve the Negishi planner for weights
λ ∈ ∆◦

I and let p̂ be a supporting price vector for x̂.
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(a) Construct linear taxes/subsidies τ ∈ RL on goods (or, equivalently,
on firm outputs) and lump-sum transfers T such that ( p̂ + τ, x̂) is
a competitive equilibrium.

(b) Prove exact implementation and identify the (non-)uniqueness of
(τ, T) under budget balance constraints.





Class 4: The First Welfare Theorem

We have I consumers and a list of consumption plans

x = (x1, . . . , xI) ∈ X1 × X2 × · · · × XI

and production plans

y = (y1, . . . , yJ) ∈ Y1 × Y2 × · · · × YJ .

An allocation is a pair (x, y). It is feasible if

I

∑
i=1

xi =
I

∑
i=1

ωi +
J

∑
j=1

yj (vector equality).

“Very general correspondences, sim-
pler than functions.”
Think more in dimensions L (goods)
and I (consumers).

Definition (Pareto efficiency). A feasible allocation (x, y) is Pareto-
efficient if there is no other feasible (x̂, ŷ) such that x̂i ⪰i xi for all i and
x̂k ≻k xk for at least one k.

Recall: Walrasian equilibrium from
Class 3.

First Welfare Theorem (FWT)

Theorem. If each ⪰i is locally non-satiated and (p∗, x∗, y∗) is a Walrasian
equilibrium, then (x∗, y∗) is Pareto-efficient.

Proof. Suppose, towards a contradiction, that there is a feasible (x̂, ŷ)
with x̂i ⪰i x∗i for all i and x̂k ≻k x∗k for some k.

Step 1 (consumer side). With local non-satiation and optimality of x∗i
in Bi(p∗, y∗), any bundle strictly preferred to x∗i cannot be affordable;
hence

x̂i ⪰i x∗i =⇒ p∗ · x̂i ≥ p∗ · x∗i for all i,

with a strict inequality for at least one consumer k. “Then it is inside your budget set” ⇒
would contradict optimality.Step 2 (firm side). Profit maximization implies

p∗ · ŷj ≤ p∗ · y∗j for all j.

Step 3 (aggregate). Summing Step 1 and using feasibility of (x̂, ŷ),

p∗ ·
I

∑
i=1

x̂i > p∗ ·
I

∑
i=1

x∗i = p∗ ·
I

∑
i=1

ωi + p∗ ·
J

∑
j=1

y∗j .
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But feasibility also gives ∑i x̂i = ∑i ωi + ∑j ŷj, hence

p∗ ·
J

∑
j=1

ŷj > p∗ ·
J

∑
j=1

y∗j ,

which contradicts Step 2 (profit maximization). Therefore (x∗, y∗) is
Pareto-efficient.

Remark. The key ingredients are: (i) local non-satiation ⇒ budget
exhaustion and “strictly better ⇒ strictly more expensive”; (ii) profit
maximization; (iii) feasibility. No welfare function is used.

What equalities hold at a WE (interior, differentiable case)?

In a 2 × 2 interior WE with differentiable preferences and technologies:

MRSi =
p1

p2
for all i and MRT =

p1

p2
.

Thus MRS1 = · · · = MRSI = MRT = p1
p2

. Assume interior solutions & differen-
tiability.

Remark (Firm-side condition). For a differentiable single-output tech-
nology f (·) with input k and numeraire input ℓ, profit maximization
yields the familiar FOC

∂ f
∂k

/∂ f
∂ℓ

=
pk
pℓ

,

which is the production-side analogue of MRSi = p1/p2 on the con-
sumer side.



Class 5: The Second Welfare Theorem

FWT only says: any Walrasian equilib-
rium (WE) allocation is Pareto efficient
(PE). It does not claim uniqueness.

FWT: WE ⊆ PE. It is silent about ex-
istence and uniqueness. PE is gen-
erally a whole contract curve (many
points). WE may be unique under ex-
tra assumptions (e.g., strict convexity
+ gross substitutes), but multiplicity is
common (e.g., Leontief example).

The First Welfare Theorem implies that if (p∗, x∗, y∗) is a Walrasian
equilibrium, then (x∗, y∗) is one PE allocation among (typically) many
on the feasible frontier.

Necessary equalities in the interior, differentiable case

Assume: (i) local non-satiation, (ii) interior choices, (iii) differentiable
preferences and technologies, and (iv) competitive factor and output
markets.

Proposition (Consumer-side tangency). If x∗i is interior and differentiable,
then

MRSi(x∗i ) =
p∗1
p∗2

for all consumers i.

Remark. Local non-satiation ⇒ budget exhaustion; interiority + dif-
ferentiability ⇒ FOCs are necessary, yielding MRSi = p1/p2. Without
interiority (corners) or at kinks, tangency is not necessary.

Proposition (Firm-side efficiency and common factor prices). Let each
firm j use inputs k, ℓ with differentiable technology. Under competitive input
prices (wk, wℓ) and interior cost-minimizing choices,

MRTSj
k,ℓ =

∂ f j/∂k
∂ f j/∂ℓ

=
wk
wℓ

for all firms j.

Hence MRTSj
k,ℓ = MRTSj′

k,ℓ for all j, j′.

Remark. If two firms had MRTS’s different at a common input bundle,
we could reallocate a small amount of k, ℓ across them and raise total
output with the same factor endowment ⇒ production inefficiency.
Competitive factor prices rule this out by equalizing MRTS across
firms.

Aggregate the firm side into a production possibilities frontier (PPF).
At the competitive production plan (y∗1 , y∗2) the slope of the PPF equals
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the output price ratio,

MRT(y∗) =
p∗1
p∗2

.

Corollary (Complete set of interior equalities). In a 2 × 2 interior WE
with differentiability,

MRS1 = · · · = MRSI = MRT =
p∗1
p∗2

and, at the firm level, MRTSj
k,ℓ =

wk
wℓ

for all j.
Picture: the highest attainable indiffer-
ence curve is tangent to the PPF. The
common tangent has slope −p1/p2.Remark (Why (x∗, y∗) need not be unique?). FWT selects some PE

point; the PE set is generally a whole frontier (contract curve / utility
possibility frontier). Different wealth distributions (endowments or
lump-sum transfers) support different PE points while keeping the
same technological PPF. Thus WE allocations are typically not unique.

x1

x2

x∗

p∗ · x = c

MRS = MRT =
p∗1
p∗2

Aggregate indifference (orange)
is tangent to the PPF (blue) and
to the supporting price line (red)
at x∗.

Remark (Why can there be multiple WEs even with fixed fundamen-
tals?). Without additional structure, market-clearing price vectors may
not be unique. Non–strict convexities (flat spots/kinks in indifference
curves or technologies) or symmetries can generate multiple equilibria
supported by different price ratios that all clear markets. Strict con-
vexity helps uniqueness of individual demands, but does not guarantee
uniqueness of the aggregate equilibrium.

Remark (“If moving to another equilibrium hurts someone, can we
compensate? Think taxes.”). To move from one PE point to another
without destroying efficiency, use lump-sum taxes/transfers (pure redis-
tribution): they shift wealth but do not change marginal rates, so the
equalities

MRS = MRT =
p1

p2
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remain intact. Distortionary taxes/subsidies on margins (e.g., ad val-
orem taxes on goods or inputs) generally break tangency by altering
effective price ratios. Preview (Second Welfare Theorem): under con-
vexity, any PE allocation can be decentralized as a WE after appropriate
lump-sum redistribution.

Remark (When are the tangency conditions truly necessary?). They
require: (i) interior choices, (ii) differentiability (no kinks), and (iii)
price-taking behavior. With corners or kinks, optimality may hold
with inequalities (supporting hyperplanes), not equalities; then MRS
and MRT equalities are not necessary, only the usual Kuhn–Tucker
conditions are.

Taxes and transfers

Definition (System of lump-sum transfers). A system of transfers is a
vector T = (T1, . . . , TI) with

I

∑
i=1

Ti = 0.

Each Ti is a lump-sum tax (Ti < 0) or transfer (Ti > 0).
Lump-sum = redistributive but non-
distortionary: it shifts wealth without
changing marginal rates or effective
prices.

Definition (WE with transfers). Given ownership shares {θij}i,j (with
∑i θij = 1 for each j), a triple (p∗, x∗, y∗) is a Walrasian equilibrium with
transfers T if:

1. Firms maximize profits: for each j, y∗j ∈ Yj solves y ∈ Yj 7→ p∗ · y.

2. Consumers maximize utility: for each i, x∗i ∈ Xi is ⪰i-maximal
subject to

p∗ · xi ≤ p∗ · ωi +
J

∑
j=1

θij p∗ · y∗j + Ti.

3. Feasibility (market clearing): ∑I
i=1 x∗i = ∑I

i=1 ωi + ∑J
j=1 y∗j .

Remark (FWT is robust to lump-sum redistribution). With local non-
satiation, the First Welfare Theorem applies verbatim to WE with trans-
fers: (x∗, y∗) is Pareto efficient. Intuition: transfers shift budgets but
leave all marginal conditions MRS = MRT = price ratio intact.

Contrast: commodity/input taxes
change effective prices and typically
break tangency, i.e., MRS ̸= MRT.

Second Welfare Theorem (SWT)

Theorem (SWT, decentralization by transfers). If (x∗, y∗) is a Pareto-
efficient allocation and the following assumptions hold, then there exist a price
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vector p∗ ≫ 0 and a transfer system T (with ∑i Ti = 0) such that (p∗, x∗, y∗)
is a Walrasian equilibrium with transfers T.

Remark. The set of assumptions is:

1. Convex consumption sets: Xi ⊆ RL
+ is convex for all i.

2. Convex preferences: for all i, if x′i ⪰i xi and x̂i ⪰i xi, then λx′i + (1−
λ)x̂i ⪰i xi for all λ ∈ [0, 1].

3. Convex production sets: Yj is convex for all j.

4. Regularity: preferences are continuous and locally non-satiated.
Economic meaning: any PE point on
the frontier can be implemented com-
petitively after a pure wealth redistri-
bution.

Remark (Sketch of the proof idea). PE means there is no feasible im-
provement relative to (x∗, y∗). Under convexity, a supporting hyper-
plane (separating hyperplane theorem) exists at the feasible set “seen
through” agents’ upper contour sets. Its normal is a price vector p∗.
Lump-sum transfers then adjust individual budgets so that each x∗i
is affordable at p∗. Competitive profit maximization and feasibility
complete the decentralization.

Remark (What if convexity fails? (answering the orange note)). Without
convexity (in preferences or technologies), the supporting-hyperplane
argument can break:

• Some PE allocations cannot be decentralized by any common linear
prices ⇒ SWT may fail.

• Existence/uniqueness of WE can also be jeopardized (e.g., increasing
returns, “holes” in indifference maps).

So we do not “rule out” all WEs, but we do lose the general PE ⇒ WE
(with transfers) implication.

Remark (Policy intuition). Lump-sum T shifts wealth across consumers
to target the desired PE. Because T does not alter marginal prices, we
preserve MRS = MRT = p1

p2
at the implemented allocation. Distor-

tionary taxes would generally move the allocation off the frontier.

Separating hyperplane proof of the Second Welfare Theorem

Definition (Aggregate feasibility set). Let

R ≡
{

r ∈ RL
+

∣∣∣ r =
I

∑
i=1

ωi +
J

∑
j=1

yj, yj ∈ Yj ∀j
}

.

That is, R collects all aggregate quantity vectors attainable from endow-
ments and production. If each Yj is convex, then R is convex.
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Definition (“Better-than-x∗” aggregate set). Given the target PE alloca-
tion (x∗, y∗), define

V ≡
{

v ∈ RL
+

∣∣∣ v =
I

∑
i=1

xi, xi ∈ Xi, xi ⪰i x∗i ∀i, xk ≻k x∗k for some k
}

.

If each Xi is convex and ⪰i is convex, then V is convex.

Lemma (Disjoint convex sets at PE). If (x∗, y∗) is Pareto efficient, then
R ∩ V = ∅. Moreover, R and V are nonempty, closed, and convex under the
standard assumptions (convex Xi, convex Yj, continuous LNS preferences).

PE means: no feasible allocation makes
everyone weakly better and someone
strictly better. Hence R (feasible sums)
and V (“better-than-x∗”) do not inter-
sect.

Theorem (Supporting/separating hyperplane). Because R and V are
nonempty, convex, and disjoint, there exist p∗ ∈ RL, p∗ ̸= 0, and c ∈ R such
that

p∗ · r ≤ c ∀r ∈ R, and p∗ · v ≥ c ∀v ∈ V.

We may normalize p∗ ≫ 0 under LNS.

Remark (Economic interpretation). The hyperplane p∗ · x = c is a sup-
porting price system: it price-supports the PE frontier at ∑i x∗i . Points
feasible to the economy lie (weakly) below, and points that (weakly)
improve everyone lie (weakly) above; hence the frontier at x∗ is a
tangency.

Proposition (Constructing lump-sum transfers to decentralize (x∗, y∗)).
Let ownership shares {θij} satisfy ∑i θij = 1 for each j. Define

Ti ≡ p∗ · x∗i − p∗ · ωi −
J

∑
j=1

θij p∗ · y∗j (i = 1, . . . , I).

Then ∑i Ti = 0, and (p∗, x∗, y∗) is a Walrasian equilibrium with transfers T.

Verification. (i) Firms. Since p∗ supports R at r∗ = ∑i ωi + ∑j y∗j , each
y∗j is profit-maximizing at prices p∗ (otherwise we could move inside R
and strictly raise p∗ · r, contradicting support).

(ii) Consumers. By construction,

p∗ · x∗i = p∗ · ωi + ∑
j

θij p∗ · y∗j + Ti,

so x∗i lies on i’s budget line. If some affordable x′i satisfied x′i ≻i x∗i
for all i (and at least one strict), then ∑i x′i ∈ V and, using feasibility
of ∑j y∗j , we would have ∑i x′i ∈ R, contradicting R ∩ V = ∅ and
separation. Hence each x∗i is utility-maximizing.

(iii) Market clearing. By feasibility of (x∗, y∗), ∑i x∗i = ∑i ωi + ∑j y∗j .
Summing the budget equalities yields ∑i Ti = 0.
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Implementation recipe: (1) support the
PE frontier with p∗; (2) set Ti so x∗i is
exactly affordable; (3) profit and utility
maximization + feasibility give a WE
with transfers.

Remark (Why convexity matters). Without convexity, R or V may be
nonconvex ⇒ no separating hyperplane. Then some PE points cannot
be decentralized by linear prices (SWT can fail).

x1

x2

x∗

p∗ · x = c

R
p∗ · x ≤ c

V
p∗ · x ≥ c

Aggregate indifference (orange)
is tangent to the PPF (blue) and
to the supporting price line (red)
at x∗.
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Exercises

• Consider an exchange economy where consumer 1’s preferences
are described by the utility function u1(x11, x12) = (x11)

2 + (x12)
2

and consumer 2’s preferences are described by the utility function
u2(x21, x22) = x21 (not a typo). The initial endowments are ωi =

(5, 5) for i = 1, 2. Find the set of all Pareto efficient allocations and
the set of all Walrasian equilibria for this economy.

• Consider an economy that satisfies all the assumptions of the First
Welfare Theorem, but in which the government has decided to tax
all profits at a rate of 10%. The tax revenue is distributed equally
among all consumers. Does the proof of the First Welfare Theorem
still go through?

• Consider an economy that satisfies all the assumptions of the First
Welfare Theorem, but in which the government has decided to tax
all profits that exceed a certain level π̄ at 100%, leaving profits that
are below π̄ untaxed. The tax revenue is distributed equally among
all consumers. Does the proof of the First Welfare Theorem still go
through?

• Find all Pareto-efficient allocations in the following exchange econ-
omy. There are 2 consumers i = 1, 2. Both consumers have consump-
tion set Xi = R2

+. For consumer 1 goods 1 and 2 are perfect sub-
stitutes: u1(x11, x12) = x11 + x12. Consumer 2 has a Cobb–Douglas
utility function: u2(x21, x22) = x21 · x22. Consumer 1’s initial endow-
ment is (2, 1), and consumer 2’s initial endowment is (4, 5). For
every Pareto-efficient allocation find a price vector and a vector of
lump-sum transfers such that this allocation becomes a Walrasian
equilibrium.

• Consider an economy with two consumers whose consumption
sets are Xi = R3

+. The first good is leisure, and the second and
third goods are consumption goods. Each consumer has an initial
endowment of 5 units of leisure, but they have zero endowment of
the consumption goods. Consumers don’t value leisure. Consumer
1’s preferences are represented by

u1(x11, x12, x13) = (x12)
0.3(x13)

0.7.

Consumer 2’s preferences are represented by

u2(x21, x22, x23) = (x22)
0.5(x23)

0.5.

There are two firms. If firm 1 uses y11 units of leisure, it can produce
at most

√
|y11| units of good 2. Thus, its production set is

Y1 = {(y11, y12, y13) | y11 ≤ 0, 0 ≤ y12 ≤
√
|y11|, y13 = 0}.
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If firm 2 uses y21 units of leisure, it can produce at most 2
√
|y21|

units of good 3. Thus, its production set is

Y2 = {(y21, y22, y23) | y21 ≤ 0, y22 = 0, 0 ≤ y23 ≤ 2
√
|y21|}.

Both consumers own one half of each firm.

(a) Find all Walrasian equilibria of this economy.

(b) Confirm that the Walrasian equilibria satisfy the following nec-
essary conditions for Pareto efficiency: (1) the two consumers’
marginal rates of substitution between goods 2 and 3 are equal;
and (2) the firms equalize the marginal rate of transformation of
labor for the two final goods with the consumers’ marginal rate
of substitution between goods 2 and 3.

(c) Explain intuitively why the two conditions in part (b) are neces-
sary for Pareto efficiency.

• In the example of the previous question, suppose that firm 1 had
constant returns to scale:

Y1 = {(y11, y12, y13) | y11 ≤ 0, 0 ≤ y12 ≤ |y11|, y13 = 0}.

Everything else remains unchanged. Find all Walrasian equilibria.

• Find all Pareto-efficient allocations in the following exchange econ-
omy. There are 2 consumers i = 1, 2. Both consumers have consump-
tion set Xi = R2

+. For consumer 1, two units of good 1 and one unit
of good 2 are perfect complements: u1(x11, x12) = min{x11, 2x12}
(make sure you understand why the utility formula has the mean-
ing that I claimed it has). Consumer 2 has a Cobb–Douglas utility
function: u2(x21, x22) = x21 · x22. Consumer 1’s initial endowment
is (2, 1), and consumer 2’s initial endowment is (6, 3). For every
Pareto-efficient allocation find a price vector and a vector of lump-
sum transfers that add up to zero such that this allocation becomes
a Walrasian equilibrium.



Class 6: Proof of the Second Welfare Theorem

Goal today: finish the
proof of the Second Welfare Theorem
(SWT) and then open the door to rank-
ing PE allocations via Social Choice —
ending with Arrow’s impossibility and
a note on the Borda count.

From PE to WE via transfers

Suppose (x∗, y∗) is a Pareto efficient allocation. We want to decentralize
it as a Walrasian equilibrium with transfers. The strategy:

1. Find a supporting price vector p∗. (Separating/supporting hyper-
plane for the feasible set at ∑i x∗i .)

2. With p∗ in hand, define lump-sum transfers that make each x∗i exactly
affordable.

Definition (Transfers that implement (x∗, y∗)). For ownership shares
{θij}i,j with ∑i θij = 1 for each firm j, set for each consumer i:

Ti = p∗ · x∗i − p∗ · ωi −
J

∑
j=1

θij p∗ · y∗j .

Lemma (Budget balance). With the Ti above, ∑I
i=1 Ti = 0.

Proof. Using ∑i θij = 1 and feasibility ∑i x∗i = ∑i ωi + ∑j y∗j ,

∑
i

Ti = p∗ · ∑
i

x∗i − p∗ · ∑
i

ωi − ∑
j

p∗ · y∗j = 0.

Proposition (WE with transfers). At prices p∗ and transfers T = (Ti)i

above, (p∗, x∗, y∗) is a Walrasian equilibrium with transfers.

Sketch. (i) Each y∗j is profit-maximizing at p∗ (supporting hyperplane at
the aggregate feasibility point). (ii) By construction x∗i lies on i’s budget
line: p∗ · x∗i = p∗ · ωi + ∑j θij p∗ · y∗j + Ti. If there were an affordable
strict improvement for everyone, it would contradict separation. (iii)
Feasibility holds by construction.

Geometry: the two convex sets

R: Aggregate feasible consumption vectors: R = {∑i ωi + ∑j yj : yj ∈
Yj } (production + endowment).
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V: Aggregates that make everyone weakly better than x∗ and someone
strictly better.

Both sets are convex under the standing convexity assumptions (and
Minkowski sums preserve convexity). At PE, R ∩ V = ∅, and x∗ lies
on the boundary supported by the price hyperplane p∗ · x = c.

Why convexity matters

Convexity of preferences/technologies ensures R and V are convex and
disjoint, so a supporting (separating) hyperplane exists through ∑i x∗i
with normal p∗ ≫ 0. This is the price system that decentralizes (x∗, y∗)
once we add lump-sum T.

Can we rank Pareto-efficient allocations? Social Choice
Motivation: PE typically gives a set
(frontier/contract curve). To select
among PE points we need an ordering
over alternatives built from individual
preferences.

Profiles and aggregation

Let the set of social alternatives be A = {a, b, c, . . . }. There are N
agents. Agent i has a complete and transitive preference Ri over A. A
profile is R = (R1, . . . , RN). A social welfare functional (a.k.a. preference
aggregation rule) is a map

f : RN → R,

which assigns to each profile a complete and transitive social ordering
R = f (R1, . . . , RN). We want R to represent unanimous comparisons: if
a Ri b for all i, then a R b.

Arrow’s axioms
Extra: There is quite a good video of
this from Veritasium herePareto Efficiency If x Ri y for all i, then x R y.

No Dictatorship There is no individual i such that for all profiles R
and all x, y ∈ A, if x Ri y then x R y.

Independence of Irrelevant Alternatives (IIA) For any x, y ∈ A, the so-
cial ranking of x vs. y depends only on the agents’ rankings of x vs.
y (not on preferences over other options).

Theorem (Arrow’s Impossibility Theorem). If |A| ≥ 3, there is no ag-
gregation rule f that satisfies Pareto Efficiency, No Dictatorship, and IIA
simultaneously.

Remark (Borda count). Named example rule to keep in mind for later:
the Borda count. (We won’t analyze it here.)
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IIA restated

Let x, y ∈ A. Consider two profiles R = (R1, . . . , RN) and R̂ =

(R̂1, . . . , R̂N) that agree on the pair (x, y) for every agent:

x Ri y ⇐⇒ x R̂i y (i = 1, . . . , N).

Then IIA requires that the social ranking of x vs. y is identical under R IIA says: only the agents’ pairwise
rankings of (x, y) may matter for the
social ranking of (x, y).

and under R̂:

x f (R) y and x f (R̂) y or y f (R) x and y f (R̂) x.

Intuition: if nobody changes how they compare x and y, society cannot
change how it compares x and y, regardless of movements over other
options.

Majority voting and the Condorcet cycle

Definition (Simple majority relation). For a profile R, define a M(R) b
iff |{ i : a Pi b }| ≥ N/2.

Example (Condorcet cycle). With three agents and three alternatives
A = {a, b, c}, let

i=1 i=2 i=3
1st a b c
2nd b c a
3rd c a b

Then a majority prefers a to b, a majority prefers b to c, and a majority
prefers c to a. Hence M(R) is intransitive (a Condorcet cycle).

Remark. Majority rule can violate transitivity, so it need not produce a
complete and transitive social ordering. This dovetails with Arrow’s
theorem: with |A| ≥ 3, Pareto + IIA + No Dictator cannot all hold for
any aggregation rule.

Takeaway (addendum):

• IIA: two profiles that agree on each agent’s comparison of (x, y) must
induce the same social ranking of (x, y).

• Pairwise majority can cycle: a ≻ b, b ≻ c, c ≻ a by majority.





Class 7: Arrow, Generalized Majority Rules, and Escaping
Impossibility

Roadmap. (i) Restate Arrow’s theo-
rem (axioms and statement). (ii) For-
malize generalized majority voting via
winning coalitions and show when it
degenerates into dictatorship or cycles.
(iii) Explain how strengthening the do-
main (VNM or quasi–linear) enables
cardinal aggregation (Harsanyi; sur-
plus maximization).

Setup: profiles and social aggregation

Let A be a finite, nonempty set of social alternatives, |A| ≥ 3 unless
noted. There are N = {1, . . . , n} agents. A profile is R = (R1, . . . , Rn),
where each Ri is a complete and transitive preference on A; write Pi

and Ii for strict and indifference parts. A social welfare functional (SWF)
is a map

f : Rn → R, R 7→ RS = f (R),

which associates to each profile a complete and transitive social ordering
RS on A.

Arrow’s axioms and impossibility

Unrestricted Domain (UD). R is the set of all complete and transitive
relations on A; any profile R ∈ Rn is admissible.

Weak Pareto (WP). If x Ri y for all i, then x RS y.

Independence of Irrelevant Alternatives (IIA). For any x, y ∈ A, if two
profiles R, R̂ satisfy x Ri y ⇐⇒ x R̂i y for every i, then x RS y ⇐⇒
x R̂S y.

No Dictatorship (ND). There is no i such that x Ri y ⇒ x RS y for all
x, y and all profiles.

Theorem (Arrow’s Impossibility). If |A| ≥ 3 and UD, WP, IIA, ND hold,
then there is no SWF f satisfying all four axioms simultaneously.

Intuition. UD + IIA let pairwise social
comparisons depend only on pairwise
individual data, uniformly across pro-
files. WP forces responsiveness. To-
gether they generate “decisive coali-
tions” whose structure, under finite-
ness, collapses to a dictator.
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Generalized majority voting (GMV)

Definition via winning coalitions

A winning coalition system is a nonempty family B ⊆ 2N . Given B,
define the GMV social weak preference MB(R) by

x MB(R) y ⇐⇒ { i ∈ N : x Ri y } ∈ B.

Interpretation: x is socially at least as good as y if the set of individuals
who (weakly) prefer x to y is “winning.” Let kmin := min{ |S| : S ∈ B }
(minimal winning size).

Regularity conditions on B

For MB(R) to be a sensible social ordering across all profiles, the
following structural conditions are natural:

1. Monotonicity (upward-closed). If S ∈ B and S ⊆ T ⊆ N, then T ∈ B.

2. Properness. For every S ⊆ N, exactly one of S or N\S belongs to B.

3. Finite intersection property. If S, T ∈ B, then S ∩ T ∈ B.

A family B satisfying (i)–(iii) is an ultrafilter on N.

Proposition (GMV and transitivity). If B fails (iii), then there exist profiles
for which MB(R) is intransitive. If B is an ultrafilter, then for every profile R
the relation MB(R) is complete and transitive.

Proposition (Ultrafilters on finite electorates). If N is finite and B is
an ultrafilter, then B is principal: there exists i∗ ∈ N with {i∗} ∈ B.
Consequently MB is dictatorial with dictator i∗.

Corollary (Minimal winning size and pathologies). Let

kmin := min{ |S| : S ∈ B }

• If kmin = 1, the rule is dictatorial.

• If kmin ≤ 2 and the rule is not dictatorial, there exists a profile with a
Condorcet cycle a ≻ b ≻ c ≻ a under MB .

Takeaway. Requiring a pairwise rule
to be transitive for all profiles forces B
to be an ultrafilter; on finite N this is
a dictatorship. Majority rule (simple
n
2 -threshold) is not an ultrafilter, hence
can cycle.

Beyond Arrow: strengthening the domain

Cardinal utilities (VNM) and Harsanyi

Let ∆(A) denote lotteries over A. Suppose each i has VNM preferences
on ∆(A) with utility ui. Normalize interpersonally by

min
a∈A

ui(a) = 0, max
a∈A

ui(a) = 1.
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A classical aggregation result (Harsanyi) shows that, under Pareto-type
and symmetry/continuity axioms on social preferences over lotteries,
there exist weights (λi)i with λi > 0 such that the social ranking is
represented by

a 7→
n

∑
i=1

λi ui(a).

Comment. This abandons UD and IIA: it uses a restricted, cardinal domain
(VNM) and interpersonal comparability via normalization.

Quasi–linear preferences and willingness to pay

Axioms and representation

Each agent consumes (x, m) ∈ Xi × R, where x denotes non-numeraire
goods and m is money (numeraire; can be negative). Assume:

1. Monotonicity in money: (x, m) ⪰i (x, m′) ⇐⇒ m ≥ m′.

2. Translation invariance in money: (x, m) ⪰i (x′, m′) ⇐⇒ (x, m +

t) ⪰i (x′, m′ + t) for all t ∈ R (“WTP does not depend on wealth
level”).

3. Richness: For all x, x′ there exist m, m′ with (x, m) ∼i (x′, m′)

(“anything can be reached with money”).

Proposition (Quasi–linear representation). Under (a)–(c) there exists a
function ui : Xi → R such that preferences admit the representation

(x, m) 7→ ui(x) + m.

The function ui(x) is defined up to an additive constant; money provides the
cardinal numeraire.

Definition (Money–metric utility). Fix a reference bundle of money
m̄ = 0. The money–metric welfare of x for agent i is

Mi(x) := sup{m : (x, m) ⪰i (x′, 0) for some fixed reference x′ }.

Under quasi–linearity and the normalization above, Mi(x) = ui(x) up
to a common additive constant.

Efficiency with transferable money

Let the economy be feasible in (x, m) with ∑i mi fixed by aggregate
resources. Because money is perfectly redistributable, the utility possi-
bility set is a translate of the u–possibility set.
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Theorem (Surplus maximization ⇔ Pareto efficiency). An allocation
(x∗, m∗) is Pareto efficient if and only if x∗ maximizes

n

∑
i=1

Mi(xi) over all feasible x,

and m∗ is any vector of transfers that clears the money resource. Equivalently,
with the normalization Mi ≡ ui, efficiency is equivalent to maximizing
∑i ui(xi) subject to feasibility.

Sketch. If x∗ maximizes ∑i Mi(xi), any feasible x has ∑i Mi(xi) ≤
∑i Mi(x∗i ); because money is numeraire, we can redistribute {mi} to
keep everyone at least as well off as under x∗ only if the sum does
not increase—hence x∗ is PE. Conversely, if x∗ were not maximizing
the sum, some feasible x would give a strictly higher ∑i Mi(xi); then,
by distributing the strictly positive surplus in money, everyone can be
made weakly better off and at least one strictly better off, contradicting
PE.

Graphically: with quasi–linear util-
ity, the utility–possibility frontier has
slope −1 in (u1, u2) space because one
more unit of u1 can be financed by
one less unit of u2 via money trans-
fers. PE picks the point that maximizes
u1+ · · ·+un subject to feasibility.

Key takeaways

• Arrow. UD + IIA + WP force the structure of pairwise aggregation
into winning–coalition systems; transitivity for all profiles ⇒ ultra-
filter ⇒ dictatorship on finite electorates.

• Cycles vs. dictatorship. If kmin ≤ 2 and the rule is non-dictatorial,
there exist profiles with a Condorcet cycle; if kmin = 1, the rule is
dictatorial.

• Escaping impossibility. Restricting the domain to VNM (lotteries)
and adopting interpersonal comparability yields utilitarian aggrega-
tion (Harsanyi).

• Quasi–linear world. Money is a perfect numeraire; efficiency is
equivalent to maximizing the sum of (money–metric) utilities and
then redistributing money via transfers.
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Exercises

• Consider two Edgeworth box exchange economies (each with two
goods and two consumers), and assume that initially they are two
entirely separate economies where trade takes place only within
each economy, but not between economies. Then, in a second step,
assume that the economies are integrated, so that they are now one
exchange economy with four consumers. Assume that good 1 in
exchange economy 1 is identical to good 1 in exchange economy
2, and that good 2 in exchange economy 1 is identical to good 2

in exchange economy 2, so that the integrated economy has just
two markets. Assume that all markets of all exchange economies
considered in this question are perfectly competitive.

(a) Construct an example in which all four consumers are better off
after the integration of the two economies than they were before.

(b) Construct an example in which at least one consumer is worse off
after the integration of the two economies than she was before.

(c) Use the second welfare theorem to argue that, when lump sum
transfers and taxes can be used, it is always possible to make all
consumers better off (or at least not worse off) after the economies
are integrated than they were before the economies were inte-
grated.

• Suppose a society has to rank four alternatives: A = {a, b, c, d}.
There are 3 individuals. Each individual has a complete and tran-
sitive preference over these alternatives. Society’s welfare ordering
is equal to the preference of individuals 1 and 2 as long as indi-
viduals 1 and 2 have the same preference. Otherwise, society’s
welfare ordering is equal to the preference of individual 3. Which
of the following axioms does this system satisfy and which does it
violate: completeness and transitivity of society’s ordering, Pareto
axiom, independence of irrelevant alternatives, non dictatorship? If
your answer is that a property is violated, prove this by giving a
counterexample.

• Consider a society that consists of three agents: i = 1, 2, 3. Society
has to choose one policy from the set {a, b, c} and society also has
$50 which can be divided in arbitrary ways among agents. Thus,
an alternative is a 4–tuple such as: (a, 10, 20, 20) which means that
the policy a is implemented, agent 1 receives $10 and agents 2 and 3

receive $20. In general, the set of alternatives is

{(x, m1, m2, m3) | x ∈ {a, b, c}, m1, m2, m3 ∈ N0, m1 +m2 +m3 = 50}.
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Notice that we have restricted the monetary payments to the non–negative
integers, and that we have assumed in this formulation that all $50

have to be given away.

Agents have ordinal preferences over alternatives. Let the set of
preferences that agent i may possibly have be denoted by Ri. This set
consists of the set of all ordinal preferences that can be represented
by a quasi–linear utility function of the form:

ui(x, m1, m2, m3) = vi(x) + mi

where vi can be a function with domain {a, b, c} and co–domain
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Note that for each ordinal preference Ri

there is exactly one numerical representation of the form described in
the above equation. There cannot be multiple such representations.

Suppose we construct society’s welfare ordering by ordering alterna-
tives in accordance with the sum of utilities:

∑
i∈{1,2,3}

ui(x, m1, m2, m3).

Which of Arrow’s axioms, if any, does this method of aggregating
preferences satisfy and which, if any, does it violate on this restricted
domain?

• Consider an exchange economy with two agents and two goods.
Each agent’s consumption set is R2

+. The economy has a total initial
endowment of 50 units of each of the two goods. Each agent i’s
preferences are represented by the utility function

ui(xi1, xi2) =
√

xi1 + xi2.

Describe the set of all feasible allocations that are Pareto efficient,
and do not maximize the sum of utilities ∑2

i=1 ui(xi1, xi2).



Class 8: Restricted Domains, Quasi–Linear Economies,
and Partial–Equilibrium Foundations

Roadmap. (i) How restricting the do-
main weakens Arrow (single–peaked,
VNM). (ii) Quasi–linear representation
and money–metric utility. (iii) Plan-
ner vs. competitive equilibrium in
a quasi–linear exchange–production
economy. (iv) Partial–equilibrium de-
mand/supply as welfare maximiza-
tion.

Restricted domains and why Arrow no longer bites

We recall Arrow’s impossibility (UD, WP, IIA, ND) and ask which
restrictions on the domain of admissible individual preferences open
doors.

Single–peaked preferences on a line

Let (A, ◁) be a linearly ordered set of alternatives. Preference Ri is
single–peaked (w.r.t. ◁) if there exists a peak pi ∈ A such that moving
away from pi in either direction (in ◁) never improves the ranking.

Proposition (Majority transitivity on a single–peaked domain). If all
Ri are single–peaked w.r.t. the same ◁, then the simple majority relation is
transitive and admits a Condorcet winner (the median peak).

Remark. This does not contradict Arrow: UD is replaced by a restricted
domain; moreover, majority rule on this domain generally fails IIA. The
lesson is: structure the domain to avoid cycles.

Lotteries and VNM utilities (Harsanyi’s route)

Let ∆(A) denote lotteries over A. If each agent satisfies VNM axioms,
preferences are represented by cardinal utilities ui that are affine in
probabilities. With an interpersonal normalization (e.g., mina ui(a) = 0,
maxa ui(a) = 1), social preferences over lotteries can be represented by
a weighted utilitarian aggregator ∑i λiui. This again escapes Arrow by
restricting the domain and abandoning IIA.
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Quasi–linear preferences and money–metric utility

Axioms and representation

Each agent consumes (x, m) ∈ Xi × R, where m is numeraire money.
Assume:

1. Monotonicity in money: (x, m) ⪰i (x, m′) ⇐⇒ m ≥ m′.

2. Translation invariance in money: (x, m) ⪰i (x′, m′) ⇐⇒ (x, m +

t) ⪰i (x′, m′ + t) for all t ∈ R.

3. Richness: For all x, x′ there exist m, m′ with (x, m) ∼i (x′, m′).

Then there exists ui : Xi → R such that preferences admit the quasi–linear
representation

(x, m) 7→ ui(x) + m, unique up to an additive constant.

Definition (Money–metric utility). Fix a reference money level m̄ =

0. The money–metric welfare of x for agent i is Mi(x) := sup{m :
(x, m) ⪰i (x′, 0)} for some fixed reference x′. Under quasi–linearity
and the above normalization, Mi(x) = ui(x) up to a common additive
constant.

A quasi–linear exchange–production economy

Environment

Two goods: ℓ = 1 is money (price normalized to 1), ℓ = 2 is a consump-
tion good with price p. Consumers i = 1, . . . , I have utilities

Ui(mi, xi) = mi + ϕi(xi), ϕ′
i > 0, ϕ′′

i < 0, xi ≥ 0.

Firms j = 1, . . . , J produce the consumption good with convex costs
Cj(qj): technology yj = (−zj, qj) with zj ≥ Cj(qj) and qj ≥ 0.

Feasibility. Let consumers hold initial money endowments ωi and no
units of the consumption good. Then

I

∑
i=1

xi ≤
J

∑
j=1

qj,
I

∑
i=1

mi +
J

∑
j=1

zj =
I

∑
i=1

ωi, zj ≥ Cj(qj).

Eliminating money via zj ≥ Cj(qj), feasibility is equivalent to

I

∑
i=1

mi ≤
I

∑
i=1

ωi −
J

∑
j=1

Cj(qj), ∑
i

xi ≤ ∑
j

qj.
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Planner’s problem and characterization of efficiency

Consider the planner program (money is freely redistributable):

max
{xi≥0},{qj≥0}

I

∑
i=1

ϕi(xi)−
J

∑
j=1

Cj(qj) s.t. ∑
i

xi ≤ ∑
j

qj. (1)

Theorem (PE ⇔ surplus maximization). An allocation (x∗, m∗; q∗, z∗) is
Pareto efficient if and only if (x∗, q∗) solves (1). Transfers m∗ then implement
any point on the money dimension consistent with feasibility.

Sketch. Quasi–linearity implies that money is a perfect numeraire;
hence only {xi}, {qj} matter for Pareto rankings. If (x∗, q∗) solves
(1) and one could find a feasible (x, q) with a higher objective, dis-
tributing the surplus in money would make everyone weakly better
off and someone strictly better off: contradiction. The converse is
analogous.

Competitive equilibrium and partial–equilibrium FOCs

Given prices (1, p) and individual incomes Bi (from endowments/
profits/transfers), each consumer solves

max
xi≥0

ϕi(xi)− pxi (plus a constant Bi),

so the KKT conditions are ϕ′
i(xi) ≤ p with equality when xi > 0. Each

firm solves maxqj≥0 pqj − Cj(qj), yielding C′
j(qj) ≥ p with equality if

qj > 0. Market clearing requires ∑i xi = ∑j qj.

Proposition (Welfare theorems in the quasi–linear model). Any competi-
tive equilibrium (p∗, x∗, q∗) solves the planner problem (1), and conversely
any solution to (1) can be decentralized with transfers as a competitive equilib-
rium at price p∗.

Geometric reading (partial equilibrium). Ordering individual marginal
WTPs ϕ′

i from highest to lowest yields an aggregate inverse demand PD(Q).
With aggregate marginal cost MC(Q) (from the convex envelope of
{C′

j}), the planner objective equals

∫ Q

0
PD(q) dq −

∫ Q

0
MC(q) dq,

whose maximizer satisfies PD(Q) = MC(Q). Thus, the usual sup-
ply–demand cross is literally a welfare program under quasi–linearity.



48 microeconomics 603 university of michigan

0 Q∗
0

p∗

a

c

CS

PS

PD (Q) = a − bQ
MC(

Q)
=

c+
dQ+

eQ
2

Q

p



Class 9: Existence of at least one Walrasian Equilibrium

A numerical non-existence example

Environment. Two goods ℓ = 1, 2 and two consumers i = 1, 2. Con-
sumption sets Xi = R2

+. Endowments:

ω1 = (3, 2), ω2 = (2, 3).

Normalize p1 = 1 and write the price vector as p = (1, p2) ∈ R2
++.

Preferences.

• Consumer 1 has strictly monotone, convex preferences that induce
corner choices except at the tie p2 = 1. Concretely, her indirect choice
behaves like a strict-selection version of perfect substitutes: if one
good is strictly cheaper, she spends the entire budget on that good;
at p2 = 1 she selects an endpoint of the budget segment (details
below). This selection rule will be pivotal.

• Consumer 2 has Cobb–Douglas utility u2(x21, x22) = x21 x22.

Individual demands. Let mi(p) = p · ωi denote income.

Consumer 1 Her spending rule is:

x12(p) =


0, if p2 > 1,

{0, 5}, if p2 = 1,
m1(p)

p2
=

3 + 2p2

p2
, if p2 < 1,

m1(p) = 3 + 2p2.

Intuition. When p2 < 1 good 2 is strictly cheaper, so she spends all
income on good 2; when p2 > 1 she buys only good 1; at the knife-edge
p2 = 1 she (by strict selection) chooses an endpoint of the budget line,
delivering the two-point set {0, 5} for x12.

Remark. If Consumer 1 had exact perfect-substitutes utility and we
kept the full argmax correspondence, then at p2 = 1 her demand for
good 2 would be the whole interval [0, 5]. That convex, interval-valued
demand at the tie will matter for existence.
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x11

x12

budget p2 = 1
budget p2 > 1

budget p2 < 1
x12 = 5

x11 = 5
Consumer 1 (non–convex preferences): at p2 = 1 the maximizers are the two corners.

Consumer 2 Cobb–Douglas with u2 = x21x22 implies constant expen-
diture shares. With

m2(p) = p · ω2 = 2 + 3p2,

the Marshallian demand for good 2 is

x22(p) =
1
2

m2(p)
p2

=
2 + 3p2

2p2
.

Market for good 2

Aggregate endowment (supply) of good 2 is fixed at

ω2
1 + ω2

2 = 2 + 3 = 5.

Aggregate demand for good 2 is x12(p) + x22(p), which is piecewise:
Case p2 < 1.

x12(p) + x22(p) =
3 + 2p2

p2
+

2 + 3p2

2p2
=

4
p2

+
7
2

.

Market clearing x12 + x22 = 5 would require 4
p2

+ 7
2 = 5, i.e. 4

p2
= 3

2 , so

p2 = 8
3 > 1, contradicting p2 < 1.

Case p2 > 1.

x12(p) + x22(p) = 0 +
( 1

p2
+

3
2

)
.

Market clearing requires 1
p2

+ 3
2 = 5, i.e. 1

p2
= 7

2 , so p2 = 2
7 < 1,

contradicting p2 > 1.
Case p2 = 1.

x22(p) =
2 + 3

2
= 2.5, x12(p) ∈ {0, 5}.

Clearing the good 2 market requires x12 = 5 − 2.5 = 2.5, but the
selection delivers only {0, 5}. Hence, no market-clearing choice exists
at p2 = 1.
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Supply (endowment) Ω2 = 5

Good 2 market: aggregate demand never hits the fixed supply at 5.

Remark. At p2 = 1, Consumer 1’s selection {0, 5} is discontinuous:
it jumps from full demand of good 2 to none, omitting any interior
choice. If instead her demand correspondence were the convex set
[0, 5], the map would be upper hemicontinuous (by Berge’s Maximum
Theorem), preserving convexity and ensuring an equilibrium. The
restricted selection {0, 5} breaks u.h.c. and destroys existence.

Conclusion. There is no p2 > 0 for which the market for good 2 clears.
Therefore, a Walrasian equilibrium does not exist in this economy (with
Consumer 1’s strict-selection rule).

Equilibrium as a fixed point problem

In equilibrium, aggregate demand equals aggregate supply:

demand(p) = supply(p) ⇐⇒ z(p) = demand(p)− supply(p) = 0,

where z(p) denotes the excess demand function3. A Walrasian equilibrium 3 The term excess of demand has a sim-
ple meaning: it measures, for each good,
the difference between the desired con-
sumption at prices p and the available
resources. When zℓ(p) > 0, the mar-
ket demands more than what is available
(pressure for the price to rise). When
zℓ(p) < 0, there is excess supply (pres-
sure for the price to fall). Hence equilib-
rium is the situation in which all these
pressures disappear.

(W.E.) corresponds to any price vector p satisfying z(p) = 0.

Defining the domain. Let ∆ denote the price simplex,

∆ =
{
(p1, p2, . . . , pL) ∈ RL

+

∣∣ p1 + p2 + · · ·+ pL = 1
}

.

We define z : ∆ → RL as a single-valued excess demand function (for
simplicity we do not allow correspondences here).4

4 If we used demand correspondences
then excess demand would itself be a cor-
respondence Z(p), and proof would rely
on Kakutani’s fixed–point. We would
need: (i) each individual demand corre-
spondence to be nonempty, compact, con-
vex, and u.h.c.; (ii) Walras’ Law p · z = 0
for all z ∈ Z(p); (iii) a boundary condition:
if pℓ = 0, then some z ∈ Z(p) satisfies
zℓ > 0 (to avoid zero–price goods). Un-
der these assumptions, Kakutani ensures
p∗ and z∗ ∈ Z(p∗) with z∗ = 0.

Proposition. If z satisfies:

1. z is continuous,

2. z satisfies Walras’ Law: p · z(p) = 0 for all p ∈ ∆,
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3. if pℓ = 0, then zℓ(p) > 0,

then there exists at least one price vector p∗ ∈ ∆ such that z(p∗) = 0.

Remark (Comment on the alternative ap-
proach.). If we used a contraction mapping
theorem instead of Brouwer, we could
guarantee convergence of the iterative
price-adjustment process to the fixed
point from any starting price. How-
ever, that condition is much more restric-
tive and is not required for the existence
proof.

Idea of the proof. The result follows from Brouwer’s Fixed Point Theo-
rem.

Theorem (Brouwer Fixed Point Theorem). If X ⊆ Rn is non-empty,
convex, and compact, and f : X → X is continuous, then there exists x∗ ∈ X
such that f (x∗) = x∗.

Constructing a continuous map on the simplex. Define f : ∆ → ∆ by

fℓ(p) =
pℓ + max{zℓ(p), 0}

∑L
k=1

(
pk + max{zk(p), 0}

) .

Intuitively, if a good ℓ has positive excess demand, max{zℓ(p), 0} > 0
increases its relative weight in the normalized price vector. If instead
there is excess supply (zℓ(p) < 0), the denominator increases while the
numerator does not, reducing fℓ(p).

Remark. The idea is to find a fixed point of this transformation of
prices: a price vector p such that f (p) = p. At that point, the “adjusted”
prices already balance excess demand, i.e. z(p) = 0.

Step 1. By Brouwer’s theorem, since ∆ is compact and convex, and f is
continuous, there exists at least one fixed point p∗ such that f (p∗) = p∗.

Step 2. Show that any such fixed point must satisfy z(p∗) = 0. Suppose
f (p) = p; then for each good ℓ,

pℓ + max{zℓ(p), 0}
∑L

k=1
(

pk + max{zk(p), 0}
) = pℓ.

Pick some ℓ such that zℓ(p) ≤ 0 (such a good must exist because by
Walras’ Law not all zℓ(p) can be strictly positive). Then

pℓ
∑L

k=1
(

pk + max{zk(p), 0}
) = pℓ =⇒

L

∑
k=1

(
pk +max{zk(p), 0}

)
= 1.

This is only possible if max{zk(p), 0} = 0 for all k, i.e. zk(p) ≤ 0 for all
goods.

Now, if all goods exhibit excess supply (zk(p) ≤ 0), then by Walras’
Law:5 5 Shouldn’t it be ≤?

p · z(p) =
L

∑
k=1

pkzk(p) < 0,

a contradiction. Hence, the only possible case is z(p) = 0.
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Conclusion. All goods with excess supply would have price zero, but
we ruled out that possibility by assuming pℓ > 0 for all ℓ. Therefore,
the fixed point p∗ satisfies z(p∗) = 0, which is a Walrasian equilibrium.





Class 10: Basic axioms on the primitives for the existence
of Walrasian equilibrium

Last class we constructed a (single–valued) excess demand function

z : ∆ → RL

and used it to prove the existence of a Walrasian equilibrium under the
following three conditions:

1. z(p) is continuous in p,

2. z(p) satisfies Walras’ Law: p · z(p) = 0 for all p ∈ ∆,

3. if pℓ = 0, then zℓ(p) > 0.

Any p ∈ ∆ such that z(p) = 0 is then a Walrasian equilibrium price
vector.

In this class we go “one level back”: we look for assumptions on the
primitives of the economy (consumption sets, preferences, endowments,
technologies) that guarantee these three properties of the excess demand
function.

Theorem. If, for every consumer i = 1, . . . , I and every firm j = 1, . . . , J, the
primitives satisfy:

1. Xi = [0, m]L for some large m > 0, with

m > max
ℓ=1,...,L

xℓ where xℓ =
I

∑
i=1

ωiℓ +
J

∑
j=1

yjℓ

denotes the aggregate amount of good ℓ in the economy (coming from
endowments and production);

2. ωi ≫ 0 for every i (each consumer has a strictly positive endowment of
every good);

3. preferences are convex6, continuous, and strictly increasing, where convex- 6 Tillman uses convex here but the truth is
that they should be strctly convex. Noth-
ing less, nothing more.

ity actually used here is: if xi, x′i ∈ Xi, xi ̸= x′i , and xi ∼i x′i , then for all
λ ∈ (0, 1) we have Intuition: mixing two indifferent but dis-

tinct bundles yields a bundle that is
strictly preferred.λxi + (1 − λ)x′i ≻i xi, x′i .
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4. each production set Yj is compact, convex7, and satisfies 0 ∈ Yj for every 7 Tillman uses convex here but the truth is
that they should be strctly convex. Noth-
ing less, nothing more.

j, where convexity used for production is: if yj, y′j ∈ Yj with yj ̸= y′j and
λ ∈ (0, 1), then In words, if two production plans are fea-

sible, then any convex mixture of them
is also feasible. Moreover, the technology
allows another plan that strictly domi-
nates this mixture, so with strictly posi-
tive prices the profit–maximizing plan is
unique.

λyj + (1 − λ)y′j ∈ Yj and ∃ŷj ∈ Yj : ŷj ≫ λyj + (1 − λ)y′j

y1

y2

yj

y′j

ȳj

ŷj

then the associated excess demand function z : ∆ → RL is well defined
and satisfies conditions (1)–(3) above, so there exists at least one Walrasian
equilibrium.

Remark (Convexity and marginal utili-
ties). Convex, continuous, strictly increas-
ing preferences admit a utility represen-
tation ui that is quasi-concave. Quasi-
concavity means that all upper contour
sets {x ∈ Xi : ui(x) ≥ ū} are convex.
When ui is differentiable, this can be in-
terpreted in terms of marginal utilities:
along any line in the consumption space,
marginal utility is “diminishing” so the
Hessian of ui is negative semidefinite.
This is the sense in which the convexity
assumption above is related to properties
of marginal utilities.

Economic interpretation of the assumptions. Assumption (i) puts every
consumer in a common “box” [0, m]L that is large enough to contain
any feasible allocation generated by initial endowments and production.
This guarantees that demand is always chosen from a compact set that
does not depend on prices.

Assumption (ii) requires strictly positive endowments, which guar-
antees that every consumer has strictly positive wealth at any strictly
positive price vector p ≫ 0 and that each good is present in strictly
positive aggregate amount in the economy. Together with strict mono-
tonicity, this rules out degenerate cases in which a consumer would
optimally choose a bundle that does not exhaust her budget: for any
p ≫ 0, the solution to the consumer problem satisfies p · xi = p · ωi.
It also ensures that no good can be “ignored” in equilibrium simply
because nobody is initially endowed with it.

Assumption (iii) ensures good behavior of individual demand. Com-
pact, convex budget sets and convex, continuous, strictly increasing
preferences imply that each consumer’s demand correspondence is
nonempty, convex-valued and, by Berge’s Maximum Theorem, upper
hemicontinuous in prices. The extra strict convexity along indifference
sets rules out non-unique tangencies: the demand of each consumer is
in fact a single-valued and continuous function of prices.8 8 Upper hemicontinuity of individual de-

mand correspondences (and of firms’
profit-maximizing correspondences) can
be obtained from Berge’s Maximum The-
orem. With the strict convexity ingredi-
ents that give uniqueness of the maxi-
mizers, upper and lower hemicontinuity
collapse into continuity of the demand
and supply functions. Summing across
agents then yields a continuous aggre-
gate excess demand z(p).

Assumption (iv) plays the analogous role for firms. Compactness
of Yj prevents profits from going off to infinity, so each firm has at
least one profit-maximizing production plan at any price. Convexity
of Yj implies that if two plans are feasible, then all mixtures of them
are feasible as well. With linear profits p · yj, this delivers a convex
maximization problem.

Comparative statics and aggregation of supply

Comparative statics

Consider a parameter ξ that shifts the (aggregate) demand side of the
economy. In the (ξ, p1)–plane we can think of the equilibrium price
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p∗1(ξ) as the point where this parameter–dependent demand curve
intersects the (fixed) supply curve.

p1

ξ

p∗1

shock to demand

slope at the intersection matters

Comparative statics in (ξ, p1) space. The blue
curve gives the locus of (ξ, p1) pairs that satisfy
the equilibrium condition. A positive demand
shock shifts this curve upward (orange); the
impact on the equilibrium price p∗1 depends on
the slope of the curve at the intersection with
ξ = 0.

A small shock to demand corresponds to a small change in ξ, which
shifts the demand curve. The induced change in the equilibrium price
p∗1(ξ) depends on the slope of the excess–demand function at the intersection
point: if the curve is steep at the equilibrium, a given horizontal shift in
demand produces only a small movement in p∗1 , whereas if the curve is
relatively flat at that point, the same shift in ξ generates a larger change
in the equilibrium price.

Aggregation question: aggregation of firms’ supply correspondences

We now turn to the aggregation of firms. Let there be J firms with
production sets

Y1, . . . , YJ .

For a given price vector p, the supply correspondence of firm j is

Sj(p) =
{

yj ∈ Yj
∣∣ p · yj ≥ p · ỹj for all ỹj ∈ Yj

}
.

The aggregate supply correspondence of these J firms at price p is
defined as the Minkowski sum

S(p) =
J

∑
j=1

Sj(p) =
{ J

∑
j=1

yj

∣∣∣ yj ∈ Sj(p) for all j
}

.

Proposition. Let Y1, . . . , YJ be the firms’ production sets and define the ag-
gregate production set

Y = Y1 + Y2 + · · ·+ YJ =
{ J

∑
j=1

yj

∣∣∣ yj ∈ Yj for all j
}

(the Minkowski sum of the Yj’s). Let Ŝ(p) be the supply correspondence of a
single firm with production set Y:

Ŝ(p) =
{

y ∈ Y
∣∣ p · y ≥ p · ỹ for all ỹ ∈ Y

}
.



58 microeconomics 603 university of michigan

Then, for every price vector p,

Ŝ(p) = S1(p) + S2(p) + · · ·+ SJ(p).

Proof. We need to show the two inclusions

Ŝ(p) ⊆
J

∑
j=1

Sj(p) and
J

∑
j=1

Sj(p) ⊆ Ŝ(p).

(i) Ŝ(p) ⊆ ∑J
j=1 Sj(p). Take y ∈ Ŝ(p). By definition of Y = Y1 + · · ·+YJ ,

there exist vectors yj ∈ Yj such that

y =
J

∑
j=1

yj.

We claim that in fact yj ∈ Sj(p) for every j.
Suppose not. Then for some firm j there exists y′j ∈ Yj with

p · y′j > p · yj.

Consider the alternative aggregate production vector

y′ = ∑
k ̸=j

yk + y′j ∈ Y.

Its profit is

p · y′ = p ·
(

∑
k ̸=j

yk + y′j
)
> p ·

(
∑
k ̸=j

yk + yj

)
= p · y,

which contradicts y ∈ Ŝ(p), since y was supposed to maximize profits
over Y. Hence our assumption was false, and we must have yj ∈ Sj(p)
for all j. Therefore y = ∑J

j=1 yj ∈ ∑J
j=1 Sj(p).

(ii) ∑J
j=1 Sj(p) ⊆ Ŝ(p). Now take vectors yj ∈ Sj(p) for all j, and let

y =
J

∑
j=1

yj.

By construction y ∈ Y. We show that y ∈ Ŝ(p).
Suppose not. Then y /∈ Ŝ(p), so there exists some y′ ∈ Y with

p · y′ > p · y.

Because y′ ∈ Y = Y1 + · · ·+ YJ , there are vectors y′j ∈ Yj such that

y′ =
J

∑
j=1

y′j.



class 10: basic axioms on the primitives for the existence of walrasian equilibrium 59

Therefore

p ·
J

∑
j=1

y′j = p · y′ > p · y = p ·
J

∑
j=1

yj.

This strict inequality of sums implies that for at least one firm j we
must have

p · y′j > p · yj,

contradicting yj ∈ Sj(p) (since Sj(p) is the set of maximizers of p · yj

over Yj). Thus no such y′ can exist, and y must belong to Ŝ(p).
Combining (i) and (ii) we conclude that Ŝ(p) = S1(p) + · · ·+ SJ(p)

for every price vector p.





Class 11: Aggregate demand functions

In the previous class we started from the primitives of the economy and
derived an excess demand function z : ∆ → RL that is continuous, ho-
mogeneous of degree zero and satisfies Walras’ Law. We now move one
step forward: instead of asking which primitives deliver a well–behaved
excess demand function, we ask what properties of individual demand
carry over to the aggregate demand of an economy.

Monotonicity and aggregation

Recall the “law of demand” type condition that arises from the Slutsky
matrix.

Definition (Monotonicity in the Slutsky sense). A function f : RL
++ →

RL is monotone (in the Slutsky sense) if for every pair of price vectors
p, p′ ≫ 0 we have

(p′ − p) ·
(

f (p′)− f (p)
)
≤ 0.

For Hicksian (compensated) demand h(p, u) this inequality always
holds: a change in prices that raises the cost of the consumption bundle
cannot increase the compensated quantity demanded. Law of demand: a price increase, holding

utility fixed, cannot raise the value of de-
mand at the new prices. Equivalently, the
Slutsky matrix is negative semidefinite.

By contrast, Marshallian (uncompensated) demand x(p, m) need not
be monotone: income effects can overturn the pure substitution effect
and violate the law of demand. Hence individual demand correspon-
dences need not be monotone; only compensated ones satisfy the Slutsky
monotonicity property.

A simple but important observation is that monotonicity is preserved
by aggregation.

Proposition (Monotonicity survives summation). Let f , g : RL
++ → RL

be two monotone functions in the sense above. Then their sum f + g is
also monotone. More generally, the sum of any finite collection of monotone
functions is monotone.
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Proof. For any p, p′ ≫ 0,

(p′ − p)·
[
( f + g)(p′)− ( f + g)(p)

]
=

= (p′ − p) ·
(

f (p′)− f (p)
)
+ (p′ − p) ·

(
g(p′)− g(p)

)
≤ 0 + 0 = 0

since each term is nonpositive by monotonicity of f and g. The exten-
sion to finitely many functions is immediate by induction.

Remark. If each consumer’s (Hicksian) compensated demand hi(p, ui)

is monotone, then the aggregate compensated demand

h(p, u1, . . . , uI) =
I

∑
i=1

hi(p, ui)

is also monotone. Thus the law of demand for compensated demand
survives aggregation. What will turn out to be much more delicate is
which properties of Marshallian demand survive aggregation.

Income aggregation and the representative consumer

We now ask when the aggregate Marshallian demand of many con-
sumers can be represented as if it were the demand of a single “repre-
sentative consumer” whose only characteristic is aggregate income.

For consumer i let

Di : RL
++ × R+ → RL

+, (p, yi) 7−→ Di(p, yi)

denote her Marshallian demand (for given prices p and income yi).
For a profile of incomes (y1, . . . , yI) the aggregate demand of the I
consumers is

I

∑
i=1

Di(p, yi).

Definition (Income aggregation). We say that income aggregation holds
if there exists a function

D : RL
++ × R+ → RL

+

such that, for every price vector p and every income profile (y1, . . . , yI),

I

∑
i=1

Di(p, yi) = D
(

p,
I

∑
i=1

yi

)
.

In words, the aggregate demand depends only on prices and aggre-
gate income Y = ∑i yi, not on how this income is distributed across
consumers.
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Idea: if income aggregation holds, the
entire economy can be summarized by
a single demand function D(p, Y), as if
there were one representative consumer
with income Y.

The following proposition characterizes when such a representative
consumer exists.

Proposition (Characterization of income aggregation). There exists a
function D(p, Y) satisfying income aggregation if and only if the following
two conditions hold:

(i) Symmetry across consumers: For all i, j,

Di(p, y) = Dj(p, y) for all (p, y) ∈ RL
++ × R+.

That is, at any given price vector and income level, consumers with the
same income have the same demand bundle.

(ii) Linear Engel curves: There exists a function α : RL
++ → RL

+ such that
for every consumer i and every (p, yi),

Di(p, yi) = yi α(p),

in particular Di(p, 0) = 0 for all i and p.

Remark. Condition (ii) means that each component of demand is pro-
portional to income at any fixed price vector p. The vector α(p) captures
the shares of income spent on each good. Thus all consumers share the
same Engel curve (the same income expansion path), which is a ray
from the origin. This is equivalent to assuming identical homothetic
preferences across consumers. Under (i)–(ii) we have

I

∑
i=1

Di(p, yi) =
I

∑
i=1

yi α(p) =
( I

∑
i=1

yi

)
α(p),

so income aggregation holds with D(p, Y) = Yα(p).

Aggregation and the WARP

Even when a representative consumer exists in the sense of income
aggregation, the aggregate demand need not satisfy the Weak Axiom
of Revealed Preference (WARP).

Consider an economy with only two goods and I = 2 consumers.
Let the income of consumer i be a fixed share βi > 0 of total income Y,
with β1 + β2 = 1, so that yi = βiY.

Assume that both consumers have identical, well–behaved prefer-
ences that generate Marshallian demands Di(p, yi) satisfying WARP.
Under the conditions for income aggregation above, aggregate demand
is proportional to Y and can be represented by a single function D(p, Y).

The figure illustrates that even though each agent’s demand satisfies
WARP, the aggregate demand can violate it: there exist price vectors p
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x1

x2

agent 1 at p

agent 2 at p

aggregate at pagent 1 at p′

agent 2 at p′
aggregate at p′

Aggregation and the WARP. Each individ-
ual satisfies WARP, but the aggregate choices
(green points) can violate it. At both price vec-
tors p and p′ each green bundle is affordable,
yet the aggregate demand switches from one
to the other, contradicting WARP.

and p′ and aggregate bundles x(p) and x(p′) such that each bundle is
affordable at both prices and yet the aggregate chooses x(p) at p and
x(p′) at p′, contradicting WARP. Thus revealed–preference consistency
is not a property that survives aggregation, even under strong symmetry
and homotheticity assumptions.

The Sonnenschein–Mantel–Debreu theorem

We return to the aggregate excess demand function of an exchange
economy. Let ξ(p) denote the excess demand function associated with
some economy.

From last class we know that under the standard assumptions on
preferences, endowments and technologies, ξ satisfies three key proper-
ties:

(i) Continuity: ξ(p) is continuous in p.

(ii) Homogeneity of degree zero: ξ(λp) = ξ(p) for all λ > 0.

(iii) Walras’ Law: p · ξ(p) ≡ 0 for all p ≫ 0.
Question: are there other economically
meaningful restrictions on individual be-
havior that necessarily survive aggrega-
tion at the level of ξ(p)? We have just
seen that even WARP does not.

A remarkable result due to Sonnenschein, Mantel and Debreu says
that, apart from (i)–(iii), essentially no further restrictions on ξ(p) are
implied by standard assumptions at the individual level.

Theorem (Sonnenschein–Mantel–Debreu). Let ξ : RL
++ → RL be any

function that is continuous, homogeneous of degree zero and satisfies Walras’
Law, p · ξ(p) ≡ 0. Then there exists an exchange economy (with a suitable
number of consumers and endowments) whose aggregate excess demand func-
tion is precisely ξ(p). In that economy, no additional property of individual
demand—such as WARP, Slutsky symmetry, or monotonicity of Marshallian
demand—survives aggregation.
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We now ask whether the Walrasian equilibrium we have shown to
exist is unique. More precisely, if ξ(p) is the aggregate excess demand
function, we ask whether the equation

ξ(p) = 0, p ∈ ∆,

has a unique solution. There are two logically distinct questions:

1. uniqueness of prices (up to normalization), and

2. uniqueness of quantities (equilibrium allocation).

In what follows we first obtain a result on uniqueness of aggregate
quantities, and then study uniqueness of prices.

Uniqueness of quantities with a representative consumer

Proposition. Suppose the First Welfare Theorem holds (with its usual assump-
tions). Suppose there exists a representative consumer with strictly convex
preferences, and suppose that the aggregate production set

J

∑
j=1

Yj =
{ J

∑
j=1

yj : yj ∈ Yj

}
is convex. Then the Walrasian equilibrium aggregate quantities are unique.

Remark. The feasible set of aggregate net outputs is

ω +
J

∑
j=1

Yj,

which is convex by assumption. Strict convexity of the representative
consumer’s preferences implies that the social optimum is a unique
point of this convex set. By the First Welfare Theorem, any Walrasian
equilibrium allocation coincides with such a social optimum, so the
aggregate equilibrium quantities are unique. However, the supporting
prices for this unique allocation need not be unique: if the frontier of
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ω + ∑j Yj has a kink at the equilibrium allocation, there can be many
supporting hyperplanes (and thus many relative price vectors) passing
through that point.

x1

x2

equilibrium quantitiesseveral slopes support
the same allocation

Unique equilibrium quantities but possibly
multiple supporting price vectors when the
aggregate technology set has a kink.

Gross substitutes and uniqueness of prices

To obtain uniqueness of prices, we need a stronger restriction on the
shape of the excess demand function. We will assume that all goods
are gross substitutes.

Because of homogeneity of degree zero, we can think of the excess
demand as a function defined on the whole positive orthant, not just
on the simplex:

ξ : RL
++ → RL,

and then normalize prices back to ∆ when needed. Working on RL
++

allows us to vary one price at a time while holding the others fixed and
to speak of partial derivatives with respect to individual prices.
Gross substitutes assumption. We assume that ξ is continuously
differentiable and satisfies

∂ξℓ(p)
∂pℓ

< 0 and
∂ξℓ(p)

∂pk
> 0 for all ℓ ̸= k.

An increase in the price of good ℓ reduces its own excess demand
(own-price effect negative), while an increase in the price of any other
good k raises the excess demand for good ℓ (goods are gross substitutes
in excess-demand sense).

Proposition. Suppose ξ : RL
++ → RL is homogeneous of degree zero, contin-

uously differentiable, and satisfies the gross–substitutes sign conditions above.
Then there is at most one p∗ ∈ ∆ with p∗ ≫ 0 such that

ξ(p∗) = 0.

In other words, the Walrasian equilibrium price vector (up to normalization)
is unique.
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Proof. Suppose, towards a contradiction, that there exist two equilib-
rium price vectors p′, p′′ ∈ ∆ with p′, p′′ ≫ 0 such that

ξ(p′) = 0, ξ(p′′) = 0,

and p′′ is not a positive scalar multiple of p′ (so p′′ ̸= λp′ for all λ > 0).
Define

λ ≡ max
ℓ=1,...,L

p′ℓ
p′′ℓ

,

and let ℓ̂ be an index at which this maximum is attained. Then

p′
ℓ̂
= λp′′

ℓ̂
, p′ℓ ≤ λp′′ℓ for all ℓ,

and there is at least one k such that p′k < λp′′k (otherwise p′ = λp′′).
Consider the price vector q ≡ λp′′. By homogeneity of degree zero,

ξ(q) = ξ(λp′′) = ξ(p′′) = 0.

Notice that
qℓ̂ = p′

ℓ̂
, qk ≥ p′k for all k,

and for at least one k ̸= ℓ̂ we have qk > p′k.
Now look at the excess demand for good ℓ̂. When moving from p′

to q, the own price of good ℓ̂ is unchanged, but the prices of at least
one other good k ̸= ℓ̂ increase. Since

∂ξ ℓ̂
∂pk

> 0 for all k ̸= ℓ̂,

raising some of the other prices strictly increases the excess demand
for good ℓ̂. Hence

ξ ℓ̂(q) > ξ ℓ̂(p′).

On the other hand, ξ(q) = 0 implies ξ ℓ̂(q) = 0, so the previous
inequality yields

0 = ξ ℓ̂(q) > ξ ℓ̂(p′),

and therefore ξ ℓ̂(p′) < 0. This contradicts the assumption that p′ is an
equilibrium price vector, which would require ξ(p′) = 0.

We conclude that there cannot exist two distinct price vectors in ∆
that solve ξ(p) = 0. Thus the Walrasian equilibrium price vector is
unique (up to normalization).

Convexity of the set of equilibrium prices

We now study an alternative route to uniqueness-type results, based on
revealed preference restrictions on excess demand and constant returns
to scale on the production side.

Assume that the aggregate excess demand function z : ∆ → RL

is single–valued and that the firms’ production sets satisfy constant
returns to scale (CRS).
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Proposition. If the following conditions hold:

(i) For every consumer i and every price vector p ∈ ∆ there is a unique bundle
xi(p) that maximizes ⪰i subject to the budget constraint p · xi ≤ p · ωi,
and

z(p) =
I

∑
i=1

(
xi(p)− ωi

)
;

(ii) z satisfies Walras’ Law:

p · z(p) = 0 ∀p ∈ ∆;

(iii) z satisfies WARP, in the sense that for any p, p′ ∈ ∆,

p · z(p′) ≤ 0 and p′ · z(p) ≤ 0 ⇒ z(p) = z(p′);

(iv) For every firm j the production set Yj has CRS:

yj ∈ Yj and λ ≥ 0 ⇒ λyj ∈ Yj,

then the set of Walrasian equilibrium price vectors is convex.

q1

q2

p′

p

z(p)

z(p′)

Under WARP for aggregate excess demand and
CRS on the production side, the set of Wal-
rasian equilibrium prices is convex.

Regular equilibria and the Implicit Function Theorem

To understand when equilibrium prices are locally unique, we recall
the Implicit Function Theorem.

Implicit Function Theorem (intuition)

Consider an equation
f (x, a) = 0,

where x ∈ Rn is the unknown and a ∈ Rk is a parameter vector.
Roughly speaking, if the Jacobian of f with respect to x is invertible
at a solution (x∗, a∗), then there is a locally unique solution x(a) in a
neighborhood of a∗; invertibility of this Jacobian is both necessary and
sufficient for such local uniqueness.
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x

f (x)

x

f (x)

Left: a function with several zeros. Right: a
function with an isolated zero where the deriva-
tive is nonzero; the Jacobian is invertible and
the solution is locally unique.

Reduced excess demand and regular equilibria

For the Walrasian equilibrium problem, we would like to apply the
Implicit Function Theorem to the system ξ(p) = 0. However, the
Jacobian of ξ is never invertible because Walras’ Law implies that the
rows are linearly dependent. To restore invertibility we normalize one
price and work in dimension L − 1.

Let us normalize the last good as numéraire, pL ≡ 1, and define the
reduced excess demand map

η : RL−1
++ → RL−1, η(p−L) ≡

(
ξ1( p̃), . . . , ξL−1( p̃)

)
,

where p̃ = (p−L, 1) is the corresponding L–dimensional price vector.
Equilibrium in the original economy is equivalent to solving η(p−L) = 0
in RL−1

++ .

Proposition. Suppose η(p∗) = 0 for some p∗ ∈ RL−1
++ and the Jacobian

Dη(p∗) is invertible. Then there exists ε > 0 such that

p ̸= p∗, ∥p − p∗∥ ≤ ε ⇒ η(p) ̸= 0.

In particular, p∗ is an isolated solution of η(p) = 0. The corresponding price
vector p̃∗ = (p∗, 1) is called a regular equilibrium.

Proposition. For “almost all” (or generic) economies, the set of Walrasian
equilibrium price vectors in ∆ is finite and consists of an odd number of points
(1, 3, 5, . . . ). Moreover, all these equilibrium price vectors are regular.
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Global uniqueness is very restrictive. We now study local uniqueness of
Walrasian equilibrium prices by again considering the reduced excess
demand map under a price normalization.

Let
η : RL−1

++ → RL−1

be continuously differentiable, and suppose we normalize the last good
as numéraire so that p = (p−L, 1). A Walrasian equilibrium in reduced
form solves

η(p) = 0.

Proposition. Suppose η is continuously differentiable and let p∗ satisfy
η(p∗) = 0. If the Jacobian Dpη(p∗) is invertible, then p∗ is locally unique.

The invertibility of the Jacobian allows us to apply the Implicit
Function Theorem. Hence, in a neighborhood of p∗, there is no other
price vector solving the reduced equilibrium conditions.

Comparative statics of equilibrium prices

We now introduce a parameter q and consider the parameterized re-
duced excess demand,

η(p, q).

A change in q affects the equilibrium through the equation

η(p(q), q) = 0.

Suppose the equilibrium p(q∗) is locally unique. Then p(q) is our
object of interest, particularly the derivative

∂p
∂q

.

Assume for simplicity that Dpη(p∗, q∗) is invertible. Local unique-
ness ensures we can solve for p(q) smoothly in a neighborhood of
q∗.
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q

p

q∗ q

p(q∗)
p(q)

Local function p(q) around
q∗. Local uniqueness rules out
jumps.

Local uniqueness ensures a local function p(q) around q∗. We do not
study jumps in equilibrium prices here; the IFT provides a differentiable
selection.

Monotonicity

Consider the monotonicity condition:

(p(q)− p(q̂)) · (q − q̂) ≥ 0.

Via the IFT, this corresponds to checking the sign of the directional
derivative:

(Dq p(q) · ∆q) · (Dqη(p(q), q) · ∆q) ≥ 0 ∀∆q.

If Dpη(p∗, q∗) satisfies a monotonicity property, then monotonicity
of p(q) follows.

This holds, for example, in an exchange economy with a represen-
tative consumer (without production). The intuition is that excess
demand increasing in q induces prices to increase, though the exact
mechanism is nontrivial.

Gross substitutes and monotonicity

Suppose now that all goods are gross substitutes. Then for all ℓ ̸= k:

∂ηℓ(p, q)
∂pk

> 0,
∂ηℓ(p, q)

∂pℓ
< 0.

This is a more restrictive assumption, but under it the Jacobian
Dpη(p, q) is a P–matrix, hence invertible and sign–preserving.

Thus, if
Dqη(p∗, q∗) · ∆q ≫ 0,

then
Dq p(q∗) · ∆q ≫ 0.
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So under gross substitutes, a monotone increase in the parameter q
induces a monotone increase in equilibrium prices.

Time and Uncertainty in General Equilibrium

We now extend the general–equilibrium framework to environments
in which both time and uncertainty play a central role. This allows
us to analyze economies in which markets open before uncertainty
is resolved, and consumption takes place only after the relevant state
of the world becomes known. A central distinction in this setting is
between complete and incomplete markets.

A simple intertemporal–uncertainty model

Consider an economy that unfolds over two periods, t = 0 and t = 1.
Uncertainty is resolved in period t = 1, and we denote by

s ∈ S = {1, 2, . . . , S}

the realized state of the world at that time. All trading of financial
or contingent claims occurs in the initial period t = 0, while physical
consumption takes place only in period t = 1. This structure captures
the idea that individuals make ex–ante choices under uncertainty and
then realize consumption once the uncertainty has been resolved.

Consumers may differ in their attitudes toward risk and therefore in
how they evaluate state– contingent consumption plans.

There are I consumers, indexed by i = 1, . . . , I. Each consumer’s
feasible consumption plan specifies consumption in period 1 in each
possible state s ∈ S. We therefore represent consumer i’s consumption
set as

R2×S
+ ,

where the two components in each state correspond to two physical
goods.

Preferences are defined over these state–contingent consumption
bundles. Let ⪰i denote consumer i’s preference relation on R2×S

+ . We
impose two standard assumptions that facilitate the analysis.

Assumption 1. Preferences ⪰i are strictly increasing: consumers always prefer
more of any good in any state.

Assumption 2. For every state s ∈ S, there exists a well–defined conditional
preference relation ⪰i,s over R2

+. This condition represents a
form of separability across states: the consumer can evaluate
state–specific consumption bundles and aggregate them into
overall preferences.
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These assumptions are minimal yet sufficient to embed uncertainty
into the general–equilibrium framework in a way that preserves tractabil-
ity while allowing for rich heterogeneity in risk attitudes and in re-
sponses to uncertainty.
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Basic Structure of the Environment

We consider a two–period economy, t = 0, 1, in which uncertainty is
resolved in period 1. There are S possible states of the world, indexed
by

s ∈ {1, . . . , S}.

Consumers trade at t = 0 over state–contingent commodities

xi ∈ R2×S
+ ,

and hold endowments
ωi ∈ RL

+.

At t = 1 one of the states s materializes. Consumption takes place after
the realization.

There is time consistency across states, and preferences are strictly
increasing. Our goal is to examine how consumers trade ex–ante under
different uncertainty scenarios.

Arrow–Debreu Interpretation

The key reinterpretation is the following:

A commodity is defined as: “one unit of good ℓ delivered at time t if and
only if the realized state is st.”

Thus, the period–0 market trades the full vector of L × S Arrow–
Debreu commodities. If this market is complete, then the standard
welfare theorems apply exactly as in the timeless general–equilibrium
model.

No Trade Result under Identical Conditional Preferences If consumers
have identical preferences in each state s, then after the realization of
uncertainty there is no scope for further trades: all relevant reallocations
were already anticipated and executed at t = 0.

This is the canonical Arrow–Debreu result: ex–ante markets imple-
ment all redistributions. What if preferences are convex but I only

learn state–dependent preferences at t =
1?
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The Radner Model

We now reinterpret the two–period economy with uncertainty using
the Radner framework. The key distinction relative to Arrow–Debreu
is that markets open sequentially:

1. At period 0, consumers trade a set of K financial assets at prices
q ∈ RK.

2. At period 1, after the state s is realized, spot markets for goods
open with state–contingent prices ps ∈ RL

++.

Each asset k has a payoff vector across states described by the return
matrix

R =


r11 · · · r1S
...

. . .
...

rK1 · · · rKS

 , rks units of the numéraire delivered in state s.

Thus assets are linear combinations of Arrow–Debreu securities, but
only K such combinations are available.

Timing and Individual Optimization

Period 0. Consumer i chooses a portfolio zi ∈ RK satisfying

q · zi ≤ 0.

Period 1. Given realized state s, consumer i chooses xis ∈ RL
+ subject

to

ps · xis ≤ ps · ωis + ps1

K

∑
k=1

zikrsk.

This incorporates all intertemporal trades into state–s income ex-
pressed in units of the numéraire. El número de activos determina el sube-

spacio de planes de consumo que puedo
implementar. Solo puedo alcanzar com-
binaciones lineales de las columnas de
R.

Radner Equilibrium

A Radner equilibrium consists of:

• asset prices q ∈ RK,

• state–contingent spot prices ps ∈ RL
++ for each state s,

• portfolios (zi)
I
i=1,

• and consumption allocations (xis)
I
i=1,

such that:
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1. Given (q, ps), each consumer maximizes expected utility subject
to the budget constraints at t = 0 and t = 1.

2. Spot markets clear in each state:

I

∑
i=1

xis =
I

∑
i=1

ωis, ∀s.

3. Asset markets clear at t = 0:

I

∑
i=1

zi = 0.

This defines competitive behavior when uncertainty is present and
claims markets may be incomplete.

Relation to Arrow–Debreu

• If rank(R) = S (complete markets), Radner equilibrium allocations
coincide with Arrow–Debreu equilibrium allocations.

• If rank(R) < S, markets are incomplete and Radner equilibria need
not be Pareto efficient; the First Welfare Theorem may fail.

Consumers’ Budget Constraints

At period 0, each consumer chooses a portfolio

zi = (zi1, . . . , ziK) ∈ RK,

subject to the financial budget constraint

q · zi ≤ 0.
Idea: el número de activos determina qué
combinaciones de consumo puedo elegir
en cada estado. ¿Es una combinación
lineal de los K activos?

Period 1 Budget Constraint in State s Once the state s is realized, spot
markets for goods open. Consumer i must satisfy:

ps · xis ≤ ps · ωis + ps1

K

∑
k=1

zik rsk.

Thus all trades arranged in period 0 are fully incorporated into
period–1 income, expressed in units of the numéraire good.

If the number of assets is insufficient relative to the number of states,
i.e.

K < S,

then the First Welfare Theorem does not hold in general. The key reason is
that markets fail to span all contingencies, so competitive allocations
need not be Pareto efficient.
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Complete vs. Incomplete Markets

Complete Markets Markets are complete whenever the return matrix R
has full row rank:

rank(R) = S.

In this case:

• the First Welfare Theorem holds, and

• equilibria of the Radner model coincide with equilibria of the Arrow–
Debreu model (except for consumption at t = 0, which is absent in
the Radner formulation).

Incomplete Markets If instead

rank(R) < S,

then markets are incomplete: assets fail to span all payoff vectors. Rad-
ner equilibria may no longer be Pareto efficient, and welfare theorems
do not apply.
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